
Time-Stamping with Binary Linking SchemesAhto Buldas1, Peeter Laud2, Helger Lipmaa1, and Jan Villemson21 Cybernetica; Akadeemia 21, EE0026 Tallinn, Estonia2 Cybernetica, Tartu Lab; Lai 36, EE2400 Tartu, Estoniafahtbu,peeter,helger,jang@cyber.eeAbstract. We state the basic requirements for time-stamping systemsapplicable as the necessary support to the legal use of electronic doc-uments. We analyze the main drawbacks of the time-stamping systemsproposed to date and present a new system that meets all the statedrequirements. We prove that these requirements cannot be signi�cantlytightened.1 IntroductionTime-stamping ([HS91], [BdM91], [BHS92]) is a set of techniques enabling usto ascertain whether an electronic document was created or signed at a cer-tain time. The real importance of time-stamping becomes clear when there isa need for a legal use of electronic documents with a long lifetime. Withouttime-stamping we neither can trust signed documents when the cryptographicprimitives used for signing have become unreliable nor solve the cases when thesigner himself repudiates the signing, claiming that he has accidentally lost hissignature key. During the last years, especially in the context of legal regulationof using digital signatures, the organizational and legal aspects of time-stampingitself have become the subject of world-wide attention. In addition to de�ningthe responsibilities of the owner of the signature, duties and responsibilities ofthe third party (Time-Stamping Service, TSS) must be stated as well. Hence,there is an increasing interest in time-stamping systems where the need to trustthe TSS is minimized. In order to make users liable only for their own mistakes,there has to be a possibility to ascertain the o�ender.Unlike physical objects, digital documents do not comprise the seal of time.Thus, the association of an electronic document uniquely with a certain momentof time is very complicated, if not impossible. Even by the theory of relativity, noabsolute time exists. The best we can achieve with time-stamping is the relativetemporal authentication (RTA) based on the complexity-theoretic assumptionon the existence of collision-resistant one-way hash functions. RTA enables theveri�er given two time-stamped documents to verify which of the two was createdearlier.The main drawbacks of the time-stamping systems proposed to date concern(1) the need to unconditionally trust the TSS and (2) the time-complexity ofRTA, which is linear on the number of issued time-stamps.

In the current paper theoretical and practical requirements are discussedand a new time-stamping system is presented (1) in which the need to trust theTSS is signi�cantly diminished and (2) which o�ers RTA with the complexityproportional to the logarithm of the number of issued time-stamps.In Sect. 2 the time-stamping solutions proposed to date are analyzed. Sect. 3clari�es the security objectives of time-stamping by giving essential requirementsto the time-stamping systems. In Sect. 4 the protocols of the new time-stampingsystem are described using the linear linking scheme. In Sect. 5 binary linkingschemes are introduced and a scheme with logarithmic verifying time is pre-sented. In Sect. 6 we prove that the requirements stated in Sect. 3 cannot betightened.2 Existing Time-Stamping SystemsBy a simple time-stamping protocol ([HS91], Sect. 4), the TSS appends thecurrent time t to the submitted document X , signs the composite document(t;X) and returns the two values t and s = sigTSS(t;X) to the client. Theweaknesses of this scheme are the unreliability of old time-stamps after a possibleleakage of the signature key of the TSS and the impossibility of verifying whethers was issued actually at time t stated in the time-stamp, implying that the TSShas to be unconditionally trusted. Because of these drawbacks it has been widelyaccepted that a secure time-stamping system cannot rely solely on keys or on anyother secret information. An overview of the existing time-stamping solutions isgiven in [MQ97].2.1 Linear Linking Scheme (LLS)In order to diminish the need for trust, the users may demand that the TSS linksall time-stamps together into a chain using a collision-resistant hash function Has was proposed in [HS91], Sect. 5.1 (variant 1). In this case the time-stamp forthe n-th submitted document Xn iss = sigTSS(n; tn; IDn; Xn; Ln) ;where tn is the current time, IDn is the identi�er of the submitter and Ln is thelinking information de�ned by the recursive equationLn := (tn�1; IDn�1; Xn�1; H(Ln�1)) :There are several complications with the practical implementation of thisscheme. At �rst, the number of steps needed to verify the one-way relationshipbetween two time-stamps is linear with respect to the number of time-stampsbetween them. Hence, a single veri�cation may be as costly as it was to createthe whole chain. This solution has impractical trust and broadcast requirements,as it was pointed out already in [BdM91]. A modi�cation was proposed in [HS91](Sect. 5.1, variant 2) where every time-stamp is linked with k > 1 time-stampsdirectly preceding it. This variation decreases the requirements for broadcast byincreasing the space needed to store individual time-stamps.

