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Abstract

As the world’s population is increasingly mobile, remote voting be-
comes more and more a necessity. Vote casting by paper mail is slow,
expensive and error-prone. Voting over Internet, on the other hand, is
a subject to a wide range of cyber attacks. One of the weakest points
in current Internet voting (i-voting) schemes is the end user environment
that is hard to control against both vote integrity and privacy attacks.
The essence of the problem is that conventional end user devices (PC-s,
mobile phones, etc.) are in some sense too powerful, being able to run
malware without the voter having efficient means to detect it.

In the current paper, we propose a solution to this problem by in-
troducing a single-purpose user-controlled voting device built on top of
a microcontroller platform. We take the Estonian i-voting protocol as
the example use case and build an independent client for it that runs
on the ESP32 platform. As a by-product, we will also release the first
open-source voting client for the Estonian i-voting protocol.

1 Introduction

The primary goal of elections is to adequately reflect political preferences of
the electorate. Reaching this goal relies on the election organisers’ ability to
guarantee integrity of the ballot boxes and transparency of the counting process.

In case of electronic (and especially remote electronic) voting, the nature of
such guarantees differs substantially from the paper voting. To start with, there
is not even necessarily a physical ballot box that everyone can look at. To com-
pensate for that, a number of verification mechanisms have been proposed [3].
These can be used to verify different claims about the integrity of the vote and
tally [34].
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Extensive verification can solve the issues regarding integrity and trans-
parency of the election results, but on the other hand, too strong of an evidence
(a receipt) that the voter’s preference was included in the tally can be used to
bribe or intimidate the voter. Such coercion issues, in turn, affect voting free-
dom. Thus, designing a good (remote) voting system requires establishing an
acceptable balance between the transparency and vote privacy requirements.

A special class of electronic voting privacy problems stems from malware
that can potentially reside on voter’s device. On one hand, individual verifia-
bility mechanisms can be used to catch the malware attempts of vote manipu-
lation. At the same time, privacy violations (e.g. sending the voter preference
to attacker’s server) do not have visible side effects for the voter and can hence
remain unnoticed. Thus, the main measure against automated privacy attacks
is to restrict the attack surface potentially used by the attacker to successfully
deploy malware on voter’s device.

In this paper we are going to concentrate on the Estonian i-voting system.
Estonia is one of the few countries that provides the option to participate in the
national elections by casting the vote over the Internet.

In Estonia, vote casting over Internet has been an option since 2005, and
during the 2019 Parliamentary elections, about 44% of all the voters used this
medium to cast their vote1. Since 2013, the voters have an option of verifying
that their vote reached the digital ballot box (vote collection server) as in-
tended [20]. In 2017, a new framework code-named IVXV was deployed making
the server-side components considerably more verifiable by external independent
auditors [19].

Vast majority of the Estonian i-voting system components were open-sourced
in 2013.2 The only notable exception is the voting client that is used to prepare
and cast the electronic vote. The main reason for such a choice is the consider-
ation that the voter’s computer is potentially a hostile environment that can be
controlled by malware. To make the potential attacker’s work at least a bit more
complicated, the source code of the client application has never been released.
A determined attacker can still manipulate the vote as has been demonstrated
a few times (e.g. using a phoney overlay application [18] or a debugger-based
approach3). However, the fact that the voting client remains closed-source in-
dicates that the election organisers still believe this measure helps to reduce the
attack surface. Also, due to the option of individual vote verification, the voter
does not need to rely on the voting client solely as a black box.

Still, civil activists, researchers and OSCE/ODIHR missions have criticised
such a state of affairs from the viewpoint of transparency [39, 1]. Essentially, we
face yet another manifestation of the security-transparency trade-off. Letting a
fully open client run on top a potentially untrusted computer would enable a lot
of attacks, but at the same time keeping the source closed raises hard-to-answer
questions. In our view, this discrepancy occurs due to the general-purpose

1https://www.valimised.ee/en/archive/statistics-about-internet-voting-estonia
2https://github.com/vvk-ehk/ivxv
3Märt Põder How I hacked e-elections a little bit, in Estonian: https://gafgaf.infoaed.

ee/posts/minu-evalimised/
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computers being in some sense too powerful so that malware can operate on
them too easily.

In the current paper we propose solving this contradiction by developing a
proof-of-concept client that would run on a much less capable computing device.
The Estonian voting system was taken as a basis for the proof-of-concept as the
back-end source code is public along with the documentation. However, the
same idea could be applied for other voting systems where the client device has
to be trusted.

By using special purpose hardware it is possible to lower the probability of
malware infections as the device is not used for everyday activities and does not
run other applications. Our contribution includes the first publicly available
voting client for the Estonian i-voting system along with its source code and
usage instructions.

On the other hand, our work can be seen as a new development in the area
of voting machines. As hand counting paper ballots is a tedious and inherently
error-prone activity [21], election organisers have searched for better alterna-
tives. A tempting idea is to get rid of the paper ballots and let a machine
record the votes directly. However, the history of Direct Recording Electronic
(DRE) equipment is rich in poor design choices and the resulting vulnerabili-
ties [14, 7, 16, 4, 6, 5].

