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Abstract. The quality of empirical statistical studies is tightly related
to the quality and amount of source data available. However, it is often
hard to collect data from several sources due to privacy requirements
or a lack of trust. In this paper, we propose a novel way to combine
secure multi-party computation technology with federated database sys-
tems to preserve privacy in statistical studies that combine and analyse
data from multiple databases. We describe an implementation on two
real-world platforms—the Sharemind secure multi-party computation
and the X-Road database federation platform. Our solution enables the
privacy-preserving linking and analysis of databases belonging to differ-
ent institutions. Indeed, a preliminary analysis from the Estonian Data
Protection Inspectorate suggests that the correct implementation of our
solution ensures that no personally identifiable information is processed
in such studies. Therefore, our proposed solution can potentially reduce
the costs of conducting statistical studies on shared data.
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structures, linking sensitive data, privacy-preserving statistical analysis

1 Introduction

During the last decade we have witnessed a rapid growth of e-government tech-
nology adoption, e.g. online services for citizens based on federated state databases.
The Estonian X-Road system is one of the more successful platforms. It is oper-
ational since 2001 and mediates the vast majority of the governmental data ex-
change requests of today. State agencies maintain their individual databases and
queries are made over the X-Road as needed. The distribution of data between
several owners also prevents the creation of “superdatabases”, that contain an
extensive amount of information on a single person or company. However, there



are analytical tasks that require the linking of one or more databases. For ex-
ample, the government needs to combine tax records with educational records
to analyse the efficiency of educational investments.

However, every such database combination is a privacy risk for citizens. Even
if the databases are pseudonymised or anonymised, records become larger in the
joined databases. This, in turn, gives the attackers the ability to use additional
information available from public sources like social networks to restore the iden-
tities. Potential attackers vary from malicious hackers to misbehaving officials.
The latter class of attackers is the most complicated one to handle, as the official
may have a completely legal access to the raw datasets, and just use them to
gain more information than is necessary for completion of legitimate tasks.

Our goal is to perform all the required computations without revealing any
microdata to the computing entities and mitigate the privacy risk. This paper
proposes a novel extension of federated database systems that adds the feature
of privacy-preserving data analysis using secure multi-party computation.

Secure multi-party computation (SMC) has been researched and developed
for several decades. For years, SMC was rightfully considered too inefficient for
practical use. However, in recent years, several fast implementations have been
developed [9,17]. Still, SMC has not yet become popular in practice, as people
have managed without such a technology for a long time and have replaced it
with social solutions like non-disclosure agreements and hope that their partners
protect the data being shared.

In this paper, we describe a joint architecture combining federated database
environments with SMC. We describe a concrete solution based on the Estonian
X-Road federated database platform and the Sharemind [7] secure multi-party
computation system. However, our idea is general enough to be applied to other
database environments and secure computation technologies.

The paper is organised as follows. First, Section 2 illustrates the benefits of
combining data in a federated database setting, describes the X-Road platform
and discusses candidate microdata protection mechanisms. Section 3 explains
secure multi-party computation, gives a privacy definition for SMC applications
and explains how to satisfy it in data analysis algorithms. Section 4 discusses
how to combine a federated database environment like the X-Road with SMC to
provide a secure data analysis environment. In Section 5, we validate the need
of the proposed solution through a set of interviews with potential end users.

We then focus on the practical implementation of the solution. Section 6
describes our first pilot project where we apply the proposed technology. Sec-
tion 7 describes our implementation of secure multi-party statistical analysis
algorithms and Section 8 analyses their performance with a set of benchmarks.

Related work. There have been efforts to implement statistical analysis using
SMC. Cryptographic primitives for evaluating statistical functions like mean,
variance, frequency analysis and regression were proposed in [14,18,19]. Early
implementations of filtered sums and scalar products are described in [47,52].
Solutions based on secret sharing include a protocol for mean value [34,33]. A



protocol for calculating weighted sums over homomorphically encrypted sensitive
data is given in [27].

In 2004, Feigenbaum et al. proposed to use SMC for analysing faculty in-
comes in the annual Taulbee Survey [21]. The protocols designed for this study
can be found in [1]. In 2011, Bogdanov et al. deployed SMC for financial data
analysis for the Estonian Association of Information Technology and Telecom-
munications [10]. Kamm et al. have shown how to conduct secure genome-wide
association studies using secure multi-party computation [31].

Our contribution. We provide a novel privacy definition for data analysis using
SMC and give guidance on how to achieve it. We propose a privacy-preserving
data sharing solution in federated database environments based on SMC. We
validate the proposed solution by analysing interviews conducted with potential
end-users of the technology. We analyse the responses of our interviewees and
identify their expectations towards an SMC-based solution. We illustrate the use
of the solution by describing a first pilot project following its design.

We then describe the most complete secure multi-party statistics implemen-
tation made to date, supporting the calculation of mean, variance, standard
deviation, frequency tables and quantiles. We show how to clean the data and
apply custom filters. We give descriptions of privacy-preserving hypothesis test-
ing using standard and paired t-tests, Wilcoxon tests and the χ2-test. We report
on our experimental validation of the proposed algorithms on the Sharemind
SMC platform and provide performance results proving their feasibility.

2 Data sharing in federated state databases

2.1 Benefits of openness in state databases

There exist several initiatives that promote access to and usage of open data to
provide enhanced services and greater public transparency to the citizens; the
Open Data Foundation5, ePSI platform6 and Open Access to scholarly research
results [46] just to name a few.

Lane, Heus and Mulcahy [35] discuss the role of publicly accessible sources
in research, and identify four essential arguments to support data openness.

1. Data utility: data are useful only when they are being used.
2. Replicability: original data sources for a scientific result need to be pub-

lished so that independent scholars could verify the work.
3. Communication: research results are always subject to interpretation, and

results relying on closed sources are more prone to be misinterpreted.
4. Efficiency: data collection is a time-consuming and costly process, hence it

makes sense to open it to bring down the social cost of research.

