
Planning the next steps for Estonian Internet
voting

Sven Heiberg1, Kristjan Krips2,4, and Jan Willemson2,3

1 Smartmatic-Cybernetica Centre of Excellence for Internet Voting
Soola 3, 51004, Tartu, Estonia

sven@ivotingcentre.ee
2 Cybernetica AS, Mäealuse 2/1, 12618, Tallinn, Estonia

{kristjan.krips,jan.willemson}@cyber.ee
3 STACC, Narva mnt 20, 51009, Tartu, Estonia

4 Institute of Computer Science, University of Tartu,
Narva mnt 18, 51009, Tartu, Estonia

Abstract. This paper considers the current state of Estonian Internet
voting, identifies its shortcomings with respect to the present-day threat
landscape, and discusses possible mitigation measures. It turns out that
the area requiring the most attention and introduction of new measures is
electronic identity. We also propose and analyse an update to the current
Estonian individual vote verification protocol allowing to use PC as a
verification device in case voting would move to mobile platforms.

1 Introduction

Casting a vote via Internet (i-voting) has been an option in Estonia since 2005.
In 2019 Parliamentary elections, about 44% of all the votes were cast via this
medium5. The system has been a subject of debates and research scrutiny since
the beginning of deployment.

The first full security study was composed by a group of Estonian researchers
in 2003, and later updated in 2010 [3]. In 2011, several potential problems (e.g. an
invalid vote and proof-of-concept vote manipulation malware) surfaced in prac-
tice [6]. To counter them, individual verification option was added to Estonian
Internet voting in 2013 [9]. In 2014, Springall et al. published a study pointing
out the need for better verifiability of system-level properties [14]. As a result,
in 2017, a completely re-designed IVXV protocol was deployed in Estonia [7].

In 2019, the debate about Internet voting security intensified again in Estonia
after a new political coalition was formed. The Minister of Foreign Trade and
Information Technology called together a committee that produced a list of open
action items to potentially work on6.

One of the ideas listed was to introduce the option of casting votes from
mobile devices. Since this would be quite a significant change in the current

5 https://rk2019.valimised.ee/en/participation/participation.html
6 https://www.mkm.ee/sites/default/files/content-editors/e-valimiste_

tooruhma_koondaruanne_12.12.2019_0.pdf, in Estonian

Estonian i-voting infrastructure, a separate analysis effort was initiated by the
State Information System Authority and State Electoral Office.

The current paper builds on the initial findings gathered during the analysis7.
Even though the original focus of the study was on mobile voting, it turns out
that most of the issues and recommendations are actually more general and
hold for the PC-based voting as well. In Section 2, we will first cover the general
electronic identity and OS level threats. Section 3 discusses a possible change
that introducing mobile voting may bring along for verification. In Section 4,
we list and categorise existing and newly proposed mitigation measures. Finally,
Section 5 presents the conclusions and sets directions for future work.

2 General risks

2.1 Threat actors

We start our study by identifying the main classes of threat actors.

– Civil hacktivist seeking publicity. Such an attacker is not necessarily
malicious, but can cause unintended problems as side effects of his activities.

– Single candidate trying to get more votes. Such an attacker acting
alone has limited resources, and his attacks are not likely to scale too much.

– Political party trying to increase the number of seats. Such an at-
tacker has medium level of resources. It may have significant organisational
capability, enabling certain attacks (e.g. coercion) to scale quite well.

– Organization that aims at influencing policy decisions. Such an at-
tacker may have financial or ideological motives. This category includes large
national or international enterprises, and their methods range anywhere from
media campaigning and lobbying to direct bribery.

– Foreign state-level actor interested in gaining more control over
the country. Such an attacker may have significant resources and access to
rare technical capabilities (like zero-day attacks against common OS-es).

2.2 eID level risks

The Estonian Internet voting scheme relies heavily on the electronic identity
(eID) infrastructure. There are currently three main eID solutions in use in
Estonia.

– ID-card, first launched in 2002, was historically the first one and is still
in wide use. The latest generation of ID-cards also possesses Near Field
Communication (NFC) functionality which provides an option of using it in
the context of m-voting as well.

7 https://www.valimised.ee/sites/default/files/uploads/eng/2020_m-voting-

report.pdf

– Mobile-ID (mID), first launched in 2007, relies on the mobile phone Sub-
scriber Identity Module (SIM) card as the key storage and cryptographic
coprocessor.

– Smart-ID (sID), first launched in 2016, is a software-only solution making
use of a specific cryptographic scheme [4] where the signature key is split
between the mobile device and server.