One of the core problems with the DRE machinery is that the voter has
little or no control over it. She can not verify that the software running on the
machine is genuine, or that the software behaves according to the specification.
One way around this problem is having an immutable trail (e.g. a paper receipt
with a verification code) that the voter can later check against a bulletin board,
as implemented e.g. in Wombat [8], STAR-Vote [9] or vVote [12]. Another
approach is to create special hardware for supervised voting systems that is
by design secure against known classes of hardware vulnerabilities that could
be exploited through software.4 Wagner et al. have researched the options of
building DRE machines in an independently verifiable manner [36, 40].

An alternative would be giving the voter greater control over the vote casting
device. In 2009, Öksüzoglu and Wallach presented a design based on Xilinx
Spartan-3E 500 FPGA platform [32]. Back then, the device was priced around
$150, and in order to replicate the build, rather a good knowledge of FPGA
frameworks was required. Also, the authors did not make the source code
available.

In 2014, Lipmaa described an improvement to Estonian i-voting scheme
based on more advanced ID-cards with a small display and integrated PIN-
pad [26]. Unfortunately, such ID-cards have not become available in Estonia.

There have been also other proposals to use hardware devices in various
functions in the voting process. For example, Islam et al. used Raspberry Pi
with a camera to visually analyse the voter’s ID-card [22], whereas Knutti et al.
built a classroom quiz and poll system based on TI CC2530 RF chip [24].

In 2015, Grewal et al. proposed a system called Du-Vote [17] relying on

4https://freeandfair.us/ssith-secure-hardware-demo/
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voting-specific cryptographic hardware tokens being distributed to all the voters.
The authors claimed strong security guarantees, later disputed by Kremer and
Rønne [25]. However, the biggest practical problem of Du-Vote is production
and distribution of such single-purpose devices. For example it will be rather
difficult to ensure that all the tokens will be delivered to the eligible voters only.
Comparison with similar devices used for online banking is only partial as voting
is rather a rare event. Hence, the cost of production and distribution of such
tokens per usage is much higher for voting than it is for banking.

In 2020, we have more options for selecting hardware. For the current pa-
per we took a low-cost general-purpose IoT microcontroller platform ESP32
developed by Espressif5 and implemented a fully functional voting client for
the Estonian i-voting system on top of it. The voter is free to choose her own
favourite ESP32 board from a number of suppliers available on the market, and
compile the application for it with minimal modifications. When developing our
code, we also had ease of portability in mind, hence with some more effort it
should be possible to run our voting client on other platforms, too.

We acknowledge that this is not an option for a regular voter. Assembling
such a device requires technical skills, so probably not too many people will be
using it. However, we expect those people to play an important role in building
the public confidence in Estonian Internet voting as it will finally be possible to
cast an i-vote using an open source and auditable client software.

The paper is organised as follows. Section 2 reviews the Estonian i-voting
scheme and the threats related to the current voting platforms. Section 3
presents our hardware of choice and Section 4 covers implementation details.
Finally, Section 5 discusses the security properties of our solution, and Section 6
draws some conclusions.

2 Estonian i-voting scheme

This section gives an overview of the updated version of the Estonian i-voting
protocol, which is in use since 2017. The protocol steps are shown in Figure 1,
which depicts both the voting and individual verification protocol used for Es-
tonian i-voting [20, 19].

The process starts with the voter authenticating herself to the server us-
ing the national ID-card or mobile-ID. The server checks voter eligibility, finds
the corresponding precinct and replies with the list of candidates L of that
precinct. The PC based voting software displays the names of the candidates.
The voter makes her choice cv, voting software encrypts it with the election’s
public ElGamal key (using encryption randomness r, which the software gen-
erated locally). Next, the voter confirms the choice by signing the encrypted
ballot with the Estonian ID-card or mobile-ID. The encrypted and signed ballot
Sigv(Encspub

(cv, r)) is sent to the vote storage server.
In order to facilitate individual verification, the server replies with a vote

reference vr which the voter can transfer to her smartphone together with the

5https://www.espressif.com/en/products/hardware/socs
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Figure 1: Estonian i-voting and verification protocol [20].

encryption randomness r by using a QR code (displayed in Figure 2). The voter
has a limited time window (30 or 60 minutes depending on elections) to use a
smartphone based vote verification application before the vote reference expires.
The limitation is added to prevent the verification application from being used
for coercion.

After scanning the QR code the verification application on the smartphone
queries the vote storage server for the vote cryptogram, verifies its signature
and time-stamp, and decodes the vote using r (which is straightforward due to
the properties of ElGamal encryption)6. The value of the vote found from the
cryptogram is finally displayed to the voter on the mobile device screen so that
the voter can take a decision whether this value matches her original intent.