2.2 Tree-Like SchemesTwo similar tree-like schemes have been proposed [BdM91, BHS92]. In theHaber-Stornetta scheme [BHS92, HS97], the time-stamping procedure is dividedinto rounds. The time-stamp Rr for round r is a cumulative hash of the time-stamp Rr�1 for round r � 1 and of all the documents submitted to the TSSduring the round r. After the end of the r-th round a binary tree Tr is built. Ev-ery participant Pi who wants to time-stamp at least one document in this round,submits to the TSS a hash yr;i which is a hash of Rr�1 and of all the documentshe wants to time-stamp in this round. The leafs of Tr are labeled by di�erentyr;i. Each inner node k of Tr is recursively labeled by Hk := H(HkL ; HkR), wherekL and kR are correspondingly the left and the right child nodes of k, and H is acollision-resistant hash function. The TSS has to store only the time-stamps Rrfor rounds (Fig. 1). All the remaining information, required to verify whether acertain document was time-stamped during a �xed round, is included into theindividual time-stamp of the document.
r,3

r,2y

r,1r-1

r,4

R r6
H4

H5

R y

y

y

H R r
R r-1

r,4

r,3

r,2y

r,1 6
H4

H5

y

y

y

H

Fig. 1. An example of the time-stamp for round r by the schemes presented in [BdM91](left) and [BHS92] (right).For example, the individual time-stamp for yr;3 is [r; (yr;4; L); (H4;R)]. Theverifying procedure of the time-stamp of yr;3 consists of verifying the equalityRr = H(H(H4; H(yr;3; yr;4)); Rr�1). Here, the size of a single time-stamp is log-arithmic with respect to the number of participants submitting their documentsto the TSS for the current round.The Haber{Stornetta linking scheme [BHS92, HS97] di�ers slightly from theBenaloh{de Mare scheme [BdM91]. Here, the time-stamp Rn for the n-th roundis linked directly to Rn�1, enabling the veri�er to check one-way dependen-cies between Ri without examining the individual time-stamps of the submitteddocuments. This is impossible in the Benaloh{de Mare scheme. However, in theHaber{Stornetta scheme the individual time-stamps in the n-th round are notlinked to the time-stamp Rn�1 for previous round.These schemes are feasible but provide the RTA for the documents issuedduring the same round only if we unconditionally trust the TSS to maintainthe order of time-stamps in Tr. Therefore, this method either increases the needfor trust or otherwise limits the maximum temporal duration of rounds to theinsigni�cant units of time (one second in Digital Notary system). However, if

the number of submitted documents during a round is too small, the expensesof time-stamping a single document may become unreasonably large (Sect. 3.3).3 Security ObjectivesIn the following we give a de�nition of time-stamping systems applicable in legalsituations. Later we will justify our approach and compare it to older systems.A time-stamping system consists of a set of principals with the time-stampingserver (TSS) together with a triple (S;V;A) of protocols. The stamping protocolS allows each participant to post a message. The veri�cation protocol V is usedby a principal having two time-stamps to verify the temporal order between thosetime-stamps. The audit protocol A is used by a principal to verify whether theTSS carries out his duties. Additionally, no principal (in particular, TSS) shouldbe able to produce fake time-stamps without being caught.A time-stamping system has to be able to handle time-stamps which areanonymous and do not reveal any information about the content of the stampeddata. The TSS is not required to identify the initiators of time-stamping requests.Our notion of time-stamping system di�ers from the one given in, e.g.,[BdM91] by several important aspects. Below we motivate the di�erences.3.1 Relative Temporal AuthenticationThe main security objective of time-stamping is temporal authentication [Jus98]{ability to prove that a certain document has been created at a certain moment oftime. Although the creation of a digital data item is an observable event in thephysical world, the moment of its creation cannot be ascertained by observingthe data itself (moreover, no such thing as the absolute thing exists). The bestone can do is to check the relative temporal order of the created data items(i.e., prove the RTA) using one-way dependencies de�ning the arrow of time,analogous to the way in which the growth of entropy de�nes the arrow of time inthe physical world ([Haw88], Chap. 9). For example, if H is a collision-resistantone-way hash function, one can reliably use the following \rough" derivationrule: if H(X) and X are known to a principal P at a moment t, then someone(possibly P himself) used X to compute H(X) at a moment prior to t. To date,the existence of one-way functions has not been proved. Therefore, the proposedtime-stamping systems make sense only under the hypothesis of the existence ofcollision free one-way hash functions.De�nition 1. A collision-resistant one-way hash function ([MOV96], Sect. 9.2)is a function H which has the properties of compression, ease of computation,preimage resistance, 2nd-preimage resistance and collision resistance.De�nition 2. Let � be a binary relation on IN, such that x � y implies x < yand H be a collision-resistant one-way hash function. A (�;H)-linking scheme is

