Relative Secrecy and Semantics of Declassification

Peeter Laud
peeter_l@ut.ee
Tartu Ülikool
Cybernetica AS

Supported by the Tiger University Project of Estonian Information Technology Foundation

Problem statement

Does the program satisfy the following secrecy condition?

- The public outputs are made public...
- but nothing must be revealed about the secret inputs...
- except that we have determined that revealing non-secret outputs will not expose anything sensitive.

Formal definition? Program analysis?

Structure of the talk

- Syntax of language, etc.
- Security definition.
- Program analysis.
- Analysis domain, simplifying assumptions.
- These assumptions do not lessen the generality.
- Transfer functions (a framework for them).
- The declassify-statement.
- Simple program analysis (unconnected to semantics).
- Rewriting declassify-statements.
- Relation of two analyses.

Program Language

The While-language.

$$
\begin{aligned}
\mathrm{P}: & ::=\mathrm{x}:=o\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right) \\
& \text { skip } \\
\mid & \mathrm{P}_{1} ; \mathrm{P}_{2} \\
& \text { if } \mathrm{b} \text { then } \mathrm{P}_{1} \text { else } \mathrm{P}_{2} \\
& \text { while } \mathrm{b} \text { do } \mathrm{P}^{\prime}
\end{aligned}
$$

The set of program states State is Var \rightarrow Val. $\mathrm{x}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}, \mathrm{b} \in \mathrm{Var}, o \in \mathbf{O p}$.

- Secret inputs - initial values of variables in $\operatorname{Var}_{S} \subseteq$ Var
- Public outputs - final values of variables in $\operatorname{Var}_{\mathrm{P}} \subseteq \operatorname{Var}$
- Non-secret outputs - final values of variables in $\operatorname{Var}_{\mathrm{NS}}$

Type of deterministic semantics

- The denotational semantics maps program's input state to its output state.

$$
\llbracket \mathrm{P} \rrbracket: \text { State } \rightarrow \text { State }_{\perp}
$$

- defined inductively over program structure;
- State $_{\perp}=$ State $\dot{U}\{\perp\}$;
- \perp denotes nontermination.
- For now, our approach is termination-insensitive.
- Issues with termination are probably orthogonal to other issues.
- we therefore assume $\llbracket P \rrbracket$: State \rightarrow State.

Non-interference

Usual definition:

The values of program's public outputs must be determined by the values of its "other" inputs.

$$
\exists f:\left(\operatorname{Var} \backslash \operatorname{Var}_{S} \rightarrow \mathbf{V a l}\right) \rightarrow\left(\operatorname{Var}_{\mathrm{P}} \rightarrow \mathbf{V a l}\right)
$$

such that for all $S \in$ State

$$
\left.\llbracket \mathrm{P} \rrbracket(S)\right|_{\operatorname{Var}_{\mathrm{P}}}=f\left(\left.S\right|_{\operatorname{Var} \backslash \operatorname{Var}_{\mathrm{s}}}\right) .
$$

Relative secrecy

With non-secret outputs:
The values of program's public outputs must be determined by the values of its "other" inputs and its non-secret outputs.

$$
\exists f:\left(\operatorname{Var} \backslash \operatorname{Var}_{\mathrm{S}} \rightarrow \mathbf{V a l}\right) \times\left(\operatorname{Var}_{\mathrm{NS}} \rightarrow \mathbf{V a l}\right) \rightarrow\left(\operatorname{Var}_{\mathrm{P}} \rightarrow \mathbf{V a l}\right)
$$

such that for all $S \in$ State

$$
\left.\llbracket \mathrm{P} \rrbracket(S)\right|_{\operatorname{Var}_{\mathrm{P}}}=f\left(\left.S\right|_{\operatorname{Var} \backslash \operatorname{Var}_{\mathrm{S}}},\left.\llbracket P \rrbracket(S)\right|_{\operatorname{Var}_{\mathrm{NS}}}\right) .
$$

We let $S_{1}={ }_{X} S_{2}$ denote $\left.S_{1}\right|_{X}=\left.S_{2}\right|_{X}$, where $X \subseteq$ Var.

Relative secrecy

In other words: for all $S_{1}, S_{2} \in$ State:

$$
\begin{aligned}
S_{1}= & \operatorname{Var} \backslash \operatorname{Var}_{\mathrm{S}} S_{2} \wedge \llbracket \mathrm{P} \rrbracket\left(S_{1}\right)=\operatorname{Var}_{\mathrm{NS}} \\
\llbracket \mathrm{P} \rrbracket & \left(S_{2}\right) \Rightarrow \\
& \llbracket \mathrm{P} \rrbracket\left(S_{1}\right)=\operatorname{Var}_{\mathrm{P}} \llbracket \mathrm{P} \rrbracket\left(S_{2}\right)
\end{aligned}
$$