I-voting is only available during the advance voting period. The voter can
change her i-vote as many times as she wants in case she feels that her previous
vote(s) was (were) given under coercion. Only the last i-vote is taken into
account in the tally. However, in case the voter casts a paper vote the i-votes
are cancelled.7

2.1 Threats related to the voting device

If the voting protocol is not specifically designed to protect privacy of the vote
during the casting process, it is very hard for the voting client software to hide
the vote from a malicious voting device. Malware can capture either a screen-
shot or a video8 and thereby record the choice of the voter. Such information
gathering abuses core system functionalities and does not require elevated per-
missions.

6https://github.com/vvk-ehk/ivxv/blob/master/Documentation/en/protocols/05-

ehaal.rst\#encrypted-ballot
7Up to 2019, changing one’s i-vote by voting on paper was only an option in the advance

voting period. Starting from 2021, the i-vote can also be changed by paper vote on the election
day. https://www.riigikogu.ee/en/sitting-reviews/riigikogu-passed-14-acts/

8https://attack.mitre.org/techniques/T1125/
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Protecting vote privacy from a malicious voting device requires the identities
of the candidates to be hidden from the voting client. This is very difficult to
implement with most of the world’s voting schemes, including the Estonian
voting protocol (unless one is willing to use a hard-to-deploy schemes based on
e.g. visual cryptography [28, 35]). As an alternative, code voting could be used,
which would replace candidate names with unique codes that are generated for
each voter [11]. However, the codes would have to be pre-distributed to the
voters via a reliable private channel, which is a non-trivial task in the remote
voting setting where the physical location of the voter should not affect the
voting process.

There are multiple approaches that allow to protect integrity of the vote.
One common solution is to allow the voters to check that the vote correctly
reached the vote collection server. Another option is to allow the voter to check
that the vote was counted in the tally. The Estonian voting protocol uses the
former and allows the voters to verify that the cast vote was not modified and
reached the voting system. In the end of the voting process, a QR code is
displayed in the voting application as shown in Figure 2.

Figure 2: The view of the official voting application after a vote has been cast.10

The verification information (vr, r) that is contained in the QR code can be

10https://www.valimised.ee/en/internet-voting/checking-i-vote The text says that
it is possible to change the vote by re-voting, but only the last vote will be taken into account.
It also says that one can use the verification application ”EH kontrollrakendus” on an Android
device or on an iPhone to check if the vote correctly reached the voting server.
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read and queried by an open source verification application11, which is available
for both Android and iOS devices.

However, verification offers a reactive measure that only helps to detect
some classes of attacks. The Estonian vote verification protocol allows the
voter to verify the vote up to three times during a limited time window, but
in case a re-vote is cast, the verification application still successfully verifies
the receipts of the previous votes which are already overruled. At first, this
behaviour may seem to be counter-intuitive, but the reasoning becomes apparent
when coercion resistance is considered. The re-voting functionality is designed
to counter coercion and thus the vote verification functionality can not be used
by the coercer to check if the coerced vote was overwritten. As a negative side-
effect, the verification application is not always able to detect if the vote was
overwritten by malware.

The verification system only allows to detect malware that either modifies
the vote before it is being submitted or prevents voter’s ballot from reaching
the voting system. This is still a significant functionality as an attacker is not
only motivated to modify the votes, but also to avoid being detected. From the
attacker’s perspective, it is safer to either locally drop or modify the vote in-
stead of casting a re-vote as server side re-voting logs can be analysed to detect
anomalies. Therefore, the attacker has motivation to evade verification. How-
ever, even if the voter verified the vote and got an unexpected result, additional
user interaction is required to report an error. More specifically, in case an
anomaly is detected during vote verification, the voter is instructed to contact
the election organizers by either sending them an email or calling them to report
the error.

The rationale behind the architecture of the Estonian vote verification sys-
tem is that if a large enough random subset of the voters verifies their votes, a
large scale attack can be detected and the i-voting either postponed or cancelled.
By following that logic, the attacker should have less motivation to initiate the
attack.

Throughout the years, since introduction in 2013, vote verification has been
used on average by about 4% of Estonian i-voters. However, it has also been
shown by Solvak that socio-demographic and behavioural parameters of voters
can be used to profile the potential verifiers, at least with some better than
random guessing probability [37]. A good profile of the potential verifiers can
help the attacker to select the potential victims of vote manipulation attack,
lowering the risk of being detected.

If profiling is still not precise enough, an attacker could use simpler means to
evade verification. One simple approach for the attacker would be to interfere
in the voting process and crash the voting application just after the first vote
is cast to prevent verification, hoping that the voter does not bother to re-
vote. Another option for the attacker would be to measure the time the voting
application is running after the vote has been cast. In case the voting application
is closed right away, it may be likely that the voter did not scan the QR code

11https://github.com/vvk-ehk
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and the attacker could use that information to prevent the vote from being sent
to the voting system. More specifically, the attacker may interfere with the
process by delaying the vote from being sent to the voting system until it can
be guessed whether the voter is going to verify the vote.