a procedure to link a family (Hn) of data items together using auxiliary linkingitems Ln satisfying the recursive formulaLn := H(Hn; Ln1 ; : : : ; Ln]��1(n)) ; (1)where n1 � � � � � n]��1(n) are exactly the elements of ��1(n) := fm j m � ng(the preimage of n by �). A sequence (mi)ì=1, where mi � mi+1, is called averifying chain between m1 and m` with length `.In the context of time-stamping Hn = H(n;Xn), where Xn denotes the n-thtime-stamped document. The linking item Ln is also referred to as a time-stampof Xn. Note that a one-way relationship between Ln and Lm (n < m) does notprove that in the moment of creating Xn the bit-string Xm did not exist. All weknow is that Xn did exist at the moment of creating Lm.We have omitted the tn in the formula for Hn, whereas it should not be takenfor granted that the value tn indeed represents the submission time of Xn. Theonly way for a principal to associate a time-stamp with a certain moment of timeis to time-stamp a nonce at this moment. By a nonce we mean a su�ciently longrandom bit-string, such that the probability it has been already time-stampedis negligible. In order to verify the absolute creating time of a document time-stamped by another principal, the veri�er has to compare the time-stamp withthe time-stamps of nonces generated by the veri�er herself. In this solution thereare neither supplementary duties to the TSS nor to the other principals. Theuse of nonces illustrates the similarity between time-stamping and ordinary au-thentication protocols, where nonces are used to prevent the possible reuse ofold messages from previous communications.By using RTA it is possible to determine not only the submitting time of thesignature but also the time of signing the document. Before signing a documentX the principal P generates a nonce N and time-stamps it. He then includes thetime-stamp L(N) of N to the document, signs it and obtains the time-stampL(�) of the signature � = sigP (L(N); X). From the view-point of the TSS thesestamping events are identical (he need not be aware whether he is time-stampinga nonce or meaningful data). For the veri�cation of the document X , the veri�erhas to compare both these time-stamps with the time-stamps trusted by her.As there are one-way dependencies between L(N), � and L(�) the veri�er mayconclude that the signature was created in the time-frame between the momentsof issuance of L(N) and of L(�) respectively. If these moments are close enough,the signing time can be ascertained with necessary precision.3.2 Detection of ForgeriesA time-stamping system must have properties enabling users to verify whetheran arbitrary time-stamp is correct or not. Possession of two documents with cor-responding time-stamps is not enough to prove the RTA between the documentsbecause everyone is able to produce fake chains of time-stamps.A time-stamping system should allow (1) to determine whether the time-stamps possessed by an individual have been tampered with; and (2) in the case

of tampering, to determine whether the time-stamps were tampered by the TSSor tampered after the issuing (generally by unknown means). In the second case,there is no-one to bring an action against. The principals interested in legal useof time-stamps should themselves verify their correctness immediately after theissuing (using signatures and other techniques discussed later) because if thesignature of the TSS becomes unreliable, the signed time-stamps cannot be usedas an evidence. In order to increase the trustworthiness of the time-stampingservices it should be possible for the clients to periodically inspect the TSS.Also, in the case when the TSS is not guilty he should have a mechanism toprove his innocence, i.e., that he has not issued a certain time-stamp during acertain round.Additionally, the TSS must publish regularly, in an authenticated manner,the time-stamps for rounds [BdM91] in mass media. If the time-stamping proto-col includes (by using collision-resistant one-way hash functions) (1) the messagedigest of any time-stamp issued during the r-th round into the time-stamp forr-th round, and (2) the message digest of the time-stamp for round r � 1 intoany time-stamp issued during the r-th round, it will be intractable for anyoneto undetectably forge a time-stamp. The forgery detection procedures should besimple. Forgeries should be determinable either during the stamping protocol(when the time-stamp, signed by the TSS, fails to be correct) or later when itis unable to establish the temporal order between two otherwise correct time-stamps (see Sect. 4 for details).3.3 Feasibility RequirementsThe time-stamping systems of [BdM91] and [HS97] use nonlinear partial order-ing of time-stamps and therefore do not support the RTA. Sect. 4 shows how tomodify the linear linking scheme ([HS91], Sect. 5.1) to ful�ll the security objec-tives (RTA and detection of forgeries). On the other hand, in practice, in thisscheme the detection of forgeries would take too many steps. As noted in [Jus98],it is easy to forge time-stamps when we can assume that the veri�er has limitedcomputational power. This leads us to the question of feasibility. In order tomake RTA feasible in the case when time-stamps belong to di�erent rounds, itis reasonable to de�ne an additional layer of links between the time-stamps forrounds.De�nition 3. Assume we are given (�;H) and (�;H) linking schemes and amonotonically increasing function � : IN ! IN. By a (�; �; �;H)-linking schemewe mean a procedure for linking a family (Hn) of data items together usingauxiliary linking items Ln and Lr satisfying the recursive formulaeLn := H(Hn; Ln1 ; : : : ; Ln]��1(n)) if n 62 �(IN)Lr := L�(r) = H(Hr;Lr1 ; : : : ;Lr]��1(r))Hr := H(Hm; Lm1 ; : : : ; Lm]��1(n)) ;where m = �(r), ��1(n) = fm1; : : : ;m]��1(n)g (m1 � ::: � m]��1(n)) and��1(r) = fr1; : : : ; r]��1(r)g (r1 � : : : � r]��1(r)).