Right now, only ID-card and mID are used for i-voting.

Regarding security aspects, we consider the user’s personal computing envi-
ronment to be the weakest point in the e-ID ecosystem (see Section 2.3). All the
above e-ID solutions use OS input-output mechanisms to display confirmation
codes, enter PINs, etc. While ID-card is theoretically also usable with a PIN-
firewalled smartcard reader featuring a separate PIN-pad, such readers are not
widely available on the market and hardly anyone is using them in Estonia. If
an attacker is able to monitor PIN entry of some legitimate session, he will later
be able to enter the same PINs in the session of his choosing.

The most serious implication of this threat is an attacker submitting a vote
using a compromised e-ID environment without the voter noticing. This is a
problem both in the scenario when the attacker changes the originally submitted
vote by re-voting, and also when the voter did not intend to vote at all (which is
her legal right in Estonia). To complete such an attack, the attacker would need
to implement his own voting client. This is feasible as the protocol description
is public, even though not always sufficiently detailed [11].

There are a few aspects of user behaviour that contribute to this problem.

– General low level of digital hygiene, e.g. installing software from untrustwor-
thy locations, carelessly opening email attachments, failure to keep the OS
updated, etc. Such failures are often required as presumptions for attackers
to launch malware-related attacks. Raising digital hygiene awareness is one
key measure in raising the security level of every kind of digital services,
including i-voting.

– Usage scenarios where ID-card is left attached to the working terminal for
extended periods of time, e.g. as a login token. Even though short periods
of legitimate ID-card usage might already be sufficient to implement an
attack, the login token scenario has more problems. Namely, it is typically
implemented at an OS level by leaving the card’s authentication environment
open. As a result, applications (including malicious ones) do not need to have
access to PIN1 in order to perform authentication.

In general, one of the core problems seems to be that e-ID tokens (be it an
ID-card or an mID SIM) are getting too intimately connected to the computing
platforms and OSes. On one hand, this connection is convenient for the users,
but at the same time it increases the attack surfaces and time windows. Whether
the corresponding risk level still remains acceptable depends on the application
scenario and threat actor we consider.

In case of electronic voting (both PC and mobile platform based), the in-
tegrity risks become significant when the attacks start to scale easily. We esti-
mate that out of the threat actors listed in Section 2.1, high-resource state level
attackers have the capacity to attack mobile platforms in a sufficiently scalable
manner.

There are several possible mitigation measures to both prevent and detect
unauthorised use of voter’s e-ID. We will describe and discuss these measures in
Section 4.3.

2.3 OS level risks

It is very hard to rationally estimate security level of an operating system or a
particular version of it. There are several folk beliefs either based on common
knowledge (“A newer version of OS should have less vulnerabilities”) or some
sort of personal view (“iOS is more secure than Android”), but these beliefs are
quite hard to quantify.

Concerning the more updated versions having less vulnerabilities we may look
at published vulnerability reports8. However, even one critical zero-day flaw may
be sufficient for a state-level attacker to implement an attack, so the number of
unpatched vulnerabilities is not necessarily a good measure of security.

Claims about the comparative security level of specific OSes (say, Android
vs iOS or Linux vs Windows) are even more questionable. In case of open devel-
opment models (Android, Linux) the attackers have easier time of discovering
weaknesses, but at the same time public disclosures also speed up patching. For
example, the potential bounties paid out for a fresh Android zero-click exploits
are even higher that those of iOS9. This may be interpreted as an indication that
such Android exploits are more rare. However, as argued by Ross Anderson, open
and closed development models produce software of roughly comparable security
level in the long run [2].

One way how such argumentation could be backed up is by comparing the
number of exploits for open source and closed source software. There is a recent
study by RAND Corporation, analysing a rare dataset of exploits based on
zero-day vulnerabilities [1]. The dataset contained 74 exploits for open source
software and 123 exploits for closed source software. The analysis showed that
the survival probability for both classes of exploits was roughly the same, with
the average life expectancy of an exploit for closed source software being 6.93
years and 6.51 years for open source software.