An attacker could also use malware to access the electronic identity of the
voter in order to maliciously cast a vote. Voters are not given an option to check
if their vote was included in the tally, nor are they notified of a re-vote being
cast as these functionalities would open up opportunities for e.g. vote selling.
Therefore, the voter does not have any means to check whether the malicious
voting device has cast a re-vote on her behalf.

It is unclear how many votes would have to be modified or dropped to change
the election outcome in Estonia as this has not been studied. Recent studies
in Australia [10] and Belgium12 showed that changing only a small amount of
votes can significantly influence the election outcome. The results of such studies
depend on the used election system and on the local political landscape, but
they are easy to conduct as the data is publicly available. Thus, for a future
study it would be interesting to find out how many votes would have to be
modified to change the number of ways to form a coalition. Such information
could be used as a basis for further studies to find the balance between coercion
resistance properties and integrity protection mechanisms.

The previously mentioned attacks are just some of the threats that have
to be considered when voting from an untrusted device. There are two main
approaches for mitigation. One would be to redesign or modify the voting
protocol. Another is to lock up and control the environment where the voting
client is used. The latter is currently not feasible due the design of the modern
operating systems, although iOS tends to move towards that direction. Thus,
we decided to take a shortcut to the second approach by creating a proof-of-
concept solutions that uses a microcontroller as the vote casting platform. While
a microcontroller offers a limited environment, there are still components and
software which have to be trusted or verified. The trust base of the voting device
is discussed in Section 5.

3 Design and choice of hardware

This section describes how the design choices were influenced by the software
and hardware level requirements.

As mentioned in Section 1, the source code of the Estonian i-voting client ap-
plication is not publicly available. However, the protocol description on the API
level is public, together with the corresponding server-side implementation.13

The voting client and the back-end communicate over TLS using JSON-
RPC. Such communication is required when:

• authenticating the voter,

12https://decryptage.be/2019/10/deux-voix-pour-changer-une-majorite/
13https://github.com/vvk-ehk/ivxv
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• fetching the list of choices,

• fetching the signing certificate (JSON-RPC is used with mobile-ID; cer-
tificate for ID-card is available locally),

• signing the encrypted ballot (JSON-RPC is used with mobile-ID; with
ID-card, signing is a local operation),

• sending the encrypted and signed ballot to the vote collection server,

• getting the OCSP response along with the vote reference, which is required
for verification.

In addition, the voting client has to be able to export the encryption ran-
domness and the vote reference in order to allow the ballot to be verified. Thus,
the voting client should either display these values as a QR code like it is done
in the official voting client, or export these values in some other form that the
verification application can process.

The main goal of our project was to provide a proof-of concept open-source
voting client working on a minimal set of hardware assumptions. Still, the
hardware must be powerful enough to be able to perform the necessary crypto-
graphic operations, most notably 3-kilobit ElGamal encryption used to encrypt
the votes in the current IVXV implementation.

The hardware requirements were fulfilled by ESP32 module, which is a well-
known microcontroller created by Espressif Systems. ESP32 has a dual-core
32-bit Xtensa® LX6 microprocessor with clock speed up to 240MHz. Other
features of the module include: Wi-Fi (2.4 GHz band), Bluetooth 4.2, 40/80
MHz flash frequency, 4 MB flash memory, several peripherals (I2C, SPI, UART,
etc.) and in some versions a 128 × 64 pixel 0.96 inch integrated OLED screen.

The user has to interact with the ESP32 to select the candidate. In the
simplest set-up, we decided to use a KY-040 rotary encoder that allows to
both scroll and click (see Figure 5). These functions are sufficient to select
a candidate from the list that is displayed on the 0.96 inch integrated OLED
display. However, this screen is not sufficiently large to display verification QR
code.

Alternatively, a touchscreen can be used to provide input and a sufficiently
large area to display the QR code. This approach is described in Section 4.2.

In case a large screen is not available, the voting device must export the
information required for verification using some other medium. It is important
to protect the verification information as it can be used to reveal how the voter
voted. Thus, exporting this information to a general purpose computer that
may contain malware is not a good option.

We developed an alternative verification mechanism for the configuration
where touchscreen is not available. We took the source code of the official
vote verification application as a basis and modified it so that it can read the
vote reference and randomness over Bluetooth. This approach is described in
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Section 4.1. We published the source code of the modified vote verification
application so that its behaviour can be validated by the community.14

4 Implementing the personal voting device

The ESP32 based voting client is written in C++ using Eclipse IDE with the
open source ESP-IDF framework15 provided by Espressif.

There are multiple different microcontroller boards that integrate ESP32
module. We tested the voting application on the following boards: DOIT De-
vKit v1, Wemos Lolin32, Heltek ESP32 Wifi Kit. It is important to note that
the pin configuration and hardware set-up may differ depending on the selected
board. Detailed information about the configuration of the tested boards is
presented in the Appendix A.

Our implementation is modular and allows to easily replace the compo-
nents (e.g. rotary encoder or touchscreen) when the corresponding drivers are
available. Some modifications may, of course, be required. In fact, we had to
tweak the KY-040 rotary encoder module’s unofficial driver library for ESP-IDF
framework a little to support the click functionality.