The values Lr are also referred to as the time-stamps for rounds. Note thatthe time-stamps requested from the TSS during the veri�cation protocol shouldbelong to the set of time-stamps for rounds because only these time-stamps areavailable in the time-stamping server.De�nition 4. A (�; �; �;H)-linking scheme is said to be an Accumulated Link-ing Scheme (ALS) with rank m, if1. If �(r) < n � �(r + 1) then ��1(n) � [�(r); �(r + 1)] [�(IN);2. �(r + 1)� �(r) � m.We say that a (�;H)-linking scheme enables accumulated time-stamping if forarbitrary positive m there exists �, such that the (�; �; �;H)-scheme is an ALSwith rank m.If the linking scheme used enables accumulated time-stamping, the durationof the rounds can be
exibly enlarged in order to guarantee that only a negligiblefraction of the time-stamps are kept in the memory of the time-stamping server.Let n be the total number of time-stamps issued till the moment of thecurrent run of stamping/veri�cation protocol. The feasibility requirements canbe summarized with the following:1. The number of the evaluations of the hash function during the veri�cationprotocol should be O(log n). In particular, the number of time-stamps ex-amined during a single run of the veri�cation protocol should be O(log n);2. There should be a conveniently small upper bound to the length of rounds,whereas the clients want to get their time-stamps in reasonable time. It seemsto be sensible to require that the stamping protocol of the n-th documentmust terminate before the TSS has received additional O(log n) time-stamprequests. In real applications it is desirable for the average length of roundsto be constant (this would guarantee that for an arbitrary constant c therewould be only negligible fraction of rounds with length greater than c).3. The size of an individual time-stamp should be small.As we will show later (Thm. 2), there is a trade-o� between these quantities.In Sect. 5 and the following sections we present an improvement of the schemeof Sect. 4.4 First Version of Our System: Linear LinkingFor pedagogical reasons, we outline the protocols and the basic organizationalprinciples of our system using the linear linking scheme. This scheme ful�lls allthe trust requirements but is impractical. Further, the described scheme is sig-ni�cantly improved by replacing the linear scheme with a binary linking scheme.Let the number M of time-stamps per round be a constant known to theparticipants (clients) and all the data items Xn be of �xed size. Therefore, inthe case of the linear linking scheme, the time-stamp for the r-th round has anumber �r =M � r.

4.1 Role of the TSSThe TSS maintains the following three databases:1. the database Dc of the time-stamps of the current round.2. the database Dp of the time-stamps of the previous round.3. the database Dr of the time-stamps for rounds.These databases are considered to be on-line in the sense that any client canmake requests into them at any moment. The fourth database (the completedata-base of time-stamps) is also stored but not on-line (it may be stored intoan archive of CD-s). Requests to this database are possible, but costly (e.g.,requiring human interaction). After the end of each round, the time-stamps inDp are stored to a separate CD (this process may be audited). Thereafter, Dpis emptied. The time-stamp Rr for the current round is computed, added toDr and published in a newspaper (two processes which should be audited). Thedatabase Dc is copied into Dp and a new database Dc is created.4.2 Stamping ProtocolSuppose, the current round number is r.1. Client sends Xn to the TSS.2. The TSS �nds Hn = H(n;Xn) and Ln = (Hn; Ln�1), and adds the pair(Hn; Ln) to Dc.3. The TSS signs the pair (n;Ln) and sends (n;Ln; sigTSS(n;Ln)) back to theclient.4. The TSS sends the tuple head(n) = (Hn�1; Hn�2; : : : ; H�r�1+1) to the client.5. The client veri�es the signature of TSS and checks, whetherH(Hn; H(Hn�1; : : :H(H�r�1+1; L�r�1) : : :)) = Ln ; (2)where the true values L�i can be found either from the newspaper or byrequesting for their values from the on-line database Dr of the TSS.After the M requests have been answered the TSS �nishes the round by�nding L�r = H(H 0�r ; L�r�1) (where H 0�r = H(H�r ; L�r�1)) and publishing L�rand his public key KTSS in the newspaper. The client may now continue, duringa limited period, the protocol in order to get the complete individual time-stampfor Xn.6. The client sends a request to the TSS.7. Let tail(n) = (H�r�1; H�r�2; : : : ; Hn+2; Hn+1) The TSS answers by sending(tail(n); sigTSS(tail(n))) to the client.8. The client checks whetherL�r = H(H�r�1; H(H�r�2; : : : H(Hn+2; H(Hn+1; Ln)) : : :)) : (3)

