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Abstract. In the ongoing debate between the proponents of electronic
and paper voting, a frequently used argument is that electronic voting
is susceptible to electronic attacks, and those are less detectable by a
human than physical ones. This paper contributes to the research of
electronic attacks against paper voting by building a proof-of-concept
classifier for audio samples recorded while writing numbers. Such a clas-
sifier can be used to break the privacy, for example, in case of preferential
voting ballot sheets, or voting systems where the voter must fill in the
candidate number. We estimate the quality of the classifier and discuss
its implications to the physical security measures of polling stations and
ballot design.

1 Introduction

Voting is a form of public opinion polling used when a group of people needs to
take a common decision. The size of the group may vary from just a few persons
to whole societies, and the decisions may vary from selecting a beauty queen to
determining who is going to rule the country for the next 5 years.

The bigger implications the decision has, the more critical role is played by
the actual voting and vote counting processes. There are a number of require-
ments set to contemporary voting systems, and thick rule books describing how
to enforce them.

Unfortunately, these rules can be contradictory. In order to gain public ac-
ceptance of an election result, all the processes should be fully auditable, ideally
by everyone. On the other hand, to prevent coercion and vote-buying, the actual
votes should remain secret, introducing an inherently non-auditable component
into the system.

It is also the case that important elections tend to have a large voter set easily
reaching millions of people. This has implications on the vote counting. A single
person is unable to count millions of votes in a reasonable time frame, so this
work has to be distributed between many people, not all of whom are equally
careful or trustworthy. If a physical medium like paper is used for voting, there
can also be ambiguous markings that need interpretation, and this interpretation



may depend on the interpreter. And last-but-not-least, organizing voting based
on physical carriers is a huge logistical challenge, requiring all of these millions
of people to go to polling stations and collecting the ballots later.

These problems have motivated research in alternative vote casting mech-
anisms, including electronic ones. Starting from T.A.Edison’s “Electrographic
Vote Recorder and Register”3, various methods including voting machines and
remote vote casting over Internet have been proposed and tried out.

While helping to ease some of the inherent difficulties of elections, electronic
means can bring up new concerns. Humans can not control digital environments
directly and need to rely on imperfect interfaces. Also, it is hard to be sure that
a digital device acts according to its specification and does not include anything
extra, like malware.

Another example of out-of-specification behaviour is the existence of side
channels threatening vote privacy. Perhaps one of the most notorious examples
of potential implications of such problems was observed in the Netherlands. As
those events greatly inspired our current research, we will make a short recap
here.

1.1 The rise and fall of electronic voting in the Netherlands

Netherlands has been a true pioneer of electronic voting. Legislation allowing
machine voting was put in place already in 1965, and the first voting machines
appeared in 1966 [8]. The first attempts to automate counting were done in
late 1980s. From 1994, the government actively promoted the usage of electronic
apparatus in voting [6]. By 2005, the Dutch market had been divided by two
bigger suppliers of the voting machines – Nedap and Sdu [8]. There had been a
few complaints e.g. favouring a candidate with number 31 due to his/her name
being displayed on top of the second column of candidates [6], but in general the
public trust in voting machines seems to have been rather high.

However, in 2006, a series of events took place that changed the situation
drastically. First, during 2006 elections a fraud suspicion was raised in one of
the districts where Nedap voting machines were used. After repeated shadow
elections and several rounds in court, this led to a conviction [8].

As a reaction to this (and probably also earlier complaints), a civil activist
and hacker Rop Gonggrijp initiated a movement called “Wij vertrouwen stem-
computers niet” (“We don’t trust voting computers”). He got access to some of
the Nedap machines, managed to reverse engineer the source code and demon-
strated the ease of maliciously replacing the onboard chips [6].