If we assume P does not change the variables in Var $\backslash \operatorname{Var}_{S}$ (this assumption is w.l.o.g), then

$$
\begin{array}{r}
\llbracket \mathrm{P} \rrbracket\left(S_{1}\right)=\operatorname{Var} \backslash \operatorname{Var}_{\mathrm{S}} \llbracket \mathrm{P} \rrbracket\left(S_{2}\right) \wedge \llbracket \mathrm{P} \rrbracket\left(S_{1}\right)=\operatorname{Var}_{\mathrm{NS}} \llbracket \mathrm{P} \rrbracket\left(S_{2}\right) \Rightarrow \\
\\
\llbracket \mathrm{P} \rrbracket\left(S_{1}\right)=\operatorname{Var}_{\mathrm{P}} \llbracket \mathrm{P} \rrbracket\left(S_{2}\right)
\end{array}
$$

Abstract domain

Given $\mathcal{S} \subseteq$ State and $X, Y, Z \subseteq$ Var, we are interested if

$$
S_{1}={ }_{X} S_{2} \wedge S_{1}={ }_{Y} S_{2} \Rightarrow S_{1}={ }_{Z} S_{2}
$$

holds for all $S_{1}, S_{2} \in \mathcal{S}$.
It can be found if we know for all $X \subseteq \operatorname{Var}$ and $\mathrm{z} \in \operatorname{Var}$ if

$$
S_{1}={ }_{X} S_{2} \Rightarrow S_{1}(\mathrm{z})=S_{2}(\mathrm{z})
$$

holds for all $S_{1}, S_{2} \in \mathcal{S}$.
We abstract $\mathcal{P}($ State $)$ by $\mathcal{P}(\mathcal{P}($ Var $) \times$ Var $)$.
Let α be the abstraction function.

Analysis - overall approach

- Let A 。 be the abstraction of the set of possible input states.
- Apply the abstract semantics of P to A_{\circ}, giving $A_{\text {• }}$.
- A_{\bullet} approximates the abstraction of the set of possible output states.
- It is a conservative approximation - some pairs (X, z) may be missing.
- If $\left(\left(\operatorname{Var} \backslash \operatorname{Var}_{S}\right) \cup \operatorname{Var}_{N S}, x\right) \in A$. for all $x \in \operatorname{Var}_{P}$, then consider the program secure.

Properties of abstraction

- Let $A=\alpha(\mathcal{S})$ for some $\mathcal{S} \in$ State. Then
- $(\{z\}, z) \in A$,
- $(X, \mathbf{z}) \in A \Rightarrow(X \cup Y, \mathbf{z}) \in A$,
- $(X \cup\{\mathrm{y}\}, \mathrm{z}) \in A \wedge(X, \mathrm{y}) \in A \Rightarrow(X, \mathrm{z}) \in A$
hold for all $X, Y \subseteq$ Var and $\mathrm{y}, \mathrm{z} \in \operatorname{Var}$.
- If $A \subseteq \mathcal{P}(\operatorname{Var}) \times$ Var satisfies these implications then we call A closed.
- The closure of A is the smallest closed set containing A.

Analysis of assignments

- The analysis $\mathcal{A}\left(\mathrm{x}:=o\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right)$, applied to A_{0}, will construct A. by
- kill x , i.e. remove all (X, z) where $\mathrm{x} \in X$ or $\mathrm{x}=\mathrm{z}$;
- add ($\left.\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}, \mathrm{x}\right)$;
- construct the closure.
(we assume that $\mathrm{x} \notin\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$)
- If some x_{i} can be found from some set $X \subseteq\left\{\mathrm{x}, \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}$ after the operation, then also add ($X, \mathrm{x}_{\mathrm{i}}$) during the second step.
- Example: y can be found from $\{\mathrm{x}, \mathrm{z}\}$ after $\mathrm{x}:=\mathrm{y}+\mathrm{z}$.

Analysis of skip and composition

- $\mathcal{A}(s k i p)$ is the identity function.
- $\mathcal{A}\left(\mathrm{P}_{1} ; \mathrm{P}_{2}\right)=\mathcal{A}\left(\mathrm{P}_{2}\right) \circ \mathcal{A}\left(\mathrm{P}_{1}\right)$.

Analysis of if - then - else

Consider the program if b then P_{1} else P_{2}.

- Let $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\}=\operatorname{Var}_{\text {asgn }} \subseteq \operatorname{Var}$ be the set of variables assigned to in P_{1} and/or P_{2}.

$$
\begin{aligned}
& \mathrm{N}:=\mathrm{b} \\
& \mathrm{x}_{\mathrm{f}}^{\text {true }}:=\mathrm{x}_{1} \\
& \mathrm{x}_{1}^{\text {false }}:=\mathrm{x}_{1}
\end{aligned}
$$

- Let $\operatorname{Var}^{\prime}=\operatorname{Var} \dot{\cup}$ $\left\{N, \mathrm{x}_{1}^{\text {true }}, \ldots, \mathrm{x}_{\mathrm{k}}^{\text {true }}, \mathrm{x}_{1}^{\text {false }}, \ldots, \mathrm{x}_{\mathrm{k}}^{\text {false }}\right\}$
- Program at right has the same functionality.
- $P_{1}^{\text {true }}$ is P_{1}, where each x_{i} is replaced with $x_{i}^{\text {true }}$.
- Similarly for $P_{2}^{\text {false }}$.

$$
\mathrm{x}_{\mathrm{k}}:=\mathrm{N} ? \mathrm{x}_{\mathrm{k}}^{\mathrm{true}}: \mathrm{x}_{\mathrm{k}}^{\mathrm{false}}
$$

Analyse the program at right instead.