De�nition 5. The complete individual time-stamp sn for the n-th document issn := (tail(n); head(n); n; Ln; sigTSS(n;Ln)) :Every client who is interested in the legal use of a time-stamp, should validateit during the stamping protocol. In a relatively short period between the 1st andthe 3rd step and between the 4th and 6th step, the signature key of TSS istrusted to authenticate him and therefore, his signature on an invalid head(n)or tail(n) can be used as an evidence in the court. But the client is responsible fordoing it when the signature key of TSS can still be trusted. Later, the signatureof TSS may become unreliable and therefore only the one-way properties can beused.4.3 Veri�cation ProtocolLet r(n) denote the round where sn was issued. Assume, the veri�er has twotime-stamped documents (Xm; sm) and (Xn; sn) where m < n.1. The veri�er checks the validity of the equations (2) and (3) for both time-stamps.2. If r(m) = r(n) then the data hold in tail(m) and head(n) will be enough tocheck whetherLn = H(Hn; H(Hn�1; : : :H(Hm+1; Lm) : : :)) :3. If r(m) < r(n), the veri�er sends a request to the TSS.4. The TSS answers by sending the tuplevmn = (H 0�r(n)�1 ; H 0�r(n)�2; : : : ; H 0�r(m))and the signature sigTSS(vmn) to the veri�er.5. The veri�er validates the signature, �nds L�r(m) using (3), �nds Lr(n)�1 usingthe formulaLr(n)�1 = H(H 0�r(n)�1 ; H(H 0�r(n)�2 ; : : : H(H 0�r(m) ; L�r(m)) : : :))and �nally, compares the value of Ln in sn with the value given by (2).4.4 Audit ProtocolBecause of the possible legal importance of the time-stamps issued by the TSS,there should be some mechanism to audit TSS. One easy way to do it is toperiodically ask time-stamps from the TSS and verify them. If these time-stampsare linked inconsistently (i.e., the Eq. (2) and (3) hold for both time-stamps butthe veri�cation protocol fails), the TSS can be proven to be guilty. Also, therehas to be a mechanism for the TSS to prove that he has not issued a certaintime-stamp S in a certain round r. This can be done if the TSS presents all thetime-stamps issued during the r-th round, shows that S is not among them andthat the time-stamp for the r-th round, found by using these time-stamps andthe linking rules, coincides with the published time-stamp.

5 Binary Linking SchemesIn the current section we give a construction of a practical linking scheme withlogarithmic upper bound to the length of the shortest verifying chain betweenany two time-stamps.De�nition 6. Let f and g be functions from IN to IN satisfying the conditionf(n) � g(n) < n for any n. A (f; g;H)�binary linking scheme (BLS) is a (�;H)-linking scheme where for any n, ��1 (n) = ff(n); g(n)g. In order to guaranteethe existence of a verifying chain between arbitrary x and y, we have to takeg(n) := n� 1. In those cases we omit n� 1 and talk just about a (f;H)-BLS.A binary linking scheme can alternatively be de�ned as a directed countablegraph which is connected, contains no cycles and where all the vertices have twooutgoing edges (links). Let us construct an in�nite family of such graphs Tk inthe following way:1. T1 consists of a single vertex which is labeled with the number 1. This vertexis both the source and the sink of the graph T1.2. Let Tk be already constructed. Its sink is labeled by 2k � 1. The graph Tk+1consists of two copies of Tk, where the sink of the second copy is linked tothe source of the �rst copy, and an additional vertex labeled by 2k+1 � 1which is linked to the source of the second copy. Labels of the second copyare increased by 2k � 1. The sink of Tk+1 is equal to the sink of the �rstcopy, the source of Tk+1 is equal to the vertex labeled by 2k+1 � 1.Thereafter, link all the vertices of the second copy which have less than twooutgoing links, to the source of the �rst copy. Note that there is now a doublelink from the sink of the second copy to the source of the �rst copy.
T T