The other major problem Gonggrijp and his collaborator Maurice Wessling
discovered was the possibility to eavesdrop electromagnetic emanations (called
a TEMPEST attack) which, under certain circumstances, revealed the voter’s
party preferences. More precisely, the name of one of the parties (Christen-
Democratisch Appèl) contained a diacritic letter (è) and in order to display
this, the voting machine screen had to be switched to a different mode. It was

3 US patent no. 90,646, patented June 1st, 1869



this switch that could be detected from a distance using rather standard radio
equipment [5].

The fix for this problem was straightforward (just use e instead of è), but the
authorities also looked at the Sdu machines and the electromagnetic emanation
problem was much worse there. In the beginning of 2007, Sdu attempted to re-
certify its machines, but they managed to deliver a device for testing that did not
pass other requirements, so this attempt eventually failed. As a result, in October
2007, the existing regulation allowing voting machines was withdrawn [6]. The
Netherlands has been using 19th century paper voting ever since.

1.2 Side channel attacks on voting

As mentioned above, the TEMPEST exploit implemented by Gonggrijp and
Wessling falls into the category of side channel attacks. These sorts of attacks
are in general relatively difficult to prevent since, by definition, they make use of
some out-of-system-model feature like power consumption, message timing, etc.

Electromagnetic emanation leakage is not the first side channel vulnerabil-
ity considered for voting. Taking a photo of the ballot with a phone or some
other device is a well-known privacy problem [2]. Moran and Naor note that in
case Direct Recording Electronic (DRE) equipment posts encrypted votes on a
bulletin board, posting timing can be used by a compromised DRE machine to
reveal the voter preference [9].

An interesting side channel attack (called Three-Pattern) against the Three-
Ballot optical scan voting system was described by the original author Ronald
Rivest himself [11]. As the voter in this system has exponentially many choices
for encoding her vote on the ballot, the coercer may convince her to do so in
a predefined pattern, checking later from the public bulletin board that the
pattern has been followed. This leakage is actually so severe that, according
to Rivest, “. . . it makes ThreeBallot much less attractive than I had originally
hoped for” [11].

Recently, Toreini et al. have improved paper fingerprinting techniques. Their
approach allows to create short fingerprints of physical paper sheets using off-the
shelf apparatus like overhead projector and photo camera with a sufficiently good
resolution. As a result, this makes the vote privacy violation attack proposed by
Calandrino et al. [3] more accessible to a moderately-resourced attacker. This
example demonstrates clearly how advancement of technology also makes paper
voting more insecure.

In this paper, we will be considering another type of emanation occurring
during paper voting, namely the sound that the pen makes while marking the
ballot.

The feasibility of extracting (capital) letters from the audio recording was
studied by Yu et al. in 2016 [13]. Their results are encouraging, but also show
significant challenges. If the training data from the attack subjects can be col-
lected in advance and the position of the microphone can be well predicted, the
letter recognition precision can achieve almost 65%. However, if the subjects’
handwriting can not be studied beforehand, precision drops below 27%. The



authors of [13] also extend their attack to recognising words from a predefined
dictionary and achieve the best case accuracy of 50-60%.

We will concentrate our efforts on a smaller set of glyphs to recognise, namely
Arabic numerals. We will study how well decimal digits can be recognised from
the audio samples of writing them, and discuss the implications to voting privacy
and ballot design.

The rest of the paper is organised as follows. In Section 2 we will discuss
different types of ballot designs and their implications on the vulnerability to
audio side channel attacks. Section 3 describes audio sample classification and
Section 4 discusses its implications on security of various election settings. Fi-
nally, Section 5 draws some conclusions and sets directions for future work.

2 Types of ballots

The primary sources of requirements for the ballot sheet design are local voting
traditions and the implied legal requirements. Susceptibility to audio side chan-
nels has most likely not been taken into account as a concern. Hence we start our
discussion by reviewing some of the typical ballot designs from this viewpoint.

A frequently used ballot type lists a number of candidates and requires mark-
ing one or several of them somehow (writing “X” marks next to one’s preferences,
crossing some candidates out, etc.). Even though audio side channels against such
ballot designs are still possible (e.g., the attacker may draw conclusions based
on the timings between writing several “X”-s), they require development effort
that remains outside of the scope of the current paper.