5 http://www.opendatafoundation.org
6 http://www.epsiplatform.eu

http://www.opendatafoundation.org
http://www.epsiplatform.eu


They also acknowledge the need for data protection and discuss four levels
of it – technological, statistical, operational and legal protection. In 2008 when
the paper [35] was published, the authors saw VPN and Citrix-like thin-client
approach as the main technical protection mechanisms. Whereas these solution
mitigate the risks caused by the need to have a copy of the dataset available for
the research, they still assume direct access to the data. Our paper can be seen
as extension of [35], enriching the pool of available data processing tools with
secure multi-party computations tools.

Privacy-preserving technologies like secure multi-party computation support
the cause of the open data movement by providing a platform for linking and
aggregating confidential data sources into less sensitive, publishable streams.
For example, if we securely link two personalised databases and aggregate the
individual records into demographic groups, we can publish the resulting groups.
This is especially useful when the source databases are confidential and should
not be openly linked as is the case for many government databases.

2.2 The X-Road secure data exchange infrastructure

By early 2000s, the level of computerisation in the Estonian state databases
had reached both the level of sufficient technical maturity and a certain critical
volume so that the need for a unified secure access mechanism was clear. The
development activities on the modernisation of national databases started in the
beginning of 2001 [30,28]. The first version of the developed X-Road infrastruc-
ture was launched on December 17th 2001. The number of queries and replies
mediated through the infrastructure per year exceeded 240 million in 2011 [29].

One of the more significant benefits of X-Road is the reduction of data dupli-
cation and the ability to combine data from many national databases. Further-
more, all communication is bilaterally authenticated and encrypted, meaning
that parties on the X-Road can always prove the source of a request or a data
item. Today, already the fifth generation of the X-Road is in operation and the
sixth generation is under development, adding new features as high-performance
qualified digital signatures [3] and increased availability under cyber threats [4].
Detailed technical descriptions of the whole system can be found in [2,51].

2.3 Privacy Protection Mechanisms for Data Sharing

The Use of Pseudonymisation in X-Road and its Shortcomings. Since
the beginning of 2011, X-Road provides a solution for joining different databases
without revealing the identities of the persons included [50]. In order to pro-
tect these identities, but still facilitate connecting the data items corresponding
to the same individuals, pseudonymisation is used. On the technical level, the
pseudonyms are computed by encrypting the ID codes of the individuals by a
common symmetric AES key distributed via offline means.

Even though this solution offers some protection against curious data ana-
lysts, it is not sufficient to resist more determined and targeted attacks. As the
data fields of the records are not encrypted, it is possible to breach the privacy



by comparing these fields to other datasets, e.g. publicly available data on the
person’s gender, age, education, home town. Thus it is practically impossible to
give any kind of security guarantee to a pseudonymisation-based solution.

Other Candidates for Microdata Protection Mechanisms. Several mi-
crodata protection mechanisms have been proposed such as k-anonymity [44,48]
and `-diversity [42]. The main idea on k-anonymity is to ensure that each record
in a dataset is indistinguishable from at least k − 1 other records with respect
to so-called quasi-identifiers, i.e. certain sets of attributes that can be used to
identify at least one person uniquely. Machanavajjhala et al. [42] showed that
k-anonymity approach has several practical weaknesses. For example, the k-
anonymity approach does not take into account a possible background knowl-
edge of attackers. The `-diversity approach [42] was designed to overcome the
weaknesses of k-anonymity, but it has also been shown to have limitations [40].

3 Secure multi-party computation as a privacy-enhancing
technology

Secret sharing [45] is a concept of hiding a secret value by splitting it into random
parts and distributing these parts, called shares, to different parties so that each
party has only one share. Depending on the secret sharing scheme used, all or a
known threshold of shares are needed to reconstruct the original secret value.

Secure multi-party computation allows to compute functions of secret shared
values so that each party learns only the corresponding function output value
and no inputs of other parties. For example, given a secret value x that is split
into n shares so that party Pi has xi, all parties can collaboratively compute

y1, . . . , yn = f(x1, . . . , xn)

so that party Pi learns only the output value yi.
There are a lot of SMC implementations with various features. Most of the

them are academic research implementations that solve a problem in a very
specific setting and are thus not easily usable together with other solutions. More
mature implementations with programmable protocol suites include VIFF [16],
SEPIA [13], FairplayMP [6] and Sharemind [7].

The Sharemind application server is a practical implementation of secure
multi-party computation technology that allows privacy-preserving computation
on secret shared data. It is an SMC implementation powering several real-world
applications [10,15]. Its applications are developed using the SecreC program-
ming language [8]. At the time of writing this paper, Sharemind is a secure
multi-party computation platform with the largest selection of practical features.
Therefore, we have chosen it as the platform of choice for this paper.

3.1 Modelling SMC deployments

We define three fundamental roles in an SMC system—the input party I, the
computation party C and the result party R. Input parties collect and send data



to the SMC system. The SMC system itself is hosted by computation parties
who carry out the SMC protocols on the inputs and send results to result parties
in response to queries.

We use the following notation for modelling SMC applications. Let Ik =
(I1, . . . , Ik) be the list of input parties, Cm = (C1, . . . , Cm) be the list of com-
puting parties and Rn = (R1, . . . ,Rn) be the list of result parties. Let Π be an
SMC protocol for performing a specific task.

In the following, ICR refers to a party that fills all three roles, similarly, IC
refers to a party with roles I and C. We use superscripts (k,m, n ≥ 1) to denote
that there are several parties with the same role combination in the system.

Real world parties can have more than one of these roles assigned to them.
The set {I, C,R} has 7 non-empty subsets and there are 27 possibilities to com-
bine them. However, we want to look only at cases where all three roles are
present. This leaves us with 128 − 16 = 112 possible combinations. Not all of
these make sense in a real-world setting, but we claim that all deployments of
SMC can be expressed using these 112 combinations.