T

k k

k+1

2 -1

2 -22 -1
k k+1

k+1

The sequence (Tk) de�nes a binary linking scheme with the vertices labeledby natural numbers which contains each scheme Tk as its initial segment. Afterthe construction of this binary linking scheme, add links from the sources ofany such initial segment to a special vertex labeled by 0 (Fig. 2). Here (see alsoRem. 1), f(n) = n� 2h(n) + 1, where h(n) is given recursively by the equationh(n) = (k ; if n = 2k � 1 ;h(n+ 1� 2k�1) ; if 2k�1 � n < 2k � 1 .Theorem 1. Let `(a; b) be the length of the shortest verifying chain from b toa. If k > 2 and 0 < a � b < 2k then `(a; b) � 3k � 5. (See Appendix A)

ξ 3 = 22

ξ ξ ξ ξ0 1 2 4= 0 = 7 = 15 = 31

18

21 28

29

30

2726242320191716

22

25

31

3

6

119854210

7

10

14

13

12

15

Fig. 2. The ALS structure built on T5 with m = 7.In Sect. 4 we presented an outline of a time-stamping system that ful�lls ourtrust requirements. In the next we show how to make this system feasible byusing a BLS.In order to issue the individual time-stamp for the n-th document, the TSShas to �nd the shortest verifying chains between �r(n)�1 and n and betweenn and �r(n). The n-th individual time-stamp consists of the minimal amount ofdata (Sect. 4.2) necessary to verify the mutual one-way dependencies between allLj which lay on these chains. It can be shown that if f satis�es the implicationm > n) (f(m) � f(n) _ f(m) � n) (4)then (f;H) enables accumulated time-stamping (the proof has been omittedbecause of its technicality). In particular, the binary linking scheme describedin Sect. 5 enables accumulated time-stamping. For a �xed m let k := dlog2me,�0 := 0, �1 := 2k � 1 (the source of Tk) and for arbitrary i > 1,�(i) := (�2j + �i�2j ; if i 6= 2j2 � �i=2 + 1 ; if i = 2j ,where j := blog2 ic. The length of the n-th time-stamp in this scheme does notexceed 2 � 3 � log(n) � � bits, where � is the output size of the hash function H .The maximum length of rounds grows proportionally to O(log n). However,the average length of rounds is constant and therefore it is practical to publishthe time-stamps for rounds after constant units of time. This can be achievedeasily with the following procedure. If the \deadline" for round is approachingand there are still q time-stamps not issued yet, assign random values to theremaining data items Hn.Remark 1. Denote by ordn the greatest power of 2 dividing n. In the ALSpresented above, it is reasonable to label time-stamps in the lexicographical

order with pairs (n; p), where 0 � p � ordn and n > 0. Then,f(n; p) := ((0; p) ; n = 2p(n� 2p; ord (n� 2p)) ; otherwiseand g(n; p) := (n; p � 1) if p > 0 and g(n; 0) := (n � 1; ord (n � 1)). Also, theformulas of �i will simplify: in this case, �(i) := (2k�1i; k � 1 + ord i), for i � 1.It is easy to show that for each n and m the shortest verifying chain betweenn and m is uniquely de�ned. The data vmn necessary to verify the one-waydependence is computed by the procedure TSData(m;n):proc TSData(m;n) �Data := nilwhile n > m doData := append(Data; Hn)if f(n) 6= n� 1 ^ f(n) � mthen Data := append(Data; Ln�1); n := f(n)else Data := append(Data; Lf(n)); n := n� 1�od.Here, head(n) := TSData(�r(n�1); n) and tail(n) := TSData(n; �r(n)).Example 1. Let �0 = 0 and �1 = 15 (Fig. 2). In order to compute the fourth andthe tenth time-stamps we needtail(10) := (H15; L0; H14; L7; H13; L12) ;head(10) := (H10; L9; H7; L6) ;tail(4) := (H15; L0; H14; L13; H7; L0; H6; L3; H5; L4) ;head(4) := (H4; L3; H3; L2) :
3

6 13

14

15

12119854210

7

10

On the verifying chain

Not used for verification

Other links used for verification

Fig. 3. The time-stamp of X10 in the proposed system.Let (f;H) be a BLS satisfying the implication (4). Let x < y < z < w andC1 , C2 be verifying chains from z to x and w to y respectively. It is obvious that