As mentioned above, we created two example set-ups. The first, subse-
quently called basic, is composed of a board with 128×64 integrated monochrome
OLED screen and KY-040 rotary encoder. The other set-up (called extended)
uses an external 240×320 colour TFT LCD screen with a touchscreen breakout
board.

In both of the cases, we have only implemented support for mobile-ID au-
thentication and signing. This is sufficient for i-voting and does not require
integrating extra hardware, as opposed to the need for a card reader in case of
ID-card.

4.1 Basic set-up

For basic set-up, we used boards with built-in displays, i.e. Wemos Lolin32
OLED and Heltec ESP32 Wifi Kit. Their main difference is the pin layout and
crystal oscillator frequency, see Table 3 in Appendix A. Figure 3 presents the
schematics of the layout.

The resolution of the 0.96 inch integrated screen is not sufficient to show
a QR code, instead we used Bluetooth to transmit the data required for veri-
fication. As the original verification application16 does not support Bluetooth
connections, we forked and modified it. The Bluetooth channel has to be secured
to keep the voter’s choice private. Thus, instead of relying on the traditional nu-
merical comparison method for Bluetooth pairing, users are asked to manually
enter the confirmation PIN displayed on the screen of ESP32. After successful

14https://github.com/Valeh2012/PersonalVotingMachine
15https://docs.espressif.com/projects/esp-idf/en/latest/esp32/
16https://github.com/vvk-ehk/ivotingverification
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Figure 3: Schematics of the basic set-up.

data transmission, the connection is closed and the connected device is removed
from the bond list.

Although, the basic set-up provides the necessary functionalities, it adds
additional components that have to be trusted, which may not be an optimal
solution. For example, Bluetooth is famous for its lengthy specification17 and list
of vulnerabilities18. However, even when an attacker would find a vulnerability
that would allow to intercept Bluetooth communication, the integrity of the
vote would not be affected.

There are two approaches for removing the Bluetooth dependency. First,
in the basic set-up, one could replace Bluetooth channel with NFC channel.
However, that would require additional hardware as ESP32 does not have a
built in NFC reader. We did not implement this, as the official verification
application does not support NFC and thus the voter would still have to rely
on a modified verification application. A simpler solution is to remove the
Bluetooth dependency by using the extended set-up, which is described in the
next section.

4.2 Extended set-up

The main problem with the basic set-up is that the screen size is not large
enough to accommodate a QR code for vote verification. Thus, the voter has to
install a modified version of the verification application. This approach is not

17https://vtsociety.org/wp-content/uploads/2019/07/Core_v5.1.pdf
18https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=Bluetooth
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only complicated, but it also increases the trust base as the voter has to either
trust the modified verification application, or verify its source code and build
the application on her own. Therefore, we also describe an alternative set-up
that is compatible with the official vote verification application.

The extended set-up uses ILI9341 as touchscreen. Its 240× 320 pixel screen
fits the QR code and thus supports the official vote verification application.
Thereby, the Bluetooth dependency is removed from the extended set-up. The
touch support also allows to remove the rotary encoder and perform all the
required user interaction on the screen.

Figure 4 shows the connection schematics. The pin layout for the extended
set-up is described in the Appendix A.2.

Figure 4: Extended set-up schematics.

4.3 Implementation challenges and performance

Implementing the voting device software was rather challenging. Although API
documentation for IVXV was available and easy to understand, it was not always
sufficiently detailed. We found and reported several minor mistakes in the IVXV
API documentation. However, that was not the only challenge. When writing
the implementation the device limitations also needed to be taken into account.

Our ESP32 modules came with 4MB flash memory. If an extra SD card is
not used, the 4MB should host the application, operating system and RAM. By
default, ESP-IDF creates a factory partition of size 1MB to store application
binary. As our client application of 1.3MB did not fit into this partition, its size
had to be changed to 1.5MB.

ESP32 contains DRAM (Data RAM), IRAM (Instruction RAM) and D/IRAM
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(can be used as DRAM or IRAM). RAM should be used carefully to fit both
application data and executable data (instructions). Application data stored in
DRAM includes zero-initialized and non-constant static data, stack and heap
buffers. Enabling Bluetooth reduces DRAM size by 64KB. On the other hand,
timing critical code and interruption handlers should be placed into IRAM,
which also hosts CPU cache, FreeRTOS library, some components of ESP-IDF
and WiFi stack. During application boot-up, internal components mentioned
above are mapped into the memory. The remaining memory buffers can be con-
trolled by the application. We measured this portion of memory to be less than
200 KBs for both set-ups. As a result of optimisations, the application uses less
than 60 KB of heap in total (<20KB of heap is used to store digital signature
files in zip format, the rest is used during computations). Table 1 summarizes
the heap usage in case of different set-ups.

Table 1: In the basic set-up, the slash separated values denote memory usage in
Wemos Lolin32 OLED and Heltec ESP32 WiFi Kit boards, respectively. The
referred components include WiFi, rotary encoder and/or (touch)screen.