Good detection accuracy can potentially be obtained for the ballots allowing
write-ins, e.g. leaving an empty slot on the ballot sheet to allow voting for an
unlisted candidate.4 As the voters are not forced to write the names in capital
letters, recognising each person’s handwriting becomes a major problem, and
without reliable personalised training data the results can be expected to be
considerably worse than those of Yu et al. [13].

Still, we can consider a subset of the handwriting recognition problem. For
example, in a referendum the participant might be asked to make a binary
decision by writing either “Yes” or “No” to the referendum sheet. Such ballots
have been previously used e.g. in Australian constitutional referendums and are
currently used e.g. in Swiss referendums. We can see that the corresponding
ballot design leaks information that can be classified as Yu et al. have already
shown. Due to the uniqueness of letters and the lengths of the words it should
be easy to distinguish between the two cases.

However, there is a specific type of write-ins that has not yet been considered,
namely numbers. This is the most promising target of attack for an audio side
channel, because the amount of decimal digits is limited to 10, and the variance

4 This option has been used to cast protest votes. For example, in 1985, Donald Duck
received 291 votes in Sweden. As a result, voting for non-existing candidates was pro-
hibited in Sweden starting from 2006: https://abcnews.go.com/Entertainment/

WolfFiles/story?id=91051&page=1.

https://abcnews.go.com/Entertainment/WolfFiles/story?id=91051&page=1
https://abcnews.go.com/Entertainment/WolfFiles/story?id=91051&page=1


of handwritten numbers between different individuals can be expected to be
smaller compared to the variance of handwritten letters.

The most common types of ballots where the voter is expected to fill in
some numbers come from preferential voting, e.g. single transferable vote (STV)
systems (see an example ballot from the Tasmanian House of Representatives
elections in Figure 1). Similar kinds of ballots are used, for instance, in:

– Ireland for municipal, parliamentary and European Parliament elections,
– Malta for municipal, parliamentary and European Parliament elections,
– Northern Ireland for European Parliament elections,
– Scotland for municipal elections,
– Austria for European Parliament elections (preference number is optional),
– Australia for electing the Senat and for electing the House of Representatives.

Fig. 1: An example of the Tasmanian election ballot.5

When implementing an audio side channel attack against a preferential ballot,
we can largely expect to detect two kinds of patterns. First, when we hear
the numbers written in the order 1-2-3-4-. . . , the voter is probably filling her
preferences in in the ascending order and finding the correct slots on the fly.
Without looking at the timings between the numbers, this pattern does not
reveal the voter preferences.

5 Australian electoral systems, https://www.aph.gov.au/About_Parliament/

Parliamentary_Departments/Parliamentary_Library/pubs/rp/RP0708/08rp05

https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/RP0708/08rp05
https://www.aph.gov.au/About_Parliament/Parliamentary_Departments/Parliamentary_Library/pubs/rp/RP0708/08rp05


However, if the voter uses some other order of the numbers, she can be
conjectured to fill the ballot from start till the end of the slot sequence, and her
preferences leak. This may be expected to be the case with higher probability
when the number of slots to fill is smaller.

There are also some countries (e.g. Estonia and Finland) where the voter is
expected to write the candidate number on the ballot (see Figure 2). In these
cases the audio side channel has the potential of completely breaking the vote
privacy.

(a) Ballot used in Estonia for
the municipal council elections in
2017 [1]

(b) Ballot used in Finland for the
parliamentary elections in 2011.
The same ballot design was also
used in the 2015 elections.

Fig. 2: Examples of ballots that are designed to be filled with numbers.

The core contribution of this paper is studying the feasibility of identifying
the digits by the sound of handwriting. We have created a proof-of-concept
implementation that takes an audio sample, splits it into digits and then tries
to recognize them. We also created a classifier which performs this task.