Acquiring superuser credentials In general, malware has two ways of getting
root access to a device. It can either escalate privileges by using an exploit, or
abuse the access that an unsuspecting user provides. On a PC, users may choose
to run software with root user permissions, but doing the same in Android or iOS
is not so easy. While root access gives more freedom to the user, it also breaks

8 See e.g. https://www.cvedetails.com/
9 https://zerodium.com/program.html

the security model of the underlying platform and makes it easier to attack the
device. Thus, some vendors are trying to prevent the user from getting root
access. E.g. with each new release of iOS, Apple has taken more serious steps to
prevent users from getting root access (called jailbreaking in iOS community). At
the same time, Apple is also working to decrease the motivation of jailbreaking in
the first place (e.g. by increasing configurability of the official iOS). As a result,
the iOS jailbreaking community has recently decreased10.

Android rooting, on the other hand, is still happening a lot. It can be clas-
sified into hard rooting and soft rooting [15]. The former is done by flashing
the device with an executable having root permissions, while the latter is based
on exploiting vulnerabilities. Malware applications typically abuse the method
from the second category. While there are plenty of vulnerabilities for Android,
recent studies show that developing a universal exploit is not common due to
the fragmentation of hardware and software [12]. Thus, root exploits are usu-
ally tailored either for specific devices, models or operating system versions [5].
However, public sources do not reveal information about zero day vulnerabilities
that are stored by governmental entities. The report [1] by RAND corporation
revealed that the median lifetime of an exploit based on a zero-day exploit is
5.07 years. Given the long lifetime of the exploits, it is likely that the arsenal of
stored exploits is quite large.

3 Verification

One of the problems that arises when Estonia would introduce voting on mobile
devices is losing mobile devices as an independent verification platform. Indepen-
dence of the voting and verification platforms is important for the verification
to fulfil its primary goal of detecting whether a vote has been manipulated by a
potentially malicious (e.g. malware-infected) voting device [9].

In principle, there are two possible solutions to this problem.

1. Retain verification from the mobile device as the only option, hoping that
voters will be using different devices for voting and verification.

2. Allow verifying mobile votes from a PC-based verification app (possibly also
allowing verification with mobile devices in parallel).

The first option has the benefit of making use of workflows and apps that
the voters are already accustomed to. On the other hand, many voters could
perceive the need to grab for yet another mobile device as a superfluous action
that gives them little to no added value. Some voters could try to trick the
system and verify the vote with the voting device (say, using mirrors to relay

10 It is hard to find reliable statistics about the actual usage of jailbreaking, but there
are several recent posts written by the developers expressing their rapid decline of
motivation to continue working on the respective applications, see e.g. https://

www.idownloadblog.com/2019/10/26/coolstar-sileo-development-suspended/

and https://old.reddit.com/r/jailbreak/comments/7iu0sx/discussion_can_

we_please_find_someone_to_help/dr2m6nx/.

the QR code to the camera, or perhaps finding some esoteric apps that fulfil the
same purpose). Behaviour of the voters in this scenario is hard to predict at this
point; it would require conducting a dedicated user study.

In order to consider the second option above, we propose using PC-based
verification to be used in conjunction with mobile voting.

The current verification scheme (see also [9]) is displayed in Figure 1.

PC (voter) Sever Mobile device

Authenticate

Candidate list L

Sigvoter(Encpkserver (v, r))

Vote reference vr

vr, r

vr

Sigvoter(Encpkserver (v, r))

Display v

Fig. 1. Present Estonian voting and vote verification protocol

Note that the communication between the voter/PC and the mobile device
is close range and optical. After the voting is over, the voting application dis-
plays a QR-code containing vote reference vr and encryption randomness r. The
voter uses her mobile device to capture and decode the QR-code, downloads the
corresponding encrypted vote from the server and decrypts it with the help of r
(the latter operation being straightforward for the ElGamal encryption that the
IVXV system currently uses). The vote is displayed on the mobile device screen
for the user to inspect, again in close range and visually.

In case of voting with the mobile device, it would in principle be possible
to display the QR-code on the mobile device screen and capture it with PC.
However, not every PC has a camera, so we can not take this design path. Also,
capturing the QR-code with the mobile device from the PC screen is a workflow
familiar to the users, so we would like to retain it.

Of course, since the PC in the mobile voting scenario does not know vr and
r, we have to change the content of the QR-code. Our proposal is to let the
PC generate a one-time cryptographic (say, symmetric) key k and display it on
screen as a QR-code. The mobile device will then capture and decode it, and use
it to encrypt vr and r. The cryptogram will be sent to the PC that will decrypt
its content and run the rest of the verification protocol in the familiar manner.

The resulting voting and verification scheme is is displayed in Figure 2

There are two main differences between the protocols presented in Figures 1
and 2.

