#### Relative Secrecy and Semantics of Declassification

Peeter Laud
peeter\_l@ut.ee

Tartu Ülikool Cybernetica AS

Supported by the Tiger University Project of Estonian Information Technology Foundation

### **Problem statement**



Does the program satisfy the following secrecy condition?

- The public outputs are made public...
- but nothing must be revealed about the secret inputs...
- except that we have determined that revealing non-secret outputs will not expose anything sensitive.

Formal definition? Program analysis?

### **Structure of the talk**

- Syntax of language, etc.
- Security definition.
- Program analysis.
  - Analysis domain, simplifying assumptions.
    - These assumptions do not lessen the generality.
  - Transfer functions (a framework for them).
- The *declassify*-statement.
  - Simple program analysis (unconnected to semantics).
  - Rewriting *declassify*-statements.
  - Relation of two analyses.

# **Program Language**

The WHILE-language.

$$\begin{array}{rrrr} \mathsf{P} & ::= & \mathsf{x} := o(\mathsf{x}_1, \dots, \mathsf{x}_k) \\ & \mid & skip \\ & \mid & \mathsf{P}_1; \mathsf{P}_2 \\ & \mid & \textit{if } \mathsf{b} \textit{ then } \mathsf{P}_1 \textit{ else } \mathsf{P}_2 \\ & \mid & \textit{while } \mathsf{b} \textit{ do } \mathsf{P}' \end{array}$$

The set of program states State is  $Var \rightarrow Val$ .  $x, x_1, \dots, x_k, b \in Var$ ,  $o \in Op$ .

- Secret inputs initial values of variables in  $Var_S \subseteq Var$
- Public outputs final values of variables in  $Var_P \subseteq Var$
- Non-secret outputs final values of variables in  $Var_{NS}$

# **Type of deterministic semantics**

The denotational semantics maps program's input state to its output state.

```
[\![\mathsf{P}]\!]: \mathbf{State} \to \mathbf{State}_{\perp}
```

- defined inductively over program structure;
- State  $\perp =$  State  $\dot{\cup} \{ \perp \}$ ;
- $\perp$  denotes nontermination.
- For now, our approach is termination-insensitive.
  - Issues with termination are probably orthogonal to other issues.
  - $\checkmark$  we therefore assume  $[\![\mathsf{P}]\!]:\mathbf{State}\to\mathbf{State}.$

### Non-interference

Usual definition:

The values of program's public outputs must be determined by the values of its "other" inputs.

$$\exists f : (\mathbf{Var} \setminus \mathbf{Var}_{\mathrm{S}} \to \mathbf{Val}) \to (\mathbf{Var}_{\mathrm{P}} \to \mathbf{Val})$$

such that for all  $S \in$ **State** 

$$\llbracket \mathsf{P} \rrbracket(S)|_{\mathbf{Var}_{\mathbf{P}}} = f(S|_{\mathbf{Var} \setminus \mathbf{Var}_{\mathbf{S}}}) .$$

### **Relative secrecy**

With non-secret outputs:

The values of program's public outputs must be determined by the values of its "other" inputs and its non-secret outputs.

$$\exists f : (\mathbf{Var} \setminus \mathbf{Var}_{\mathrm{S}} \to \mathbf{Val}) \times (\mathbf{Var}_{\mathrm{NS}} \to \mathbf{Val}) \to (\mathbf{Var}_{\mathrm{P}} \to \mathbf{Val})$$

such that for all  $S \in$ State

$$\llbracket \mathsf{P} \rrbracket(S)|_{\mathbf{Var}_{\mathcal{P}}} = f(S|_{\mathbf{Var} \setminus \mathbf{Var}_{\mathcal{S}}}, \llbracket P \rrbracket(S)|_{\mathbf{Var}_{\mathcal{NS}}})$$

We let  $S_1 =_X S_2$  denote  $S_1|_X = S_2|_X$ , where  $X \subseteq Var$ .