3.2 Privacy expectations and definitions

We are mainly interested in the privacy-preserving properties of SMC. There-
fore, we want the private inputs of the input parties remain hidden from the
computing parties and the result parties.

While it is tempting to define privacy so that the computing parties and result
parties learn nothing about the values of the input parties, such a definition
would be rather impractical. First, we would need to hide the sizes of all inputs
from the computing parties. There are several techniques for hiding the input
size (e.g. [23,41]), but no generic solution exists and practical protocols often
leak the upper bound of the size.

Second, we would need to hide all branching decisions based on the private
inputs. While this can be done by always executing both branches and obliviously
choosing the right result, we can significantly save resources when we perform
some branching decisions based on published values. However, such behaviour
can partially or fully leak the inputs to the computing parties (and also to the
result parties, should they measure the running time of Π).

This directs us to a relaxed privacy definition, that allows the computing
parties to learn the sizes of inputs and make limited branching decisions based
on published values that do not directly leak private inputs. Finally, to support
practical statistical analysis tasks, we also allow the result parties to learn certain
aggregate values based on the inputs (e.g. percentiles). In a real-world setting,
we prevent the abuse of such queries using query auditing techniques, that reject
queries or query combinations that are extracting many private inputs.

Definition 1 (Relaxed privacy of a multi-party computation proce-
dure). A multi-party computation procedure Π evaluated by parties Ik, Cm,
Rn preserves the privacy of the input parties if the following conditions hold:



Source privacy During the evaluation of Π, computing parties cannot asso-
ciate a particular computation result with the input of a certain input party.

Cryptographic privacy During the evaluation of Π, computing parties learn
nothing about the intermediate values used to compute results, including the
individual values in the inputs of input parties, unless any of these values
are among the allowed output values of Π. As an additional exception, if a
computing party is also an input party, it may learn the individual values in
the input of only that one input party.

Restricted outputs During the evaluation of Π, the result parties learn noth-
ing about the intermediate values used to compute results, including the in-
dividual values in the inputs of input parties, unless any of these values are
among the allowed outputs of Π. Additionally, if a result party is also an
input party, it may learn the input of only that one input party.

Output privacy The outputs of Π do not leak significant parts of the private
inputs.

3.3 Adapting private data analysis procedures for SMC

We now describe general guidelines for designing privacy-preserving algorithms
that satisfy Definition 1. For source privacy, we require that computing parties
cannot associate an intermediate value with an individual input party that con-
tributed to this value. For instance, we may learn the smallest value among the
private inputs, but we will not know which input party provided it. This can be
achieved by starting the protocol by obliviously shuffling the data [38].

Cryptographic privacy is achieved by using SMC protocols that collect and
store inputs in a protected (e.g. encrypted, secret-shared) form. This prevents
the computing parties from recovering private inputs on their own. Furthermore,
the protection mechanism must be maintained for private values throughout the
algorithm execution. The computing parties must not remove the protection
mechanism to perform computations. Examples of suitable techniques include
homomorphic secret sharing, homomorphic encryption and garbled circuits.

Restricting outputs is quite straightforward. First, the computing parties
must publish to other parties only the result values that Π allows to publish.
Everything else must remain protected. Trivially, it follows that the computing
parties must run only the procedures to which the computational parties have
agreed. Furthermore, the computing parties must reject all queries from the
result parties that the computing parties have not agreed to among themselves.
In practice, all computation nodes audit their copy of the code and if they do
not agree with the operations it wants to perform on the data, they can reject
the code. This effectively halts the computation process, as the code needs to be
executed in parallel by all of the involved parties for the computation to work.

Output privacy is the most complex privacy goal, requiring a more creative
approach. The most complex part in algorithm design is to control the leakage
of input value bits through published outputs. There are many measures for
this leakage, including input entropy estimation and differential privacy [20].
Regardless of the approach, the algorithm designer must analyse the potential



impact of publishing the results of certain computations. In some cases, such an
analysis is straightforward. For example, publishing the results of aggregations
like sum and mean is a negligible leak unless there are only a few values.

Typically, directly publishing a value from the private inputs should not be
allowed. However, there are exceptions to this rule. For example, descriptive
values, such as the minimal value in a private input, are used by statisticians
to evaluate data quality. The main concern of data analysts in our interviews
was that if we take away their access to individual data values, we need to give
them a way to get an overview of the data in return. That is the reason why our
privacy model allows the publishing of descriptive statistics.

4 Using SMC for secure data sharing and analysis

4.1 Solution architecture

We propose a way how secure multi-party computation can be used among fed-
erated databases to process sensitive data. We will model the solution after
Sharemind and the Estonian X-Road as two practical implementations. First,
we need to deploy secure multi-party computation nodes within the X-Road in-
frastructure. These nodes must be coupled with X-Road security servers or they
can be standalone computation servers with high network bandwidth. The only
restriction for the Sharemind nodes is that they must be operated by inde-
pendent parties to avoid collusion. If the Sharemind computation nodes are
operated by the same institutions as X-Road security servers belonging to sep-
arate government institutions, then secure multi-party computation protocols
working in the honest-but-curious model are sufficient as government institu-
tions have no incentive to collude. Furthermore, collusion requires some level of
co-operation between the institutions and it is enough for a host to reject sugges-
tions for collusion to defeat the institutional attacker. In the case of an outside
attacker, the theft of a single Sharemind node does not leak the sensitive data.
Should an attack occur, the privacy-preserving resharing procedure will ensure
that stealing other parts of the secret-shared database will not compromise the
sensitive information.

Upon receiving a query that spans databases of multiple service providers,
the service consumer contacts the security servers of involved X-Road service
providers as usual. These security servers request the needed database from
their internal network, perform secret sharing on its contents and distribute
the shares among previously chosen Sharemind computation nodes. This data
sharing step may also be completed before the actual computation request.