PC Sever Mobile device (voter)

Authenticate

Candidate list L

Sigvoter(Encpkserver (v, r))

Vote reference vr

k

Enck(vr, r)

vr

Sigvoter(Encpkserver (v, r))

Display v

Fig. 2. Proposed Estonian voting and vote verification protocol

First, there is an extra cryptographic key k that aims at protecting vote
secrecy by protecting confidentiality of the communication between the mobile
device and verification PC. However, the voter has no assurance about the origin
of the key – it may have been generated by an adversary in an attempt to breach
the verification protocol.

Note that we are considering here the scenario where the verification PC is
under the adversarial control. If besides the verification device either the server
side or voting device would be malicious as well, we can not obtain meaningful
security guarantees for the voter. Thus, it only makes sense to study the situation
when the verification PC alone is malicious, but the voting device and server are
honest.

Under such a scenario, there are two main kinds of attacks that the attacker
can mount.

– Breaching privacy of the vote. This is an inherent risk present with any kind
of verification that has to be accepted. This is similar to the present Estonian
vote verification.

– Manipulating the verification process (manipulating the keys, delaying mes-
sages, etc.) leaving the voter with an impression that she voted for someone
else. Note that under the attack model where only the verification PC is
malicious, the vote was cast and recorded correctly. Thus, the adversary’s
activities will efficiently cause voter confusion, mistrust and general havoc.
This is also what an attacker can do in the present scheme by manipulat-
ing the mobile verification device. There are standard measures designed for
such a user experience (essentially, helpdesk will recommend the voter to use
different voting and verification devices, and try again).

Thus we conclude that malicious manipulation of the verification device (and
the key k along the way) does not make the situation worse compared to the
present Estonian vote verification protocol.

The second difference between the two protocols is that there is an extra
attack capability potentially gained by the adversary when he only manages to
breach the voting device. Unlike the protocol in Figure 1, the protocol in Figure 2
is active in the sense that the voting device has to participate in initiating the
verification process. Thus, the attacker could dynamically decide which voters to
attack depending on whether they start with the verification process or not. For
example, malware can delay delivery of the ballot and wait to see if the voting
application is closed right after the vote has been cast via the user interface. In
such a case it is unlikely that the voter verified the vote and thus malware can
drop the vote without the voter noticing it. This kind of an attack could be pre-
vented by introducing a feedback mechanism which notifies the voter once a vote
has been successfully cast. This mitigation measure is discussed in Section 4.3.

4 Mitigation measures

In this Section, we are going to elaborate on possible mitigation measures for the
risks listed in Section 2. Table 1 summarises the measures and classifies them
according to their aim.

4.1 Awareness measures

Increase digital hygiene It is important to raise the general awareness level of
digital hygiene. For example, it would have a significant positive impact if many
citizens would regularly update their software to patch existing vulnerabilities.
While such action is necessary, it won’t be possible to educate every voter. In
addition, state level actors are able to bypass antivirus software and have access
to exploits built on top of zero day vulnerabilities [1].

Promote verification Currently, the rate of verifiers is about 4-5%11, but the
more there are, the smaller attacks we are able to detect [9]. In case individual
verification would be more widespread, it would also act more as a preventive
measure. When an attacker wants to change the election outcome, the attack
should be executed silently. Thus, widespread individual verification can reveal
if votes get dropped or changed by malware, and thereby deter such attacks from
attackers who have to prevent detection. However, the current vote verification
system is not able to detect malware that casts a re-vote which overwrites voter’s
original choice. The following mitigation measures also address the issue of pre-
venting such malware from succeeding. As a possible new detection mechanism,
establishing a feedback channel can also be considered (see Section 4.3).

11 https://www.valimised.ee/en/archive/statistics-about-internet-voting-

estonia

Table 1. Classification of mitigation measures based on their effect to i-voting.

Prevention Detection Recovery

Increase digital hygiene
Promote verification G#1
Introduce a feedback channel G#2
Do not support legacy
mobile operating systems

G#3

Obfuscation G#4

Add freshness notification to vote verification G#1
Prevent ID-card from being
in the reader when not used

Promote the usage of PIN-pad
based ID-card readers

Require both ID-card signature and
mobile-ID/Smart-ID signature

Analyse i-voting logs 5

Allow to re-vote on during i-voting period 6 7

Allow to re-vote on paper on election Sunday 6 7

Postpone i-voting 8

Fall back to paper voting after a large scale attack 8

 = measure is effective G# = measure is partially effective
1 In case individual verification is widespread, the motivation for some types of attacks
falls.
2 A feedback channel may stop an attacker who wants to invisibly interfere.
3 An attacker is able to run his own voting client on legacy operating systems.
4 Client side restrictions can be bypassed if adversary has full control over the voting
device.
5 This is a system-wide measure to detect anomalies.
6 The option of the voter re-voting limits the coercer’s capability to ensure that coer-
cion was successful.
7 This is an individual recovery measure for voters who were coerced.
8 This is a system-wide measure to recover from a malfunction or from an attack.