The following Section will describe our results in more detail.

3 Audio sample preprocessing and classification

By looking at the waveforms of recordings that correspond to the writing of dif-
ferent digits, it can be observed that the representations of digits are more or less
unique. Thus building a good automatic classifier should at least theoretically
be possible.

To verify this hypothesis, we conducted several experiments. First, we col-
lected a number of writing samples from volunteers (see Section 3.1 for more
details).

Next we tried the standard step of converting the samples into the frequency
domain by using fast Fourier transform (FFT). However, if we would only apply
FFT, we would get the frequency distribution for the sample, but lose the time



dimension. On the other hand, time dimension carries useful information about
the digits following the movement of the pen or pencil on the paper. Therefore, we
decided to transform the samples into spectrograms. Spectrograms are created by
moving a window over the audio sample and applying FFT to the corresponding
audio fragments. This gives a representation of the sample where one dimension
represents frequency and the other represents time. An example of the result is
shown in Figure 3.

Fig. 3: Spectrogram representations of numbers five, seven and eight.

3.1 Recording and preprocessing

We tested several microphones to find out which one is best suited for the task.
The following devices were used: HP laptop, iPhone SE, Jabra Speak 410 and
Rode VideoMic Pro. The first three devices had omnidirectional microphones,
while Rode VideoMic Pro was a directional cardioid microphone. Comparison of
the technical parameters of the microphones is given in Table 1.

Table 1: Comparison of tested recording devices. There was no technical speci-
fication available for the microphones in HP laptop and iPhone.

number of
microphones

type range sensitivity

HP laptop 2
omni-

directional
N/A N/A

iPhone SE 3
omni-

directional
N/A N/A

Jabra 410 Speak 1
omni-

directional
100 Hz - 10 kHz N/A

Rode VideoMic Pro 1 directional 40 Hz - 20 kHz
-38dB re 1V/Pa
± 2dB @ 1kHz

Testing showed that the laptop microphone was not able to capture handwrit-
ing as it could not distinguish the signal from background noise. Rode VideoMic



Pro and the microphone of iPhone SE were able to capture the signal, but the
quality was not as good as we got from Jabra Speak 410. It was a bit surprising
that the more expensive Rode VideoMic Pro was not able to capture the signal
as well as a common conference call device. Therefore, we decided to use Jabra
Speak 410 for collecting the training data.

We prepared a sheet of square cells for collecting the samples in order to make
the process as uniform as possible. The recording was performed in a closed office
room which blocked most of the outside noise. Each volunteer was asked to fill
in at least one sheet of ten rows, such that each row would contain all the digits
from 0 to 9 once. In addition, the volunteers were asked to leave a small pause
after writing each digit to make automatic labelling of the samples easier. The
same room and the same table were used for all the samples. The locations of the
microphone and the sheet were kept the same throughout the sample collection,
with the microphone placed in about 15cm from the edge of the sheet.

Once we had the samples, the next task was to label them to prepare training
data for the automatic classifier. As the samples were written on the sheet in
a predefined order, we were able to create a script to extract and label the
samples. However, manual review of the samples was still necessary to ensure
correct operation of the script.

Now that the labelled samples were ready, they had to be prepared for analy-
sis. For that, we converted stereo recording to mono and normalized the tempo.
We used WSOLA algorithm [12] to transform the samples such that all of them
would have the length of 0.55 seconds. It is important to note that WSOLA does
not change the pitch of the sound, otherwise the change of tempo could distort
the representation of the digit.

3.2 Building the classifier

We used the k-nearest neighbors algorithm (k-NN) [4] for the classification task.
One of the reasons to prefer this method is its capability of producing good
results with a small training set. The method works by calculating distance be-
tween all samples and then uses majority vote on k nearest samples to determine
the class. This was also one of the reasons for normalizing the tempo of the sam-
ples as it allowed us to represent the samples as arrays of the same length and
therefore align the corresponding frequencies. We pre-processed the data by cre-
ating a spectrogram representation from each sample and flattened the output
(an array or arrays) to get a one-dimensional array.