The service consumer issuing the request then asks the involved Sharemind
computation nodes to perform the actual computation on the secret-shared data.
Once the secure multi-party computation is finished, the computation nodes send
output shares back to the X-Road service consumer who can then reconstruct
the final answer for the request. This workflow is shown on Figure 1.
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Fig. 1: A step-by-step workflow of using Sharemind together with X-Road.

4.2 Choosing computing nodes

For each computation request, the input data has to be shared and distributed
between the same computation nodes. Hence, choosing these nodes has to be
coordinated, and this turns out to be a non-trivial task. Consider a situation
where X-Road service providers have a preference list of computation nodes
to whom they are willing to entrust their secret-shared data. Such a list may
be based on a reputation system as described in [5]. Then, upon receiving the
computation request from a service consumer, the service providers involved in
that request must communicate to agree on a common set of trusted computation
nodes to use in the following secure computation. It may happen that such an
intersection with a sufficient size does not exist.

Alternatively, we can state that all the deployed Sharemind computation
nodes are equally trustworthy. Then the task becomes easier as the service con-
sumer issuing the request can itself dictate which nodes to use and just informs
the security servers of the involved service providers about its decision.

If a participating X-Road service provider requires more control over the
computation process, it can host a Sharemind computation node. This gives the
service provider an opportunity to halt the secure multi-party data processing if
it suspects that anything is wrong. When choosing the computation nodes, this
possible limitation has to be taken into account.



5 Validating the solution with potential end users

One of the goals of our work on SMC was to validate the real-world need for
secure multi-party computation solutions. For this, we performed and analysed
a number of interviews with stakeholders from a variety of fields to find out
whether data holders see a need for this technology.

As previous research has indicated, a serious obstacle in user-driven innova-
tion and involving users in the early stages of development work is the problem
of explaining such a complex technology to the end-user who is rarely an ex-
pert [25,39]. Therefore, we first devised a way to explain the emerging technology
to potential end users.

5.1 Using visualization to explain SMC to non-specialists

As our goal was to validate the need for privacy-preserving data sharing, we
discussed SMC with people from different areas and asked them if they had had
problems with sharing data in their field. We assumed that the interviewees did
not have a background in computer science so approaching them with the usual
SMC descriptions was out of the question.

We planned to visualise typical SMC applications to make the idea under-
standable. Fortunately, our role-based model translates easily into illustrative
diagrams. See Table 1 for examples of deployment models inspired by published
research on SMC applications.

We prepared for the interviews by designing 12 deployment models, some
of which were based on existing SMC applications and some were hypotheti-
cal. We designed large colourful and easily readable figures to help us describe
SMC to stakeholders during the interviews. On these figures we did not use the
ICR syntax, but rather real-world roles that the interviewee could relate to.
The description of each model included the security and trust guarantees that
SMC provides for the parties. We could not include the figures here due to size
constraints, but they can be found in [43].

5.2 Interview process and results

Our sample of 25 people was designed with the aim to get as much diversity as
possible. The recruitment was based on the fields which, according to previous
literature, were considered potentially interested in using SMC applications and
also the snowballing technique for furthering the sample. The interviewees were
always given a possibility to propose additional fields outside of their own where
this kind of technology could be beneficial. Not all of our interviewees could
be considered potential users, some could rather be described as stakeholders
with knowledge of potential social barriers. For instance, among others, we in-
terviewed a lawyer and an ethics specialist in order to understand the larger
societal implications. As we aimed for the maximum diversity, our interviewees
originated from six different countries, came from academia, from both public
and private sector organisations, from small and medium sized enterprises to



Basic deployment model Example applications

I C Rk SMC

The classic millionaires’ problem [53]
Parties: Two—Alice and Bob (both ICR)
Overview: Millionaires Alice and Bob use SMC to
determine who is richer.

Joint genome studies [31]
Parties: Any number of biobanks (all ICR)
Overview: The biobanks use SMC to create a joint
genome database and study a larger population.

I C k SMC  R m

Studies on linked databases (this paper)
Parties: Ministry of Education, Tax Board, Population
Register (all IC) and Statistics Bureau (R).
Overview: Databases from several government agencies
are linked to perform statistical analyses and tests.

I R k SMC  C m

Outsourcing computation to the cloud [22]
Parties: Cloud customer (IR) and cloud service
providers (all C).
Overview: The customer deploys SMC on one or more
cloud servers to process her/his data.

I C Rk SMC  IR m
Collaborative network anomaly detection [13]
Parties: Network administrators (all IR) a subset of
whom is running computing servers (all ICR).
Overview: A group of network administrators uses SMC
to find anomalies in their traffic.

I  k SMC   CRn

 C m

The sugar beet auction [11]
Parties: Sugar beet growers (all I), Danisco and DKS
(both CR) and the SIMAP project (C).
Overview: The association of sugar beet growers and
their main customer use SMC to agree on a price for
buying contracts.

I  k SMC   Rn

 C m

The Taulbee survey [21]
Parties: Universities in CRA (all I), universities with
computing servers (all IC) and the CRA (R).
Overview: The CRA uses SMC to compute a report of
faculty salaries among CRA members.

Financial reporting in a consortium [10]
Parties: Members of the ITL (all I), Cybernetica, Mi-
crolink and Zone Media (all IC) and the ITL board (R).
Overview: The ITL consortium uses SMC to compute
a financial health report of its members.

Table 1: SMC deployment models and example applications



large multinational corporations, from local government to state level. The peo-
ple we interviewed included representatives from the financial sector, agriculture,
retail, security, mobile technologies, statistics companies and IT in general.

We sent the materials to the interviewees beforehand to let them prepare for
the interview. We also used the figures during the interview process to trigger
conversation and to assist in understanding the principles of the technology.
During the interviews, we asked whether our interviewees recognised situations
in their field of expertise where they need to share protected data with others.