Feature Heap usage (Bytes)
Basic set-up Extended set-up

Components 37944 / 37996 36352
Encryption 2644 / 2640 2448
Signature 11748 / 11596 12584
Total 47756 / 45600 59900

To benchmark the implementation it is sufficient to measure the performance
of ElGamal encryption, which is used to encrypt the ballot. Authentication and
signing the hash of the encrypted ballot are offloaded to voter’s smartphone as
they are done with voter’s mobile-ID. The rest of the voting client’s functional-
ities take a non-significant amount of computing time.

IVXV uses 3072-bit ElGamal to encrypt the votes. Our implementation uses
the modular exponentiation primitive from mbed TLS library, which is supplied
as a part of ESP-IDF.

By pinning tasks to a specific CPU core in FreeRTOS it is possible to paral-
lelize computations. We used both cores to compute the ElGamal cryptogram

E(pk,m) = (c1, c2) = (gr mod p,m · pkr mod p),

to obtain maximal speed-up as each component of the pair (c1, c2) is calculated
independently. This resulted in the usage of additional 1.3KB of heap and
2KB of stack memory. The encryption randomness r is generated using the
esp_random() function that outputs strong random values if either WiFi or
Bluetooth is enabled19. As our application requires WiFi to work anyway, this
assumption is satisfied.

19https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/

system/system.html
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Additionally, it is possible to turn on hardware acceleration for cryptographic
operations on ESP32. Table 2 compares the time ElGamal encryption takes for
different configurations and optimization methods. Since the CPU-s of all three
of our test boards were the same, the performance results are the same as well.

Table 2: ElGamal encryption performance for different configurations.
CPU clock speed Encryption time (s)

Single core 80 / 160 / 240 MHz 40 / 19 / 13
Two cores 160 / 240 MHz 10 / 6
Two cores,

160 / 240 MHz 1 / 0.66hardware
acceleration

Testing was conducted against a test server, which was running the same
code as the server used during real elections. We were not able to test our
application during elections as the next elections in Estonia, which use the i-
voting channel are planned for the year 2021.

5 Discussion

The cost of the hardware for the voting machine with the basic set-up is be-
tween 15-20 USD depending on where the parts are bought from. This contains
the ESP32 with built in OLED, rotary encoder, breadboard and jumper wires.
The cost of the extended set-up is slightly higher due to the 2.8 inch Adafruit
touchscreen, which adds about 30 USD to the price. As optimizing the price
was not one of our goals, we did not try to find cheaper alternatives for the
touchscreen.

The low cost and accessibility of the hardware plus the simplicity of assembly
may attract third parties to the idea of selling the device. However, we have to
emphasize that the goal of this project was to create only a proof of concept.
Therefore, we did not consider the risks that could be caused by the distribution,
support and supply chain of the device. Although it is possible to use secure
boot on ESP32 to protect the integrity of the firmware, it has recently been
revealed that this measure can be bypassed if an attacker has physical access to
the device.20 Thus, even though secure boot functionality could in theory be
used to secure the supply chain, it may be insufficient in practice.

One result of our research is the publication of the source code for the voting
client. That may have implications on the overall security of the Estonian voting
system. Third parties could use the source code to build a voting application for
insecure devices. This is possible as the voting client is independent from the
back-end system and the client software only has to do proper API calls. The
distribution of the voting client e.g. for mobile devices can create additional

20https : / / www . espressif . com / en / news / Security _ Advisory _ Concerning _ Fault _

Injection_and_eFuse_Protections
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risks, but these risks can not be avoided even if the source code of the voting
client would not be published. The document containing the description of the
API for the voting client is public along with the source code of the server side
software, which also reveals the API.

It can be argued that the attacker’s task may be simplified due to the access
to the source code of the voting application. However, the attackers who have
the motivation and resources to influence an election already have sufficient in-
formation to build an independent voting client. In addition, such threat actors
have access to reverse engineering capabilities, which can be used to inspect how
the official voting client behaves. For example, a paper published in 2020 by
MIT researchers described how they were able to reverse engineer Voatz i-voting
application by using Ghidra, regardless of the multiple obfuscation techniques
used by Voatz [38].

Although it is more difficult to attack the ESP32 based voting client due to
its small trust base, the threat of abusing the voter’s electronic identity on other
platforms remains as it still depends on the behaviour of the voter. Regardless,
the ESP32 based voting client provides a level of ballot privacy that is very
difficult to achieve with a regular computer that may not be solely controlled
by the voter.

5.1 Trust base

Currently, the Estonian i-voting client is only available for the following three
major platforms: Windows, MacOS, Ubuntu (other Linux distributions are not
guaranteed to be supported, but some of them work). Thus, these operating
systems and the third party software that runs with administrative privileges
have to be trusted to not act maliciously. For example, the voter has to trust
that the antivirus software is not abusing its access as it may have happened
with Kaspersky [33]. As it is common to find vulnerabilities from third party
software and the libraries it depends on [13, 2] one also has to hope that the
software vendors issue timely patches to prevent the vulnerable software from
being used as a launchpad to infect the device. Thus, the end user has to trust
the software vendors. However, even if the vendor is proactive and honest,
an attacker could target the supply chain by infecting the vendor and thereby
issuing a malicious update as it happened with CCleaner [30]. The CCleaner
case is remarkable as the malicious update was downloaded over two million
times and it remained undetected for a month.