We used scikit-learn [10] implementation of the k-NN method to build the
model. To use it, the dataset was split into training and testing sets using the
train_test_split function of scikit-learn. This method allowed us to make sure
that the labels would be uniformly distributed in the output sets. The dataset
was randomly split into training and test sets so that 10 percent of the samples
were used for testing. As the splitting was done on the whole dataset, the ratio
of training data to test data did not necessarily hold for the samples belonging
to one individual. Thus, individuals might have been over- or under-represented
in the training set and test set.



We tested multiple distance metrics to find the one that is most suitable
for the representation of the audio data. The results showed that Canberra dis-
tance [7] gave significantly better results compared to other distance metrics.

Finally, we used cross-validation for parameter tuning in order to obtain the
optimal value of k. We created a list of odd integers as the candidates, fitted
a model for each value of k and used cross-validation to determine the k value
which gave the best out-of-sample accuracy. In our case, the optimal value for k
turned out to be 7.

3.3 Classification results

We used cross-validation to measure the out-of-sample accuracy of the model.
Cross-validation partitions the dataset into n equally sized non-overlapping sets,
n−1 sets are used for training and the n-th set is used for validation. This process
is repeated n times, so that each set is validated once. Overall result is calculated
by averaging accuracy over all partitions.

Our dataset consisted of 1676 samples and contained recordings from 11
volunteers. Some of the volunteers contributed more than one data sheet and in
one case only part of the data sheet recording was usable due to the corruption
of data.

We used scikit-learn implementation of 10-fold cross-validation which uses
stratified KFold partitioning strategy. This method provided that uniform num-
ber of labels was assigned into each subset. For the classification we used afore-
mentioned k-NN classifier with hyperparameter k = 7 as it was previously found
to be best suited for our dataset by producing best out-of-sample accuracy. The
10-fold cross validation with the given configuration produced an accuracy of
60.14%. The corresponding confusion matrix can be seen in Figure 4.

We can see from the confusion matrix that the digits 8 and 9 have lower
detection accuracy compared to others. One of the reasons for this might be the
way how the implementation of scikit-learn breaks ties. Namely, in case of a tie
the winner is picked according to the ordering of the classes. Thus, when there
is a tie between, say, digits 3 and 8, the first one would win, causing 8 to be
determined less.

The low accuracy of 8 and 9 might also be caused by their placement on
the data sheet with respect to the microphone. The data sheet was in landscape
mode during the recording and the microphone was placed close to the top
middle part of the sheet. Therefore, the recorded signal of the digits that were
written to the middle of the sheet should have slightly better quality compared
to the digits on the sides of the sheet. This reasoning seems not to hold for 0
and 1, but this might be explained by their rather unique audio fingerprint.

Next, we ran a test to find the accuracy for the case when training data
is available for the test subject. We took datasets from eleven volunteers and
split them into test sets and training sets so that every person contributed 10%
of their stratified data points to the test set and the remainder was used for
training. Each person had 100 labelled data points and thus 1000 samples were
used for training and 100 for testing. Results showed that by using such data on
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0.04 0.72 0.05 0.01 0.04 0.01 0.03 0.08 0.01 0.01

0.09 0.03 0.49 0.03 0.01 0.04 0.26 0.02 0.02 0.01

0.08 0.04 0.05 0.62 0.02 0.02 0.04 0.00 0.06 0.07

0.00 0.08 0.01 0.05 0.75 0.07 0.01 0.00 0.00 0.03

0.00 0.02 0.03 0.09 0.18 0.62 0.01 0.04 0.00 0.02

0.10 0.00 0.14 0.01 0.00 0.00 0.72 0.00 0.01 0.01

0.00 0.07 0.08 0.02 0.05 0.11 0.02 0.62 0.00 0.01

0.13 0.04 0.08 0.16 0.01 0.02 0.10 0.00 0.41 0.07

0.06 0.10 0.02 0.17 0.13 0.06 0.05 0.00 0.07 0.35
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Fig. 4: A confusion matrix that was created from the output of cross-validation.
The accuracy of cross-validation was 60.14%.

average 70.6% of digit predictions were accurate. This result loosely corresponds
to the 65% outcome of the experiment by Yu et al. [13].