Our interviewees outlined a number of different potential uses, some more
realistic and closer to actual implementation, others brought examples of ideas
where the concept of privacy-preserving computing might be useful or bene-
ficial. While the interviewees struggled with identifying concrete applications,
their conceptualisation of the technological framework identified several fields of
inquiry. Of all the possible cases brought out in the deployment models, the cases
concerning the use of databases from different data sources for performing statis-
tical analysis were most discussed. It seems that the benefits of merging different
databases for statistical analysis were easily comprehensible for the interviewees.
On one hand, the interviewees had many concerns, such as SMC conflicting with
the traditional ways of doing things and problems related to the existing legal and
regulatory framework. At times, the interviewees could not distinguish between
anonymisation and SMC, or understand the operational challenges of using this
kind of solution in practice. On the other hand, the interviewees also saw many
potential benefits of the possible applications of SMC.

Several interviewees brought out examples how SMC could be advantageous
in their professional field, and pointed out that at the moment, the state collects
information that is necessary for its purposes, but the public use and benefit
of the same data suffers. With secret sharing, information given for general
statistical purposes could support a wider range of goals. A researcher from the
biomedicine field has an example of this kind of thinking:

“For example, if I as a researcher get the data about the number of abortions
but I also want to know how much all kind of associated complications cost, I
need to get data from the national Health Insurance Fund. But I only get data
from the Health Insurance Fund if I have the data from the abortion registry
with names and national identification numbers and then I ask the medical cost
records of those people. What I think is actually a really big security risk. If it
would be possible to link them differently, so I would receive impersonalised data,
that would be really good.” (Interview 11, Academic sector, Biomedicine)

In addition to identifying data use possibilities directly relevant to their field
of work, interviewees also pointed out how SMC could be used on a more general
level. The idea of using different state databases for statistical analysis was seen
as highly beneficial. The potential benefit was seen not only for the members of
public getting data, but also with the potential of more efficient state systems
or use of public funding. For instance, an official working in a state institution
that coordinates the work of the national information system stated that making
more data and information available for public use is a relevant problem.



“After the presentation I thought that the state data should be made available
for people this way: for researches, statisticians, universities. Publishing these
data has always been a topic in the state, all the data have to be public, we
should put them on the cloud or somewhere else. But do it in a secure way,
I haven’t thought about it before, but it seemed to me that there were no good
solutions.” (Interview 8, Public sector, IT security)

People are concerned about the privacy and personal integrity of the indi-
viduals whose data could be shared in such way. The legal barriers protecting
individuals have a limited understanding or awareness of SMC capabilities and
use of such application is hence seen possible only in distant future. At the same
time, several interviewees see that state information systems using such appli-
cations could set the standard and help to develop trust. Alternatively, an EU
regulation can help to overcome some implementation barriers as then different
state systems will have to implement these data use regulations.

Interestingly, interviewees whose work involves data processing remained
somewhat critical, mostly because of the practical issues. Although an inter-
viewee working in biomedicine saw the benefits of using different databases in
scientific research, he also foresaw possible issues that could hinder their work.
The main concern could be expressed as the necessity to “see” the data.

“But in the context of genetics, the researcher who does the calculations, he
has to see the data. He has to understand the data, because there the future work
will be combined. You never take just means, but when you are already calculating
genotypes and their frequencies, then you have to take into account some other
factors all the time. Adjust them according to age, height, weight. And you need
to see these data. Without understanding the data, you cannot analyse them.”
(Interview 11, Academic sector, Biomedicine)

This obviously raises the question as to what is actually meant by “seeing”
and “understanding” the data. The visibility of the data seems to be crucial,
but it does not necessarily mean that no alternative solutions or procedures are
possible. The interviewees remarked that it would be possible to do scientific
analysis without “seeing” the data but that it would make their work more com-
plicated and therefore would be met with hesitation. Hence, it may be possible
that the barrier here is the practiced and accepted way of doing things. Even now
statistics offices often respond to data requests by disclosing sample databases
that resemble the data so that researchers can script their queries.

However, the interviews also revealed that the visibility of data is necessary
to guarantee their quality. This aspect was for instance stressed by an expert
working in the Statistics Office. Similarly, the interviewee doing scientific re-
search thought it possible that the quality of their work and data suffers if they
do not have the full overview.

”We cannot combine different statistical works if we don’t have the identi-
fiers. To do statistics, to have good quality information, we need to have it /full
overview of data/.” (Interview 13, Public sector, Statistics)

This quote illustrates nicely the way new technologies are understood first
and foremost in the context of existing practices and boundaries. Similarly, peo-



ple considering the importance of statistical analysis with SMC can imagine the
activities they do in their current framework. Hence, statistical analysis comes
down to finding means, comparing samples in valid ways, finding correlations
and relationships within the data. And all this preferably with a user environ-
ment that is recognisable. While, for instance, the Statistics Office employees
can write their own scripts for queries, for wider usability, future SMC systems
will need to be similar to existing tools.

6 An example application: linking tax and education data

6.1 Estimating economic trends in education

Governments are often interested in knowing what the return of investment of
various kinds of education is. The underlying question is, what kind of specialists
are needed in order to ensure the future economic success of the country and what
kind of specialist may need re-education. One possible way for estimating this
is to look at the trends in the earnings of different individuals. In Estonia, this
information is distributed among several government institutions—the Tax and
Customs Board has information about incomes and the Education Information
System has all the education records for recent years. In a common scenario, the
state will contact its Statistics Bureau and ask it to conduct the analysis. The
latter has to contact the Tax and Customs Board and the Education Information
System and ask them for the relevant data. The compiled database has a very
high risk factor due to containing both income and educational information.

The authors of this paper are participating in a project called “Privacy-
preserving statistical studies on linked databases7” (PRIST) started in 2013.
In this project, we are answering the above question without compiling a full
database of people and their incomes. Instead, we are conducting the study using
secure multi-party computation and, more specifically, Sharemind.