Besides the software that runs with elevated privileges, it is also necessary
to trust the less privileged software to not take screen captures of the voting
process. In addition, the origin and the integrity of drivers have to be trusted.
The trust and integrity problem is usually solved by a signature issued by a
trusted certification authority. The trust model in PKI is based on the assump-
tion that the private keys of the certification authorities do not leak and are
not abused. Still, there are examples of malicious drivers that have been signed
with keys corresponding to valid certificates as it happened with Stuxnet [31].
Alternatively, malicious software can use various tricks to make the verification
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systems believe that the software was correctly signed [23].
End user’s software can use PKI due to a local list of root certificates. In case

that list is modified, the whole chain of trust can be circumvented. But modify-
ing the list of trusted root certificates is a common behaviour both in corporate
networks and by antivirus software to enable scanning of TLS traffic [15].21

However, such functionality also allows to break integrity of the channels and
for example choose which executable files are delivered to the client devices.
Also, by modifying the local list of trusted certificate authorities, a third party
is able to generate trust by signing executable files that will successfully verify
on the client device without generating errors. All of the aforementioned meth-
ods could be used to affect the voting process but the regular voter does not
have the knowledge to check the configuration of the computer that is used for
voting.

By replacing the modern desktop environment with ESP32, the trust base
of the voting device can be significantly reduced. ESP32 allows to run one
application at a time, which removes the need to trust third party software.
Thus, after flashing the firmware containing the specific application, ESP32
can be considered a single purpose device. As the device is not used for other
activities, the contact with the outside world is limited only to the corresponding
application and the interfaces which are used to connect with the voter and the
voting servers. Therefore, the attack surface for getting remote access to the
device is severely limited.

The other attack vectors come either from getting physical access to the
device, or from the supply chain, attempting to infect the device and/or its
software during production. Out of these, we consider the threat of a physical
attack to be very limited, since in our model the voter builds the device herself,
flashes it and uses it only for a very limited time in the environment of her own
choosing. This also means that even if vulnerabilities are found in the source
code, exploiting them is non-trivial due to the limited access.

We estimate that the threat of planting hardware level malware during mi-
crocontroller production is low. Still, if the voter considers this as a significant
risk, she can port our application onto a platform that she trusts. However, the
threat must be re-evaluated in case one would like to scale up the production
of such voting devices.

Final part of the trust base consists of the software that is used to build
the voting client. The main component of the trusted software is the voting
application itself. We reduce its trust base by open sourcing the code so that its
behaviour can be verified. In addition, the firmware of the voting application
contains one trusted root certificate to support the TLS connection to the voting
server. Thereby, we do not have to trust the global PKI. The rest of the trust
base comprises of open source third party software which is used to develop
and run the voting application. The largest trusted component is the Espressif
IoT Development Framework (ESP-IDF) provided by Espressif Systems, used
to create applications for ESP32. ESP-IDF is open-source and available from a

21https://blog.cloudflare.com/monsters-in-the-middleboxes/
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GitHub repository.22 The framework is built on top of FreeRTOS and contains
a list of libraries and modules that can be selectively enabled in the firmware
of the application being developed (e.g., Bluetooth can be switched off by not
including the corresponding libraries during the build).

In order to compile and build an application with ESP-IDF, a toolchain is
needed. The toolchain slightly differs depending on the operating system, but
the instructions are available from the website of ESP-IDF.23

The voting application also depends on the miniz data compression library24

and on ESP32 Arduino core25. Other dependencies vary based on the selected
approach. In case of the basic set-up, a library for the rotary encoder26 is needed
together with the U8g2 library27 for the display and UI. However, in case of the
extended set-up, the following dependencies are added: QRCode28, Adafruit
Touchscreen library, LittlevGL for display connection and UI.

6 Conclusions and future work

One of the main issues that the remote voting systems face is the untrustwor-
thiness of the voter’s computer. This can be partially solved by investing into
improving the verification properties of the voting protocol. However, by in-
creasing verifiability and transparency of the system, coercion resistance may
be reduced. Therefore, a good balance between these requirements needs to be
found that is both applicable in practice and usable by voters.

One way to test this balance is to run usability studies of the verification and
anti-coercion mechanisms. Examples of such studies can be found in [27, 29].
Ideally, performing usability studies should be a precondition for implementing
a change that affects the aforementioned mechanisms. Eventually, a political
decision is needed to set the balance between integrity and privacy guarantees.
However, the decision should be based on informed risk analysis of possible
options.