However, the more interesting question concerns usefulness of the classifier
when the subject’s training data is unavailable. We simulated this situation by
selecting one data sheet recording from each of the eleven volunteers. Then we
ran eleven tests so that in each test the datasets of ten volunteers was used for
training and the data of the volunteer was used for testing the model. Again,
training was performed with 1000 samples and the remaining 100 samples were
used for validation. The results showed an average accuracy of 49%, with the
minimal accuracy of 37% and maximum 65%, respectively. This accuracy can
probably improved by collecting more training data.

We also observed an interesting phenomenon during our tests. There was one
potential volunteer coming from a completely different cultural background, and
the audio samples extracted from his recordings were classified with significantly
lower probability.



Visual inspection of his handwriting revealed that this person had a com-
pletely different style of writing the numbers, most probably originating from
the way numbers are taught in the schools of his country of origin. Thus, in
order to achieve good detection accuracy, the volunteers who contribute to the
training data should represent the cultural background of the test subjects.

4 Discussion

As expected, detecting digits from audio samples can give better results than
that of letters. Compared to about 27% average accuracy of letter detection
reported by Yu et al. [13], we were able to achieve 49% in the setting where
samples from the subject are not available for training.

In the context of elections, the attacker is not typically interested in just
one digit, but the whole composition of the ballot. Making use of the fact that
several digits need to be written, the attacker may be able to compensate for
poor detection of some of them.

For example, in the case of a preferential ballot it is known that all the
numbers 1-2-3-. . . should occur, so if there is one sample that can be interpreted
either as 2 or 6 and another one that is definitely 6, we know that the first one
must be 2.

Similar reasoning applies for the ballots where the voter needs to write the
candidate number. For example in case of Estonia, the candidate number consists
of three digits, so the expected correct detection probability is 0.493 ≈ 0.118,
but not all of the possible triplets correspond to existing candidate numbers.
Note that the audio side channel can also be used to detect which candidates
the voter did not select with high probability. This information may be of equal
interest for the attacker in the coercion setting.

Success of the audio side channel attack in the setting of paper voting directly
depends on the quality of the audio samples the attacker is able to capture. This
quality in turn depends on several aspects: amount of background noise, quality
of the microphone and the ability to place the microphone into a good location.

Adding more noise in the polling station does not work as a good coun-
termeasure, since it may have a general irritating effect on the voters. In case
the level of the background noise is low, our experiments show that already a
mid-class microphone can get relatively good results.

Hence, the main success factor that both the attacker and defender can in-
fluence is the microphone placement.

We have conducted no research on the physical protection measures of polling
stations, but we conjecture that these measures mostly do not take the threat
of audio surveillance into account. There are several strategies the attacker may
use to plant the microphones into the voting booths. He may try to access the
booth tables in the storage before elections, or assume the role of a voter himself,
entering the booth to both mark his own ballot and to leave a microphone there.

Assuming physical access to the voting booths, a similar attack of plant-
ing video recording equipment is conceivable. Contemporary cameras also have



miniature size; however, they require a direct line of sight, restricting the choice
of potential locations. We have not studied the effect of microphone placement
extensively, but our testing shows that the signal one gets when attaching a
microphone under a wooden table is actually pretty strong and clear.

The only reasonable countermeasure against audio side channel attacks is
regular inspection of the voting booths during the elections to detect illegitimate
recording equipment. In principle, changing the ballot designs to avoid write-ins
could also help, but this may require changing the whole voting tradition and
may hence not work in practice. Also, alternative designs (like marking some
candidates with “X”-s) may be vulnerable to other side channel attacks of timing,
triangulating the locations of the marks, etc. Studying such side channels is an
interesting avenue for future research.