Prevent ID-card from being in the reader when not used Discourage
the scenarios where it is required to leave the ID-card in the reader for extended
periods of time, and practices where the card’s authentication environment is
left open on the OS level. In case voter’s device is infected with malware and the
voter is not using a PIN-pad-based ID-card reader, the malware could re-vote
and thus overwrite the voter’s initial choice.

Promote the usage of PIN-pad based ID-card readers Target e-ID solu-
tions with better separated authentication factors. E.g. on the regular PC plat-
forms, make use of PIN-pad-equipped ID-card readers. Without such a reader,
malware could issue a re-vote right after the voter has voted as the ID-card is

still in the reader. Currently individual verification would not detect such an
attack. For usage with mobile devices as terminals, NFC cards with integrated
displays and PIN-pads could be utilised. In case individual verification would
provide some integrity guarantees as described in Section 4.3, the NFC based
vote signing could be a step forward. While the majority of smartphone users rely
on Smart-ID and mobile-ID for daily interactions, the NFC based vote casting
could offer a way to prevent malware from re-voting by more strongly separating
the e-ID token and the main computing platform.

4.2 Existing measures

Analyse i-voting logs Log analysis can reveal anomalies which can be used
to identify attacks. For example, it is possible to monitor when and how many
times people vote, which e-ID tools and OSes they use, whether and when they
verify their votes, etc. [8].

Allow to re-vote during i-voting period Allowing the voter to overwrite
her vote by casting a new i-vote is a measure designed to prevent coercion. The
rationale is that if the coercer knows that the voter can easily change her vote,
his motivation to coerce (say, to pay for a vote) decreases. It is also possible
to go to the polling station during the advance voting period to vote on paper.
To enable this, the i-voting period currently ends two hours before the advance
paper voting period.

Allow to re-vote on paper on election Sunday If the voter was coerced in
the end of the i-voting and she was unable to attend the polling station during
the extra two hours of advance voting period, there was no way to cast a re-vote
up to 2019. However, this will change in 2021 when the i-voters will have the
option to re-vote on paper during the election Sunday as well.

Postpone i-voting This is a legal measure that can be executed when a large
scale attack is detected.

Fall back to paper voting after a large scale attack This is a legal measure
that allows to cancel i-voting in case a large scale attack is detected that can
not be mitigated by other means. That way the voters can be asked to vote on
paper during the election Sunday. This is also one of the reasons why i-voting
should be limited to the advance voting period.

4.3 Newly proposed measures

Introduce a feedback channel A feedback channel (say, an SMS or email)
can be used to notify the voters about their act of voting. This measure would
be useful in multiple scenarios. For example, the voter would be able to detect

re-voting malware or malware that drops votes based on a prediction on whether
the voter is going to verify the vote. In the latter case, the voter could detect
vote dropping attacks even without using the verification system, which would
make it difficult for an attacker to avoid detection. This is relevant e.g. when
considering the proposed verification scheme for m-voting discussed in Section 3.
Similarly to individual verification, the feedback channel is mainly a measure to
detect interference. However, as a side effect, it can also deter an attacker in the
fear that the attack to be revealed. Again, similar to individual verification, we
can hope that this deterrence will also act as an efficient prevention measure.

Introducing a feedback has actually been considered before in Estonia, and
the main reason why it has not been implemented this far is the fear of making
coercion attacks (e.g. vote buying/selling) easier. Thus, before taking a decision
on whether to introduce such a measure or not, a wider analysis including also
legal aspects should be conducted.

However, from the technical point of view we make the following observations
about the potential coercion-enabling risk.

– Even if the coercer observes a voter during the voting session and demands
to see her feedback channel (say, mailbox) during this session, the voter can
still re-vote later.

– We assume that it is hard for the coercer to maintain physical access at
many victims at the same time (most importantly, during the last minutes
of the voting period). However, it is possible to demand virtual presence, say,
in the form of e-mailbox passwords. To counter this threat, we can use an
email redirection service that the voter can privately configure. In Estonia,
there is the official @eesti.ee email redirection service that can be used for
this purpose. Every citizen has an official government-supplied email address
of the form personalcode@eesti.ee and is expected to redirect the emails
from there to his/her personal email account.