### **Relative secrecy**

In other words: for all  $S_1, S_2 \in$ State:

$$S_{1} =_{\mathbf{Var} \setminus \mathbf{Var}_{S}} S_{2} \land \llbracket \mathsf{P} \rrbracket(S_{1}) =_{\mathbf{Var}_{NS}} \llbracket \mathsf{P} \rrbracket(S_{2}) \Rightarrow$$
$$\llbracket \mathsf{P} \rrbracket(S_{1}) =_{\mathbf{Var}_{P}} \llbracket \mathsf{P} \rrbracket(S_{2})$$

If we assume P does not change the variables in  ${\bf Var}_S$  (this assumption is w.l.o.g), then

$$\llbracket \mathsf{P} \rrbracket(S_1) =_{\mathbf{Var} \setminus \mathbf{Var}_{\mathrm{S}}} \llbracket \mathsf{P} \rrbracket(S_2) \land \llbracket \mathsf{P} \rrbracket(S_1) =_{\mathbf{Var}_{\mathrm{NS}}} \llbracket \mathsf{P} \rrbracket(S_2) \Rightarrow$$
$$\llbracket \mathsf{P} \rrbracket(S_1) =_{\mathbf{Var}_{\mathrm{P}}} \llbracket \mathsf{P} \rrbracket(S_2)$$

#### **Abstract domain**

Given  $S \subseteq$  State and  $X, Y, Z \subseteq$  Var, we are interested if

$$S_1 =_X S_2 \land S_1 =_Y S_2 \Rightarrow S_1 =_Z S_2$$

holds for all  $S_1, S_2 \in S$ .

It can be found if we know for all  $X \subseteq$ Var and  $z \in$ Var if

$$S_1 =_X S_2 \Rightarrow S_1(\mathbf{z}) = S_2(\mathbf{z})$$

holds for all  $S_1, S_2 \in S$ .

We abstract  $\mathcal{P}(\mathbf{State})$  by  $\mathcal{P}(\mathcal{P}(\mathbf{Var}) \times \mathbf{Var})$ . Let  $\alpha$  be the abstraction function.

# **Analysis** — overall approach

- Let A<sub>o</sub> be the abstraction of the set of possible input states.
- Apply the abstract semantics of P to  $A_{\circ}$ , giving  $A_{\bullet}$ .
  - A. approximates the abstraction of the set of possible output states.
  - It is a conservative approximation some pairs
     (X, z) may be missing.
- If  $((\operatorname{Var} \setminus \operatorname{Var}_S) \cup \operatorname{Var}_{NS}, x) \in A_{\bullet}$  for all  $x \in \operatorname{Var}_P$ , then consider the program secure.

### **Properties of abstraction**

- **●** Let  $A = \alpha(S)$  for some  $S \in$ State. Then
  - $(\{z\}, z) \in A$ ,
  - $\ \, \bullet \ \, (X,{\bf z})\in A\Rightarrow (X\cup Y,{\bf z})\in A,$
  - $(X \cup \{y\}, z) \in A \land (X, y) \in A \Rightarrow (X, z) \in A$ hold for all  $X, Y \subseteq Var$  and  $y, z \in Var$ .
- If  $A \subseteq \mathcal{P}(\mathbf{Var}) \times \mathbf{Var}$  satisfies these implications then we call A closed.
- The closure of A is the smallest closed set containing A.

## **Analysis of assignments**

- The analysis  $A(x := o(x_1, ..., x_k))$ , applied to  $A_o$ , will construct  $A_●$  by
  - kill x, i.e. remove all (X, z) where  $x \in X$  or x = z;
  - $\checkmark$  add  $(\{\mathtt{x}_1,\ldots,\mathtt{x}_k\},\mathtt{x});$
  - construct the closure. (we assume that  $x \notin \{x_1, \dots, x_k\}$ )
- If some x<sub>i</sub> can be found from some set X ⊆ {x, x<sub>1</sub>,..., x<sub>k</sub>} after the operation, then also add (X, x<sub>i</sub>) during the second step.
  - Example: y can be found from  $\{x, z\}$  after x := y + z.

## **Analysis of** *skip* **and composition**

- $\mathcal{A}(skip)$  is the identity function.

#### Analysis of if - then - else

Consider the program *if* b *then*  $P_1$  *else*  $P_2$ .

• Let  $\{x_1, \ldots, x_k\} = Var_{asgn} \subseteq Var$  be the set of variables assigned to in  $P_1$  and/or  $P_2$ .