And last-but-not-least we would like to emphasize that the privacy-leaking
side channel is inherently an issue of paper-based elections, and, to an extent, less
so in case of remote electronic voting. Of course, one can imagine video recording
equipment installed in someone’s home, but such an attack would scale much
worse than planting a microphone in a polling booth.

Thus, the main wide-scale privacy attack vector against Internet voting would
still require using specially crafted malware.

Note that just an attack against vote privacy is not very interesting on its
own, it becomes a real problem in conjunction with coercion. Coercion, in turn,
implies the need to target specific voters.

The ease of installing malware on the computers of a particular set of target
persons may depend on many aspects like physical security of their homes and
general level of digital hygiene. However, we argue that determining the polling
station where the target group goes voting and planting microphones there is an
attack of lower technical complexity.

Planting the recording equipment can be performed by a corrupt voter (who
may be the attacker himself or a voter bribed by the attacker). The attacker
may then remain in the polling station observing the times when the voters
enter the booth. The recording equipment, in turn, may save time stamps of
the collected writing samples, and the time stamps can later be cross-referenced
with the times recorded by the observing attacker. Alternatively, the recording
equipment may have radio communication capability, reporting the recordings
as soon as they have been detected.

Note that this attack requires significant human involvement as the attacker
would need to visually identify the voters who enter the booth. However, this
step can also be automated by using facial recognition software together with a
corresponding personalized facial features database. At the time of this writing
(summer 2018), such databases are probably not yet available for medium-level
attackers, but they are being built by intelligence organizations based on vast
amount of personal images available via social networks.6 It is only a matter of
time when such databases can be bought on black markets.

6 https://www.forbes.com/sites/thomasbrewster/2018/04/16/huge-facebook-

facial-recognition-database-built-by-ex-israeli-spies/

https://www.forbes.com/sites/thomasbrewster/2018/04/16/huge-facebook-facial-recognition-database-built-by-ex-israeli-spies/
https://www.forbes.com/sites/thomasbrewster/2018/04/16/huge-facebook-facial-recognition-database-built-by-ex-israeli-spies/


We stress again that our final argument is made only about vote privacy
violations via side channel leakages, and does not seek to compare security of
paper and remote electronic voting otherwise.

5 Conclusions and further work

There are entire communities devoting their efforts to proving superiority of pa-
per voting over its electronic counterpart (like https://www.verifiedvoting.

org/ and http://handcountedpaperballots.org/). An important argument
used in such efforts is that high-tech solutions are vulnerable to high-tech attacks,
and the latter ones are not yet understood well enough to provide satisfactory
mitigation measures.

What proponents of such arguments often do not mention is that high-tech
methods can also be used against low-tech elections. The current paper stressed
this point by presenting an audio side channel attack against the form of paper
voting where the voter is expected to fill in the ballot by writing some numbers.

Success of such an attack in practice depends on many aspects like noisiness of
the polling station and the ability to place microphones well enough to capture
good-quality audio samples. However, we argue that the resulting leakage is
considerably more severe than that of the TEMPEST attack by Gonggrijp and
Wessling that forced all electronic voting initiatives in the Netherlands to halt
in 2007. Our attack has the potential of revealing the exact voter preference,
whereas the attack by Gonggrijp and Wessling only leaked whether the vote was
given to one specific party (CDA) or not.

We are not claiming that all the paper voting should be discontinued, but we
do advocate for balancing the criticism against electronic voting based on the
problems that actually exist in the case of paper voting as well. Our research also
implies that side channel attacks should be taken into account while designing the
ballot sheets and planning physical protection measures in the polling stations.

This paper presented an attack on a rather specific form of paper voting.
However, there are also many other designs of ballot sheets that deserve attention
from the viewpoint of advanced technological attacks as well. This remains the
subject for future research.
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