– If the coercer is trying to get a control of all the digital channels of a voter,
there must be sufficient evidence of this attempt so that the voter can turn to
the law enforcement. However, the main rationale behind making use of the
@eesti.ee redirection service is to lower the coercer’s incentive to control the
voter’s main mailbox, since this gives the coercer no guarantee of detecting
a revote.

– If the coercer is willing to go as far as ceasing all the e-ID means from
the voter in an attempt of blocking her option of logging onto the @eesti.ee
redirection service, he can use the same approach to block the voter’s revoting
ability already with the present system. However, the voter is still able to
cast a paper ballot in case she has access to a passport, driver’s licence or any
other valid ID. Thus, from this point of view, introducing the notification
feedback channel does not open significant new attack vectors.

Of course, in order for the feedback channel to be an efficient measure, care
has to be taken in implementation. For example, it should be difficult for a piece
of malware operating in the user’s voting environment to block the feedback

channel. If mobile voting would be introduced, we have to take into account that
people would probably vote and read SMSes from the same device. This would
render SMS as a potential feedback channel weaker since malware operating on
the mobile device could cast a vote without the user knowing, and also block
the SMS that notifies the voter about the vote being cast on her behalf.

A possible drawback of the feedback channel measure is also the possibility
for an attacker to generate havoc by sending out a lot of fake notifications. A
possible countermeasure would be to include a statement signed with a key of
the election organiser. In any case, also the legal impacts to voting freedom need
to be assessed before such a measure can be implemented.

Add freshness notification to vote verification Estonian i-voting system
gives voters the option to use individual verification. This means that the voters
can check whether their vote reached the voting system. The existing imple-
mentation allows to verify the vote during a limited time window, which has
historically been set between half an hour and an hour. Thus, after casting a
vote, the voter has up to an hour to take a smartphone with a verification appli-
cation and check whether her ballot reached the voting system. It is important
to note that the voter is not able to check whether the ballot that reached the
voting system will be counted in the tally as such an ability would also make
vote selling easier.

The current verification system is optimised for being coercion resistant and
thus verification does not reveal if a re-vote has been cast. Now, imagine what
could happen when a voting device would be infected and controlled by malware.
As noted in Section 2.2, malware can use voter’s e-ID if it is directly connected
to the infected device, by recording and re-using the PIN codes. The voter is
physically not sufficiently fast to remove the ID-card from the card reader to
prevent malware from accessing it (which can be done in a fraction of a second).
Verifying the previous vote would still succeed with the current set-up.

However, the existing individual vote verification mechanism can be easily
extended so that it would also provide a partial integrity check. The verification
system could notify the voter during verification whether the given vote was
overwritten or not. If the voter performs this verification after she has removed
the ID-card from the possibly malicious device and does not use it any longer
during the i-voting period, the voter can be sure that malware has not abused
access to the ID-card. The verification time window is short and is probably
not suitable for re-voting in case the initial vote was given under coercion. The
coerced voter can re-vote later after the verification time-window has passed as
then the coercer can not check whether the coerced vote was overwritten. In
case coercion takes place during the last hour of the i-voting period, the coerced
voter can fall back to casting a re-vote on paper (see Section 4.2).

Until ID-card’s NFC interface is not used for other activities on a mobile
device (nor over a regular smart card reader), the voter can be sure that malware
does not have access to the ID-card. This measure only works when the voter

is careful and when malware can not rely on mobile e-ID solutions (i.e. mID or
sID) to cast a (re)vote.

Require both ID-card signature and mobile-ID/Smart-ID signature
The idea is to force the vote casting to depend on two independent devices. The
vote should be accepted only if the timestamps of both signatures are within
a certain time-limit. This measure would lower usability of electronic voting,
but it may be an acceptable trade-off with increased resistance against malware
attacks.

4.4 Other possible measures

Do not support legacy mobile operating systems It is possible to try to
restrict the official voting client so that it would run only on up-to-date operating
systems. However, the effectiveness of this measure depends on the capabilities
and attack goals of the attacker.

The problem is that a really determined and resourceful attacker can develop
a voting client also for an old and vulnerable platform where he can potentially
run it without the user knowledge. This is doable as the voting protocol is open
even though not always documented the best way [11]. If an e-ID utility is also
accessible without the user knowledge, the attacker can mount an attack against
vote integrity. Efficient measures against this threat include increasing the gen-
eral level of digital hygiene and establishing a feedback channel as described
above.