The aim of this paper was to build a proof-of-concept instance of what could
be called a personal single-purpose voting machine. We used the Estonian i-
voting system as an established framework and ESP32 as an example platform
for our implementation. Making all the instructions and the source code avail-
able enables the voters to build their own voting devices. As a by-product, we
built an open voting client for the Estonian i-voting protocol, finally making the
Estonian system fully open source.

In addition to improved transparency, the voting device has a significantly
reduced trust base and a considerably smaller attack surface. Thus, software

22https://github.com/espressif/esp-idf
23https://docs.espressif.com/projects/esp-idf/en/latest/get-started/toolchain-

setup-scratch.html
24https://github.com/richgel999/miniz
25https://github.com/espressif/arduino-esp32
26https://github.com/DavidAntliff/esp32-rotary-encoder
27https://github.com/olikraus/u8g2
28https://github.com/ricmoo/QRCode
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and hardware level vulnerabilities are less significant as they are difficult to
exploit.

Of course, our implementation is only an academic proof of concept, not
being ready to be used by every voter. However, even a small fraction of voters
using such devices would illustrate the transparency of the voting system and
show one possible path for combating malware in the context of i-voting.

The ease and low price tag of creating a proof of concept device shows that,
in principle, it may be possible to build and distribute cheap personal voting
devices in the future. For both ethical and financial reasons the researchers
can only make the first step towards building an individual voting device. The
initiative for building a voting device that could be securely distributed to the
voters has to come from the state. Whether it would be possible to do that
securely and in an economically viable matter is an open question for future
research and development.
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A Building the voting device

The following boards were used for testing: DOIT DevKit v1, Wemos Lolin32,
Heltek ESP32 Wifi Kit. Not all of these board have the same amount of pins and
some pins are reserved for board-specific features, such as on-board displays. For
example, Wemos Lolin32 boards generally have 26 pins, whereas DOIT DevKit
v1 boards have 30.

A.1 Basic set-up

Wemos Lolin32 OLED and Heltec ESP32 Wifi Kit were used in the basic setup.
Their main difference is the pin layout and crystal oscillator frequency, see
Table 3. KY-040 rotary encoder is used for user input.

To connect it, two pins are used for rotation (CLK, DT) and one pin (SW)
for clicking. Figure 5 presents the final set-up and Figure 3 the schematics of
the layout.

Table 3: The pin layout for Wemos Lolin32 OLED and Heltec ESP32 Wifi Kit.
OLED pins KY-040 pins

SDA SCL RST CLK DT SW
Wemos Lolin32
OLED (40 MHz) 5 4 - 16 13 14
Heltec ESP32
Wifi Kit (26 MHz) 14 13 16 19 21 23

A.2 Extended set-up

The extended set-up uses a 240 × 320 pixel ILI9341 touchscreen. In this set-
up, the screen is connected to the board over serial peripheral interface (SPI),
where the board is a master and the screen is a slave. Although ESP32 module
integrates four SPI peripherals, only two of them (HSPI and VSPI) are open to
users for general purpose. A single SPI bus consists of three lines and is shared
among all connected sensors. Content on the screen (pixel array) is updated at
each clock pulse (CLK line) through MOSI (Master Out Slave In) line.

SPI requires one or more CS (Chip Select) lines to allow the host to select
a specific slave on the SPI bus to send or receive data. In addition, the driver
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Figure 5: Set-up with rotary encoder and small display.

for ILI9341 uses three pins to control the display. D/C (Data/Command) pin
is used to distinguish received bits as data or commands. RST (reset) and Lite
(backlight) pins are required during initialization to reset the driver state and
switch on backlighting. PIN configurations with DOIT DevKit v1 are as follows:

• SPI pins: CLK 14; MOSI 13; CS 15.

• ILI9341 pins: D/C 21; Lite 5; RST 16.

• Touch pins: Y+ 32(A4); Y- 25; X+ 26; X- 33(A5).

Figure 6 displays the final set-up and Figure 4 shows the connection schemat-
ics.

Similar to the display driver, one can use SPI bus to establish a com-
munication to read touch responses with an additional touch controller (e.g.
STMPE610). However, one can also directly read that data using four pins
on the breakout board. By using analog-to-digital converter driver in ESP32
module, one can read voltage levels on specific pins and deduce touch coor-
dinates. This functionality is provided by an open-source touchscreen library
from Adafruit Industries that uses only 4 pins to read touch properties (x, y
coordinates and pressure).29 After screen calibration, one can port touch as an
input source in LittlevGL.30

Screen calibration is used to convert touch events to coordinates. As simple
linear scaling method gave sufficiently accurate results, we used scaling function

29https://github.com/adafruit/Adafruit_TouchScreen/
30https://github.com/lvgl/lvgl
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Figure 6: ILI9341 touchscreen and DOIT DevKit v1.

defined as

f(x) = (x− Imin) · Omax

Imax − Imin
,

where x is voltage level on analog pin Y+ (X-) when the screen is touched.
Imin, Imax are minimum and maximum values read from the touch sensor hori-
zontally (vertically); and Omax is width (height) of the screen.
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