6.2 Deploying secure multi-party computation for the study

As SMC technology is not yet integrated into X-Road, there are several extra
steps that must be taken. First, we have to find partners who are willing to
act as computing parties and who have the necessary technical knowledge. In
PRIST, the role of a computation node is carried out by the IT department
of the Ministry of Internal Affairs (the Tax and Customs Board is part of it),
Estonian Information System’s Authority and Cybernetica AS. The latter also
provides the secure multi-party computation technology. All of the partners have
to audit the SMC platform before deploying it in their premises and have to
engage in a pairwise public key exchange to establish secure channels during the
computation.

7 Funded by the European Regional Development Fund from the sub-measure “Sup-
porting the development of the R&D of information and communication technology”
through the Archimedes Foundation.



The use of SMC technology requires that the secret sharing of input data is
done at the data owner’s premises. Therefore, we will provide a special-purpose
data import program to the Tax and Customs Board and the Ministry of Educa-
tion and Science. This importer takes a database (e.g. a CSV file), applies secret
sharing to each of its values and distributes the shares among the computing
parties over a secure channel. Both institutions create this intermediate CSV
database with a query to their internal databases.

A team of statisticians fulfils the role of the result party. Their job is to initi-
ate the secure computation process, receive the statistical results and interpret
them. They are also responsible for compiling the study plan. The plan is imple-
mented on Sharemind using the SecreC statistical library (see Section 7). The
resulting application is distributed among the computation nodes and each one
of them audits the code separately. Each computation node tracks what kind of
operations are requested on the data and which results are published. Only if
they agree that the program does what is expected, they compile the code and
deploy it into their Sharemind installation so it can be executed.

We also provided a description of the study process for analysis to the Es-
tonian Data Protection Inspectorate. Their response states that if the study is
conducted according to the description, then no permit for the processing of
personally identifiable information needs to be requested, as no such processing
takes place8. This is an important result, as it significantly simplifies such studies
in the future without jeopardising the privacy of citizens.

6.3 Conducting the study

After the computation nodes have been set up, the analysis program code has
been deployed and data have been imported, the actual secure multi-party com-
putation process can be initiated by the statistical analysis team. In this project,
the analysis starts by securely joining the database containing income informa-
tion with the database containing education information. In Sharemind, the
secure database join operation is similar to the one used in X-Road today (see
Section 2.3) using AES block cipher to encrypt the key values and performing
the actual join operation on ciphertexts [36]. However, in Sharemind the AES
encryption works on secret shared plaintexts and with a secret shared key that
no single party knows. This ensures that the sensitive inputs are not published
to any person or computer during linking.

As the actual join operation also works on published (reconstructed) cipher-
texts, this method leaks for each encrypted key the number of matching keys
in the other database. However, the key values and their positions are not re-
vealed. More formally, if we depict the key columns of the joinable databases as
bipartite graph with an edge marking matching keys, the join operation leaks
its edge structure with the precision of the graph isomorphism. This information
leakage is usually acceptable. Nevertheless, a slightly less efficient version of the

8 Official response in Estonian available at http://adr.rik.ee/aki/dokument/

2663016.

http://adr.rik.ee/aki/dokument/2663016
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oblivious database join operation that does not leak this information is described
in [37].

After the join operation is done, the resulting table is ready for statistical
analysis. In this study, we expect to perform a range of descriptive statistical
analyses, statistical tests and regressions. The statistical analysis will be able
to request previously agreed-to analyses and it will receive only the results of
the analyses. The statistical tool receives one share of each result value from
the Sharemind computation nodes and reconstructs the results. The statisti-
cal analysis library is prepared in a way that prevents query results that are
aggregations of a single person’s data.

6.4 The benefits of integrating secure multi-party computation into
X-Road

The integration of SMC into X-Road will optimise the study process as fol-
lows. First, we avoid setting up the computation nodes separately for every such
project. This does not include only installing the SMC software but also the
key exchange process. The public keys of Sharemind computation nodes can
be exchanged by using signed X-Road messages.

Second, there will be no need for a separate importer application. The X-Road
security server can directly access the internal database, apply secret sharing
to the relevant tables according to a given task description and distribute the
shares among the computation nodes. It is important to notice here that this
also eliminates the need to create a database view as a data file. Getting rid of
this standalone data file also eliminates the risk of leaking this file. Based on
this, we are planning to combine Sharemind with the next generation of the
X-Road core developed in the SDSB project9.

7 Implementing statistical studies with secure
multi-party computation

7.1 Data import and filtering

When collecting data from several input parties, a common data model has to
be agreed upon and key values for linking data from different parties have to be
identified. For efficiency, it is often useful to preprocess and clean data at the
input parties before sending it to computing parties. This will not compromise
data privacy as the data will be processed by the input party itself. We now look
at how to filter and clean data once it has been sent to the computing parties.

In the following, let [[x]] denote a private value x, let [[a]] denote a private value
vector a, and let binary operations between vectors be point-wise operations.

9 Secure Distributed Service Bus—http://www.eliko.ee/secure-service-bus
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Encoding missing values. Sometimes, single values are missing from the im-
ported dataset. There are two options for dealing with this situation: we can use
a special value in the data domain for missing values; or add an extra availabil-
ity mask for each attribute to store this information. Let the availability mask
[[available(a)]] of vector [[a]] contain 0 if the corresponding value in the attribute
[[a]] is missing and 1 otherwise. The overall count of records in storage is public.
If missing elements exist, that value does not reflect the number of available
elements and it is not possible to know which elements are available by looking
at the shares. The number of available elements can be computed as a sum of
values in the availability mask.

Evaluating filters and isolating filtered data. To filter data based on a
condition, we securely compare each element in the the private attribute vector
[[a]] to the filter value and obtain a private vector of comparison results. This
mask vector [[m]] contains 1 if the condition holds and 0 otherwise. If there are
several conditions in a filter, the resulting mask vectors are multiplied to combine
the filters. Such filters do not leak which records correspond to the conditions.