C1 and C2 have a common element. Thus, if m < n then the verifying chainstail(m) and head(n) have a common element c which implies the existence of averifying chain(m = n0; n1; : : : ; ni�1; ni = c; ni+1; : : : ; n`�1; n` = n) :This chain can be found by a simple algorithm and is of logarithmic length. Letr(m) denote the round into which m belongs. The proof of the last claim for thecase r(m) = r(n) is given in Appendix A. If m and n belong to di�erent rounds,the verifying is straightforward, because of the similar structure of the secondlayer of links. The verifying chain from n to m is of the form(m; : : : ;m0; �r(m); : : : ; �r(n)�1; n0; : : : ; n) ;where the number of �j -s is logarithmic due to the fact that the time-stampsfor rounds are linked together in a way similar to the linking of all time-stamps(Fig. 2). The length of the sequences (m; : : : ;m0) and (n0; : : : ; n) is also loga-rithmic (Appendix A).Example 2. For the chains given in Example 1, the common element is 7 andthe verifying chain between 4 and 10 is (4; 5; 6; 7; 10).Corollary 1. Due to the similarity between the veri�cation and the stampingprocedure, for an arbitrary pair of time-stamped documents the number of stepsexecuted (and therefore, also the number of time-stamps examined) during asingle run of the veri�cation protocol is O(log n).6 OptimalityOur solution meets asymptotically the feasibility requirements, but could theserequirements be re�ned? Mostly not, an insight into this is given below. Namely,we show that for any linking scheme there does not exist a time-stamping solu-tion where (1) the length of the time-stamps is O(log n), (2) for any m and nthere exists a verifying chain between m and n with the length O(log n) that iscompletely contained in the union S(m) [S(n) of the corresponding individualtime-stamps and (3) the stamping protocol will end in a logarithmic time.We prove this under the assumptions (1) that an individual time-stamp isa subset of IN and (2) that the size of a time-stamp is proportional to the sizeof]S(n) +]��1(S(n)) = O(]��1(S(n))) (holds if the transitive closure �� of �coincides with the natural order <, i.e, the time-stamp S(n) consists of tail(n)and head(n))).Theorem 2. Let � be a binary relation on IN satisfying ��=<. There does notexist a function S : IN! 2IN such that1. j ��1 (S(n))j < c1 logn for some c1, for any n.

2. For every m and n there exists a �-chain (m = m1;m2; : : : ;mk = n) wheremi 2 S(m)[S(n) (that is, the number of time-stamps necessary to examineduring the veri�cation protocol is greater than 2).3. For any n, maxfS(n)g � n � c2 logn for some constant c2.Proof. Assume that there exists such S. Let n be a su�ciently large positiveinteger. For a m 2 IN let �(m) := [m;m + dc2 logme]. The intervals �(1 +ic2 logn), i 2 0, : : : , bn�c2 logn�2c2 logn c do not intersect.Let m < n� c2 logn� 1. In this case dm+ c2 logme < n. As the set S(m) [S(n) contains a �-chain from m to n there should exist such m1 2 �(m) andn1 2 S(n) on this chain that m1 � n1. Thus, for every m < n � c2 logn � 1the set �(m) \ ��1(S(n))) is nonempty. Hence, the set ��1(S(n)) has at leastbn�c2 logn�2c2 logn c=�(n= logn) elements. A contradiction with Condition 1. utThe Thm. 2 can be straightforwardly generalized to claim that the numberof examined time-stamps must be greater than any �xed constant.7 Acknowledgements and Further WorkWe would like to thank Stuart Haber for his patience, without his help thispaper would have been totally unreadable. We are grateful to Philip Hawkesand anonymous referees for valuable remarks.The reasoning about the time-stamping procedures creates the need for aformal apparatus capable to prove the security of time-stamping protocols, in away similar to how the BAN-style logics [BAN89] are used for reasoning aboutordinary authentication protocols. The renewing protocols and technical speci-�cations need to be elaborated.References[BAN89] Michael Burrows, Mart��n Abadi, and Roger Needham. A Logic of Authenti-cation. SRC Research Reports 39, DEC's System Research Center, February1989.[BdM91] Josh Benaloh and Michael de Mare. E�cient Broadcast time-stamping.Technical Report 1, Clarkson University Department of Mathematics andComputer Science, August 1991.[BHS92] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the e�-ciency and reliability of digital time-stamping. In Sequences'91: Methods inCommunication, Security, and Computer Science, pages 329{334. Springer-Verlag, 1992.[Haw88] Stephen W. Hawking. A Brief History of Time: From the Big Bang to BlackHoles. Bantam Books, April 1988.[HS91] Stuart Haber and W.-Scott Stornetta. How to Time-Stamp a Digital Doc-ument. Journal of Cryptology, 3(2):99{111, 1991.[HS97] Stuart Haber and W.-Scott Stornetta. Secure Names for Bit-Strings. InProceedings of the 4th ACM Conference on Computer and CommunicationsSecurity, pages 28{35, April 1997.