• Let 
$$\operatorname{Var}' = \operatorname{Var} \dot{\cup}$$
  
 $\{N, \mathbf{x}_1^{\mathsf{true}}, \dots, \mathbf{x}_k^{\mathsf{true}}, \mathbf{x}_1^{\mathsf{false}}, \dots, \mathbf{x}_k^{\mathsf{false}}\}$ 

- Program at right has the same functionality.
- P<sup>true</sup> is P<sub>1</sub>, where each x<sub>i</sub> is replaced with x<sup>true</sup><sub>i</sub>.
- Similarly for  $P_2^{false}$ .

Analyse the program at right instead.

N := b $\mathbf{x}_{1}^{\mathsf{true}} := \mathbf{x}_{1}$  $\mathbf{x}_{1}^{\mathsf{false}} := \mathbf{x}_{1}$  $\mathbf{x}_{\flat}^{\mathsf{true}} := \mathbf{x}_{k}$  $\mathbf{x}_{k}^{\mathsf{false}} := \mathbf{x}_{k}$  $P_1^{true}$ P<sub>2</sub><sup>false</sup>  $\mathbf{x_1} := \mathbb{N} ? \mathbf{x_1^{true}} : \mathbf{x_1^{talse}}$  $x_k := \mathbb{N} ? x_{\flat}^{\mathsf{true}} : x_{\flat}^{\mathsf{false}}$ 

### Analysis of *while*

 $\mathcal{A}(while \ b \ do \ P)$ , applied to  $A_{\circ}$ , repeatedly applies  $\mathcal{A}(if \ b \ then \ P \ else \ skip)$  to it, until reaching a fix-point.

Correctness follows from

 $\llbracket while \ b \ do \ \mathsf{P} \rrbracket = \llbracket while \ b \ do \ \mathsf{P} \rrbracket \circ \llbracket if \ b \ then \ \mathsf{P} \ else \ skip \rrbracket \ .$ 

#### **The declassification statement**

We add the statement

 $declassify(\mathbf{x}),$ 

where  $\mathbf{x} \in \mathbf{Var}$  to the language.

- Its semantics is equal to that of *skip*.
- Its intuitive meaning currently the value of variable x does not give away anything about the secret inputs.
- This intuitive meaning is reflected in the analysis.

# A simple analysis with declassification

- Consider a simple analysis that maps initial public variables to final public variables.

$$\mathcal{B}(\mathbf{x} := o(\mathbf{x}_1, \dots, \mathbf{x}_k))(B_\circ) = \begin{cases} B_\circ \cup \{\mathbf{x}\}, & \text{if } \mathbf{x}_1, \dots, \mathbf{x}_k \in B_\circ \\ B_\circ \setminus \{\mathbf{x}\}, & \text{otherwise.} \end{cases}$$

 $\mathcal{B}(declassify(\mathbf{x}))(B_{\circ}) = B_{\circ} \cup \{\mathbf{x}\}$ 

Other statements: as before.

### The relationship of analyses

• Let  $B \subseteq Var$ . Given  $Var_S$  and  $Var_{NS}$ , let

 $\xi(B) := \{ ((\operatorname{Var} \setminus \operatorname{Var}_{S}) \cup \operatorname{Var}_{NS}, \mathbf{x}) : \mathbf{x} \in B \} .$ 

The function  $\xi$  binds the domains of  $\mathcal{B}$  and  $\mathcal{A}$ .

✓ We want to define a program transformation  $\overline{\cdot}$  and a set Var<sub>NS</sub>, such that for all programs P and  $B_{\circ} \subseteq$  Var:

 $\xi(\mathfrak{B}(\mathsf{P})(B_\circ)) \subseteq \mathcal{A}(\overline{\mathsf{P}})(\xi(B_\circ))$ .

## **Program transformation (1/3)**

Let d be a new variable. Then

$$\overline{\mathsf{P}} := \left[ d := \mathsf{Nil}; \mathfrak{T}(\mathsf{P}, d) \right]$$

and  $\mathbf{Var}_{NS} = \{d\}$ . Here  $\mathfrak{T}$  works as follows:

• 
$$\mathcal{T}(\mathbf{x} := o(\mathbf{x}_1, \dots, \mathbf{x}_k), \mathbf{d}) = [\mathbf{x} := o(\mathbf{x}_1, \dots, \mathbf{x}_k)];$$

- T(declassify(x), d) := [tmp := d; d := (x, tmp)], where tmp is a new variable;
  - Note that in the analysis  $\mathcal{A}$ , both y and z can be found from x after x := (y, z).