However, not supporting legacy OSes by the official voting client has a posi-
tive effect on vote privacy. If the voter only has access to the voting client on an
up-to-date OS, it will be harder for an attacker to develop and deploy malware
that would attempt to, say, read the user’s screen during the voting session.

Obfuscation Obfuscation and malware detection measures only work against
some attackers. State level actors and researchers have the capability to reverse
engineer the voting application to detect which measures are used. Once the
measures are known, they can be bypassed, assuming that the attacker has root
access to the device. A good example of bypassing obfuscation and malware
detection measures is given by Specter et al. in case of Voatz [13].

5 Conclusions and future work

In this paper we reviewed the current state of Estonian Internet voting, iden-
tified its shortcomings with respect to the present-day threat landscape, and
discussed possible mitigation measures. Even though the original motivation of
the research was the question about feasibility and the associated risks of mobile
voting, the conclusions are more general and hold for PC-based i-voting as well.

The most serious attack vectors against Estonian Internet voting system
include malicious unauthorised use of e-ID devices (ID-card, mobile-ID). With
such an access, the attacker can cast a re-vote and thereby overwrite the choice
of the voter. One of the strongest measures suggested against such a threat is
end-to-end (E2E) verifiability that would allow every voter to verify that her vote
has been correctly counted in the final tally. Unfortunately, such a strong notion
of verifiability potentially conflicts with voter privacy and coercion-resistance.

For example, the (to-date the most comprehensive) report by Kiniry et al.
studies a number of proposed E2E voting schemes and concludes that “No us-
able E2E-VIV protocol in existing scientific literature has receipt freedom when
the voting computer is untrusted.” [10]. Currently, the Estonian Internet voting
scheme does not provide full E2E verifiability, but instead balances the verifi-
ability and coercion-resistance requirements using a combination of individual
verification [9], server-side auditability [7] and an option of re-voting. However,
the search for a better balance is on-going and the question of introducing some
form of E2E verifiability without increasing the coercibility level of the protocol
too much is one of the main directions of future research.

There are still residual risks that E2E verifiability does not address. For
example, if a citizen never intended to vote, but due to hostile take-over of her
e-ID, the attacker manages to submit a vote on her behalf, the voter would not
learn about this fact even if there is strong E2E verifiability in place. Thus, we
propose to add an independent notification channel. The question which channel
is the optimal one (also considering the implications on coercion-resistance) is
still open and needs future study. This includes the need for additional legal
analysis on such a measure.

We have also made two other new recommendations – adding freshness noti-
fication to the individual verification protocol, and requiring several independent
e-ID tools to submit a valid vote. These recommendations also require further
analysis from the coercibility and usability points of view, respectively.

In conclusion – any voting protocol suite is a complex set of mechanisms
balancing between conflicting requirements. Improving one component may ac-
tually decrease the overall security level of the whole system. Thus, before im-
plementing any of the above-mentioned measures, a holistic study of the whole
suite needs to be conducted. This will be general direction of our future research
steps.

Acknowledgements. This paper has been supported by the Estonian Personal
Research Grant number 920 and European Regional Development Fund through
the grant number EU48684.

References

1. Ablon, L., Bogart, A.: Zero Days, Thousands of Nights: The Life and Times of
Zero-Day Vulnerabilities and Their Exploits. RAND Corporation (2017)

2. Anderson, R.: Open and closed systems are equivalent (that is, in an ideal world).
In: Perspectives on free and open source software. MIT Press, Cambridge, MA
(2005), https://www.cl.cam.ac.uk/~rja14/Papers/toulousebook.pdf

3. Ansper, A., Buldas, A., Jürgenson, A., Oruaas, M., Priisalu, J., Raiend, K., Vel-
dre, A., Willemson, J., Virunurm, K.: E-voting concept security: analysis and mea-
sures (2010), https://www.valimised.ee/sites/default/files/uploads/eng/
E-voting_concept_security_analysis_and_measures_2010.pdf

4. Buldas, A., Kalu, A., Laud, P., Oruaas, M.: Server-Supported RSA Signatures
for Mobile Devices. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) Computer
Security - ESORICS 2017 - 22nd European Symposium on Research in Computer
Security, Oslo, Norway, September 11-15, 2017, Proceedings, Part I. Lecture Notes
in Computer Science, vol. 10492, pp. 315–333. Springer (2017)