[Jus98] Mike Just. Some Timestamping Protocol Failures. In Internet Society Sym-posium on Network and Distributed System Security, 1998. Available athttp://www.scs.carleton.ca/~just/.[MOV96] Alfred J. Menezes, Paul C. Van Oorschot, and Scott A. Vanstone. Handbookof Applied Cryptography. CRC Press, 1996.[MQ97] Henry Massias and Jean Jacques Quisquater. Time and Cryptography.Technical report, Universit�e catholique de Louvain, March 1997. TIMESECTechnical Report WP1.A Proof of Theorem 1We will prove an upper bound for the length of the verifying chain for the linkingscheme described in Sect. 5. Let ek = 2k � 1, i.e. ek is the number of the lastvertex of Tk. To simplify the proof we add the vertex 0 to the scheme and linkit with all the vertices that have less than two outgoing links. These are exactlythe vertices ek. Let `(a; b) denote the length of the shortest path between a andb. The equations `(0; ek) = 1, `(ek�1; ek) = 2 and ek � ek�1 = ek�1 + 1 followimmediately from the de�nition.Lemma 1. If 0 < a � ek � b then `(a; b) = `(a; ek) + `(ek; b). If ek�1 � a < ekthen `(a; ek) = `(a; ek � 1) + `(ek � 1; ek).The claims above follow immediately from the structural properties of the linkingscheme.Lemma 2. If ek�1 � a � b < ek then `(a; b) = `(a� ek�1; b� ek�1).Proof. This follows from the construction of Tk from the two copies of Tk�1.Here a and b are vertices in the second copy of Tk�1 (or the last vertex of the�rst copy), and a� ek�1 and b� ek�1 are the same vertices in the �rst copy ofTk�1 (or the vertex 0). utLemma 3. If 0 � a < ek then `(0; a) � k.Proof. Induction on k.Base: k = 1. Then a = 0 and `(0; a) = 0 < k.Step: k > 1. Observe the following cases:{ If 0 � a < ek�1 then the induction assumption gives `(0; a) � k � 1 < k.{ If ek�1 � a < ek then `(0; a) = `(0; ek�1) + `(ek�1; a) = 1 + `(0; a � ek�1)by Lemma 2. Observe the following cases:� a = ek � 1. Then `(0; a) = 1 + `(0; a� ek�1) = 1 + `(0; ek�1) = 2 � k.� a < ek � 1. Then `(0; a) = 1 + `(0; a � ek�1) � 1 + (k � 1) = k byinduction assumption. utLemma 4. If 0 < a � ek then `(a; ek) � 2(k � 1).

Proof. Induction on k.Base: k = 1. Then a = 1 and `(a; ek) = `(1; 1) = 0 = 2(k � 1).Step: k > 1. Observe the following cases:{ If 0 < a � ek�1 then `(a; ek) = `(a; ek�1) + `(ek�1; ek) � 2(k � 2) + 2 =2(k � 1) by induction assumption.{ If ek�1 < a � ek then observe the following cases:� a = ek. Then `(a; ek) = 0 � 2(k � 1).� a < ek. Then `(a; ek) = `(a; ek � 1) + `(ek � 1; ek) = `(a� ek�1; ek�1) +1 by the Lemma 2. Induction assumption now gives `(a; ek) = `(a �ek�1; ek�1) + 1 � 2(k � 2) + 1 < 2(k � 1). utProof (Theorem 1). Induction on k.Base: k = 3. In this case one can directly verify that `(a; b) � 4.Step: k > 3. Observe the following cases:{ If 0 < a � b � ek�1 then the induction assumption gives us `(a; b) �3(k � 1)� 5 < 3k � 5.{ If 0 < a � ek�1 < b � ek then `(a; b) = `(a; ek�1) + `(ek�1; b) � 2(k � 2) +`(ek�1; b) by the Lemma 4. The following cases are possible:� b = ek. Then `(ek�1; b) = 2 < k � 1.� b = ek � 1. Then `(ek�1; b) = 1 < k � 1.� b < ek � 1. Then the lemmas 2 and 3 give`(ek�1; b) = `(0; b� ek�1) � k � 1.Thus `(a; b) � 2(k � 2) + k � 1 = 3k � 5.{ If ek�1 < a � b � ek then observe the following cases:� b = ek. Then `(a; b) = `(a; ek) � 2(k � 1) < 3k � 5 by Lemma 4.� b < ek. Then `(a; b) = `(a� ek�1; b� ek�1) � 3(k � 1) + 5 < 3k � 5 byLemma 2 and induction assumption. utAs dlog be = k i� ek�1 + 1 < b � ek + 1 we get k < dlog be+ 1 and thus`(a; b) � 3dlog be � 2 :