Most of our algorithms can use a provided filter automatically during cal-
culations. However, in some cases, it is necessary to “cut” the vector—keep a
subset vector containing only the filtered data. To cut the vector, we first obliv-
iously shuffle the value and mask vectors, retaining the correspondence of the
elements. Next, the mask vector is declassified and values, for which the mask
vector shows a zero, are removed from the value vector. The obtained cut vector
is then returned to the user.

This process leaks the number of values that correspond to the filters that
the mask vector represents. This makes cutting trivially safe to use, when the
number of records in the filter would be published anyway. Oblivious shuffling
ensures that no other information about the private input vector and mask vector
is leaked [38]. Therefore, algorithms using oblivious cut provide source privacy.

7.2 Linking multiple tables

After collecting input values and compiling filters for the outliers, we can link
the input databases to form the final analysis database. There are various ways
for linking databases in a privacy-preserving manner. As a minimum, we desire
linking algorithms that do not publish private input values and only disclose the
sizes of the input and output databases, as described in Section 6.3.

7.3 Data quality assurance and visibility

Quantiles and outlier detection. Datasets often contain errors or extreme
values that should be excluded from the analysis. Although there are many
elaborate outlier detection algorithms like [12], outliers are often detected using
quantiles. As no one method for computing quantiles has been widely agreed
upon in the statistics community, we use algorithm Q7 from [26], because it is



the default choice in our reference statistical analysis package GNU R. Let p
be the percentile we want to find and let [[a]] be a vector of values sorted in
ascending order. Then the quantile is computed using the following function:

Q7(p, [[a]]) = (1− γ) · [[a]][j] + γ · [[a]][j + 1] ,

where j = b(n−1)pc+ 1, n is the size of vector [[a]], and γ = np−b(n−1)pc−p.
Once we have the index of the quantile value, we can use oblivious versions of
vector lookup or sorting to learn the quantile value from the input vector.

We do not need to publish the quantile to use it for outlier filtering. Let q0
and q1 be the 5% and 95% quantiles of an attribute [[a]]. It is common to mark
all values smaller than q0 and larger than q1 as outliers. The corresponding
mask vector is computed by comparing all elements of [[a]] to Q7(0.05, [[a]]) and
Q7(0.95, [[a]]), and then multiplying the resulting index vectors. This way, data
can be filtered to exclude the outlier data from further analysis. It is possible to
combine the mask vector with the availability mask [[available(a)]] and cache it as
an updated availability mask to reduce the filtering load. Later, this mask can
be used with the data attributes as they are passed to the statistical functions.

Descriptive statistics. As discussed in Section 5.2, one of the data analysts’
main concerns was that they will lose the ability to see individual values. We
claim that data quality can be ensured without compromising the privacy of
individual data owners by providing access to aggregate values and enabling
outlier filtering. While the aggregate value of an attribute leaks information
about the inputs, the leakage is small and determined by the aggregate function.

A common aggregate is the five-number summary—a combination of the
minimum, lower quartile, median, upper quartile and maximum of an attribute.
We can compute the five-number summary using the quantile formula and use
the published result to draw box-plots that give a visual overview of the data
and effectively draw attention to outliers.

It is also important to analyse the distribution of a data attribute. For cat-
egorical attributes, this can be done by computing the frequency of the occur-
rences of different values. For numerical attributes, we must split the range into
bins specified by breaks and compute the corresponding frequencies. The result-
ing frequency table can be visualised as a histogram. This publishes the number
of bins and the number of values in each bin.

7.4 Statistical testing

The principles of statistical testing. Many statistical analysis tasks con-
clude with the comparison of different populations. For instance, we might want
to know whether the average income of graduates of a particular university is
significantly higher than that of other universities. In such cases, we first extract
two groups—the case and control populations. In our example, the case popu-
lation corresponds to graduates of the particular university in question and the
control group is formed of persons from other universities. Note that a simple



comparison of corresponding means is sufficient as the variability of income in
the subpopulations might be much higher than the difference between means.

Statistical tests are specific algorithms, which formally quantify the signif-
icance of the difference between means. These test algorithms return the test
statistic value that has to be combined with the sizes of the compared popula-
tions to determine the significance of the difference. While we could also imple-
ment a privacy-preserving lookup to determine this significand and prevent the
publication of the statistic value, statisticians are used to including the statistic
values and group sizes in their reports.

The construction of case and control populations. We first need to pri-
vately form case and control groups before starting the tests. One option is to
select the subjects into one group and assume all the rest are in group two, e.g.
students who go to city schools and everyone else. Alternatively, we can choose
subjects into both groups, e.g. men who are older than 35 and went to a city
school and men who are older than 35 who did not go to a city school. These
selection categories yield either one or two mask vectors. In the former case, we
compute the second mask vector by flipping all the bits in the existing mask
vector. Hence, we can always consider the version where case and control groups
are determined by two mask vectors.

In the following, let [[a]] be the value vector we are testing and let [[m1]] and
[[m2]] be mask vectors for case and control groups, respectively. Then [[ni]] =
sum([[mi]]) is the count of subjects in the corresponding population.

The tests need to compute the mean, standard deviation or variance of a
a population. We do this by evaluating the standard formulae using SMC. For
improved precision, these metrics should be computed using real numbers.

Student’s t-tests. The two-sample Student’s t-test is the simplest statistical
tests that allows us to determine whether the difference of group means is signif-
icant or not compared to variability in groups. There are two common flavours
of this test [32] depending on whether the variability of the populations is equal.

In some cases, there is a direct one-to-one dependence between case and
control group elements. For example, the data consists of measurements from
the same subject (e.g. income before and after graduation), or from two differ-
ent subjects that have been heuristically paired together (e.g. a parent and a
child). In that case, a paired t-test [32] is more appropriate to detect whether a
significant change has taken place.

The algorithm for computing both t-tests is a straightforward evaluation of
the respective formulae using SMC with privacy-preserving real number opera-
tions. Both algorithms publish the statistic value and the population sizes.