5. Gasparis, I., Qian, Z., Song, C., Krishnamurthy, S.V.: Detecting android root ex-
ploits by learning from root providers. In: 26th USENIX Security Symposium
(USENIX Security 17). pp. 1129–1144. USENIX Association, Vancouver, BC (Aug
2017), https://www.usenix.org/conference/usenixsecurity17/technical-

sessions/presentation/gasparis

6. Heiberg, S., Laud, P., Willemson, J.: The Application of I-Voting for Estonian
Parliamentary Elections of 2011. In: Kiayias, A., Lipmaa, H. (eds.) E-Voting and
Identity - Third International Conference, VoteID 2011, Tallinn, Estonia, Septem-
ber 28-30, 2011, Revised Selected Papers. Lecture Notes in Computer Science,
vol. 7187, pp. 208–223. Springer (2011). https://doi.org/10.1007/978-3-642-32747-
6 13, https://doi.org/10.1007/978-3-642-32747-6_13

7. Heiberg, S., Martens, T., Vinkel, P., Willemson, J.: Improving the Verifiability of
the Estonian Internet Voting Scheme. In: Krimmer, R., Volkamer, M., Barrat, J.,
Benaloh, J., Goodman, N.J., Ryan, P.Y.A., Teague, V. (eds.) Electronic Voting -
First International Joint Conference, E-Vote-ID 2016, Bregenz, Austria, October
18-21, 2016, Proceedings. Lecture Notes in Computer Science, vol. 10141, pp. 92–
107. Springer (2016). https://doi.org/10.1007/978-3-319-52240-1 6, https://doi.
org/10.1007/978-3-319-52240-1_6

8. Heiberg, S., Parsovs, A., Willemson, J.: Log Analysis of Estonian Internet Voting
2013-2014. In: Haenni, R., Koenig, R.E., Wikström, D. (eds.) E-Voting and Iden-
tity - 5th International Conference, VoteID 2015, Bern, Switzerland, September
2-4, 2015, Proceedings. Lecture Notes in Computer Science, vol. 9269, pp. 19–34.
Springer (2015). https://doi.org/10.1007/978-3-319-22270-7 2, https://doi.org/
10.1007/978-3-319-22270-7_2

9. Heiberg, S., Willemson, J.: Verifiable internet voting in Estonia. In: Krimmer, R.,
Volkamer, M. (eds.) 6th International Conference on Electronic Voting: Verifying
the Vote, EVOTE 2014, Lochau / Bregenz, Austria, October 29-31, 2014. pp. 1–8.
IEEE (2014). https://doi.org/10.1109/EVOTE.2014.7001135, https://doi.org/
10.1109/EVOTE.2014.7001135

10. Kiniry, J., Zimmerman, D., Wagner, D., Robinson, P., Foltzer, A., Morina, S.: The
future of voting: end-to-end verifiable Internet voting (2015), U.S. Vote Foundation,
https://www.usvotefoundation.org/E2E-VIV

11. Krips, K., Farzaliyev, V., Willemson, J.: Developing a Personal Voting Machine
for the Estonian Internet Voting System (2020), submitted

12. Meng, H., Thing, V.L., Cheng, Y., Dai, Z., Zhang, L.: A survey
of Android exploits in the wild. Computers & Security 76, 71–91
(2018). https://doi.org/https://doi.org/10.1016/j.cose.2018.02.019, http://www.

sciencedirect.com/science/article/pii/S0167404818301664

13. Specter, M.A., Koppel, J., Weitzner, D.J.: The Ballot is Busted Before the
Blockchain: A Security Analysis of Voatz, the First Internet Voting Application
Used in U.S. Federal Elections (2020), https://internetpolicy.mit.edu/wp-

content/uploads/2020/02/SecurityAnalysisOfVoatz_Public.pdf

14. Springall, D., Finkenauer, T., Durumeric, Z., Kitcat, J., Hursti, H., MacAlpine,
M., Halderman, J.A.: Security Analysis of the Estonian Internet Voting System. In:
Ahn, G., Yung, M., Li, N. (eds.) Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, Scottsdale, AZ, USA, November 3-7,
2014. pp. 703–715. ACM (2014). https://doi.org/10.1145/2660267.2660315, https:
//doi.org/10.1145/2660267.2660315

15. Zhang, H., She, D., Qian, Z.: Android root and its providers: A double-edged
sword. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. p. 1093–1104. CCS ’15, Association for Computing Ma-
chinery, New York, NY, USA (2015). https://doi.org/10.1145/2810103.2813714,
https://doi.org/10.1145/2810103.2813714