• 
$$\Im(skip, d) = skip;$$

• 
$$\mathcal{T}(\mathsf{P}_1;\mathsf{P}_2,\mathsf{d}) = \mathcal{T}(\mathsf{P}_1,\mathsf{d}); \mathcal{T}(\mathsf{P}_2,\mathsf{d});$$

## **Program transformation (2/3)**

$$\begin{split} & \mathfrak{T}(\textit{if b then } \mathsf{P}_1 \textit{ else } \mathsf{P}_2, \mathtt{d}) := \\ & \mathtt{d}' := \mathsf{Nil}; \left[\textit{if b then } \mathfrak{T}(\mathsf{P}_1, \mathtt{d}') \textit{ else } \mathfrak{T}(\mathsf{P}_2, \mathtt{d}')\right]; \mathtt{tmp} := \mathtt{d}; \mathtt{d} := (\mathtt{d}', \mathtt{tmp}) \end{split}$$

where d' and tmp are new variables.

When proving  $\xi(\mathfrak{B}(\mathsf{P})(B_{\circ})) \subseteq \mathcal{A}(\overline{\mathsf{P}})(\xi(B_{\circ}))$  for  $\mathsf{P} \equiv if \ b \ then \ \mathsf{P}_1 \ else \ \mathsf{P}_2$  by induction over program structure, then the set  $\operatorname{Var}_{\mathrm{NS}}$  for  $\mathsf{P}_1$  and  $\mathsf{P}_2$  additionally contains d'.

# **Program transformation (3/3)**

- To define  $T(while \ b \ do \ P, d)$ , introduce the construct  $\cdot^*$  to the programming language.
- The semantics of P<sup>\*</sup> is the fix-point of iterating  $[\![P]\!]$ . Similarly,  $\mathcal{A}(P^*)$  is the fix-point of iterating  $\mathcal{A}(P)$ .
- $T(while \ b \ do \ P, d)$  is defined as

$$\Big[\mathtt{d}':=\mathsf{Nil}; \big[\mathit{if}\ b\ \mathit{then}\ \mathtt{T}(\mathsf{P},\mathtt{d}')\ \mathit{else}\ \mathit{skip}\big]; \mathtt{tmp}:=\mathtt{d}; \mathtt{d}:=(\mathtt{d}',\mathtt{tmp})\Big]^*,$$

where d' and tmp are new variables.

### Addendum to the analysis ${\cal A}$

Let the program P be

 $\mathtt{x_1} := \mathtt{N} \mathbin{?} \mathtt{x_1^{\mathsf{true}}} : \mathtt{x_1^{\mathsf{false}}} ; \mathtt{x_2} := \mathtt{N} \mathbin{?} \mathtt{x_2^{\mathsf{true}}} : \mathtt{x_2^{\mathsf{false}}} ; \cdots ; \mathtt{x_k} := \mathtt{N} \mathbin{?} \mathtt{x_k^{\mathsf{true}}} : \mathtt{x_k^{\mathsf{false}}}$ 

Let  $A_{\circ}$  be the initial analysis information. Let

$$\begin{split} X &\subseteq \mathbf{Var} \setminus \{\mathbf{x}_1, \dots, \mathbf{x}_k\} & (X, \mathbb{N}) \in A_{\circ} \\ Y &\subseteq \{\mathbf{x}_1, \dots, \mathbf{x}_k\} & (X \cup Y^{\mathsf{true}}, \mathbf{x}_{\mathtt{i}}^{\mathsf{true}}) \in A_{\circ} \\ \mathtt{i} &\in \{1, \dots, k\} & (X \cup Y^{\mathsf{false}}, \mathbf{x}_{\mathtt{i}}^{\mathsf{false}}) \in A_{\circ} \end{split}$$

then we may take  $(X \cup Y, \mathbf{x}_i) \in A_{\bullet}$ .

This addendum is necessary for relating  $\mathcal{A}$  and  $\mathcal{B}$ .

# **Concluding remarks**

- Relative secrecy can be used to give semantics to some constructs.
- It may also be a tool for modularizing the security analysis.
  - Particularly in the case, when the security of different operations has different flavor.
    - Information-theoretic, complexity-theoretic, etc.
- The "right way" of defining the transfer functions is not yet so clear.
  - I.e. the way that gives the most intuitive analysis results.
  - The intuition itself does not yet exist.