Wilcoxon rank sum test and signed rank test. T-tests are formally ap-
plicable only if the distribution of attribute values in case and control groups
follows the normal distribution. If this assumption does not hold, it is appro-
priate to use non-parametric Wilcoxon tests. The Wilcoxon rank sum test [24]



works on the assumption that the distribution of data in one group significantly
differs from that in the other.

A privacy-preserving version of the rank sum test follows the standard al-
gorithm, but we need to use several tricks to achieve output privacy. First, we
need a more complex version of the cutting procedure to filter the database, the
cases and controls using the same filter. Second, to rank the values, we sort the
filtered values together with their associated masks by the value column.

Similarly to Student’s paired t-test, the Wilcoxon signed-rank test [49] is a
paired difference test. Often, Pratt’s correction [24] is used for when the values
are equal and their difference is 0. In a privacy-preserving version of this algo-
rithm, we again need to cut several columns at once. We also need to obliviously
separate absolute values and signs from the signed inputs values and later sort
these two vectors by the sign vector.

The computation of both tests is simplified by the fact that most operations
are done on signed integers and secure real number operations are not required
before computing the final z-score statistic. Both algorithms only publish the
statistic value and the population sizes.

The χ2-tests for consistency. If the attribute values are discrete such as
income categories then it is impossible to apply t-tests or their non-parametric
counterparts and we have to analyse frequencies of certain values in the dataset.
The corresponding statistical test is known as χ2-test.

The privacy-preserving version of the χ2-test is implemented simply by eval-
uating the algorithm using SMC operations. The algorithm can be optimised,
if the number of classes is small, e.g. two. The algorithm publishes only the
statistic value and the population sizes.

8 Practical implementation and benchmarks

We have implemented the described privacy-preserving statistics algorithms on
the Sharemind SMC system. For an overview of the implementation, see Ap-
pendix A. Figure 2 shows our benchmarking scenario. Artificial data was used in
the benchmarks, as the PRIST study is still in progress. We conducted the ex-
periments on a Sharemind installation running on three computers with 3 GHz
6-core Intel CPUs with 8 GB RAM per core. While monitoring the experiments,
we did not see memory usage above 500 MB per machine. The computers were
connected using gigabit ethernet network interfaces.

Table 2 contains the operations, input sizes and running times for our ex-
perimental scenario. The output of the operations was checked against reference
results from the R statistical toolkit and was found to be correct. We see that
most operations in our experimental study take under a minute to complete.
The most notable exceptions is the group median computation, as median com-
putation has to be applied to the payments of 2000 subjects. This time can be
reduced by vectorising the median invocations or conduct this aggregation before
the data are converted into secret-shared form.
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Fig. 2: The data model and table transformations in our experiment

To check scalability, we performed some tests on ten times larger data vectors.
We found that increasing input data size 10 times increases running time about
5 times. Only histogram computation is actually slower, because it uses a more
detailed frequency table for larger databases, actually increasing the work done.

The improved efficiency per input data element is explained by the use
of vectorised operations of the Sharemind framework. The operations in the
Sharemind framework are more efficient when many are performed in parallel
using the SIMD (single instruction, multiple data) model.

9 Conclusions

In this paper, we study the problem of performing privacy-preserving statistical
studies on data collected from sources connected to a single federated database
infrastructure. Our proposed solution is to use secure multi-party computation as
a privacy-enhancing technology. The paper provides a description of the solution
with an explanation of the privacy-guarantees and implementation guidelines.
We have also validated the need for this technology with the end users.

We present practical designs for statistical analysis algorithms and their im-
plementations on the Sharemind secure multi-party computation system. Ex-
perimental results show that our approach is sufficiently fast for practical use in
non-real-time applications such as a statistical study. The technical strengths of
our solution are generality, precision and practicality. First, we show that secure
multi-party computation is flexible enough for implementing complex applica-
tions. Second, our use of secure floating point operations makes our implemen-
tation more precise. Third, we use the same algorithms as popular statistical
toolkits like GNU R without simplifying the underlying mathematics.

We introduce a project that will validate the solution in practice—the link-
ing of tax and education records in Estonia to study what kinds of specialists
are needed in the ICT sector. A statement from the Estonian Data Protection
Inspectorate indicates that our solution does not process personally identifiable
information. This suggests that secure multi-party computation can provide a
completely new level of privacy protection in the analysis of federated databases.



Step 1: Data import

Operation Record count Time

Data import from offsite computer
2 000 3 s

53 977 24 s

Step 2: Descriptive statistics

Operation Record count Time

5-number summary (publish filter size)
2000 21 s

20000 97 s

5-number summary (hide filter size)
2000 27 s

20000 107 s

Frequency table
2000 16 s

20000 222 s

Step 3: Grouping and linking

Operation Record count Time

Median of incomes by subject 53 977 3 h 46 min

Linking two tables by a key column 2000×5 and 2000×3 28 s

Linking two tables by a key column 2000×7 and 2000×2 29 s

Step 4: Statistical tests

Operation Record count Time

Student’s t-test, equal variance
2000 167 s

20000 765 s

Student’s t-test, different variance 2000 157 s

paired t-test, known mean 2000 and 2000 98 s

paired t-test, unknown mean 2000 and 2000 102 s

χ2-test, 2 classes
2000 9 s

20000 10 s

χ2-test, n-class version, 2 classes 2000 20 s

χ2-test, n-class version, 5 classes 2000 23 s

Wilcoxon rank sum 2000 34 s

Wilcoxon signed-rank 2000 and 2000 38 s

Table 2: Running times of privacy-preserving statistics (in seconds)
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A Overview of implemented operations

Figure 3 showcases our privacy-preserving statistical functionality and its de-
pendencies. The implementation is built on the arithmetical, comparison and
oblivious vector operations provided by Sharemind. However, our algorithms
can be ported to any SMC framework that provides the same set of features.
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Fig. 3: Overview of operations implemented for our experiments
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