Analysis of while

$\mathcal{A}($ while b do P$)$, applied to A_{\circ}, repeatedly applies $\mathcal{A}($ if b then P else skip) to it, until reaching a fix-point.

Correctness follows from

$$
\llbracket \text { while } \mathrm{b} \text { do } \mathrm{P} \rrbracket=\llbracket \text { while } \mathrm{b} \text { do } \mathrm{P} \rrbracket \circ \llbracket i f \mathrm{~b} \text { then } \mathrm{P} \text { else skip } \rrbracket .
$$

The declassification statement

- We add the statement

$$
\text { declassify }(\mathrm{x}),
$$

where $\mathrm{x} \in \operatorname{Var}$ to the language.

- Its semantics is equal to that of skip.
- Its intuitive meaning - currently the value of variable x does not give away anything about the secret inputs.
- This intuitive meaning is reflected in the analysis.

A simple analysis with declassification

- Consider a simple analysis that maps initial public variables to final public variables.
- $\mathcal{B}(P): \mathcal{P}($ Var $) \rightarrow \mathcal{P}($ Var $)$, where the domain and range are sets of public variables.
$\mathcal{B}\left(\mathrm{x}:=o\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right)\left(B_{\circ}\right)= \begin{cases}B_{\circ} \cup\{\mathrm{x}\}, & \text { if } \mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}} \in B_{\circ} \\ B_{\circ} \backslash\{\mathrm{x}\}, & \text { otherwise } .\end{cases}$

$$
\mathcal{B}(\operatorname{declassify}(\mathrm{x}))\left(B_{\circ}\right)=B_{\circ} \cup\{\mathrm{x}\}
$$

Other statements: as before.

The relationship of analyses

- Let $B \subseteq$ Var. Given $\operatorname{Var}_{\mathrm{S}}$ and $\operatorname{Var}_{\mathrm{NS}}$, let

$$
\xi(B):=\left\{\left(\left(\operatorname{Var} \backslash \operatorname{Var}_{\mathrm{S}}\right) \cup \operatorname{Var}_{\mathrm{NS}}, \mathrm{x}\right): \mathrm{x} \in B\right\} .
$$

The function ξ binds the domains of \mathcal{B} and \mathcal{A}.

- We want to define a program transformation • and a set $\operatorname{Var}_{\mathrm{NS}}$, such that for all programs P and $B_{\circ} \subseteq \operatorname{Var}$:

$$
\xi\left(\mathcal{B}(\mathrm{P})\left(B_{\circ}\right)\right) \subseteq \mathcal{A}(\overline{\mathrm{P}})\left(\xi\left(B_{\circ}\right)\right) .
$$

Program transformation (1/3)

Let d be a new variable. Then

$$
\overline{\mathrm{P}}:=[\mathrm{d}:=\mathrm{Nil} ; \mathcal{T}(\mathrm{P}, \mathrm{~d})]
$$

and $\operatorname{Var}_{\mathrm{NS}}=\{\mathrm{d}\}$. Here \mathcal{T} works as follows:

- $\mathcal{T}\left(\mathrm{x}:=o\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right), \mathrm{d}\right)=\left[\mathrm{x}:=o\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right)\right]$;
- $\mathcal{T}(\operatorname{declassify}(\mathrm{x}), \mathrm{d}):=[\operatorname{tmp}:=\mathrm{d} ; \mathrm{d}:=(\mathrm{x}, \mathrm{tmp})]$, where tmp is a new variable;
- Note that in the analysis \mathcal{A}, both y and z can be found from x after $\mathrm{x}:=(\mathrm{y}, \mathrm{z})$.
- $\mathcal{T}(s k i p, \mathrm{~d})=$ skip;
- $\mathcal{T}\left(\mathrm{P}_{1} ; \mathrm{P}_{2}, \mathrm{~d}\right)=\mathcal{T}\left(\mathrm{P}_{1}, \mathrm{~d}\right) ; \mathcal{T}\left(\mathrm{P}_{2}, \mathrm{~d}\right)$;

Program transformation (2/3)

$\mathcal{T}\left(\right.$ if b then P_{1} else $\left.\mathrm{P}_{2}, \mathrm{~d}\right):=$
$\mathrm{d}^{\prime}:=$ Nil; $\left[\right.$ if b then $\mathcal{T}\left(\mathrm{P}_{1}, \mathrm{~d}^{\prime}\right)$ else $\left.\mathcal{T}\left(\mathrm{P}_{2}, \mathrm{~d}^{\prime}\right)\right] ; \mathrm{tmp}:=\mathrm{d} ; \mathrm{d}:=\left(\mathrm{d}^{\prime}, \mathrm{tmp}\right)$
where d^{\prime} and tmp are new variables.
When proving $\xi\left(\mathcal{B}(\mathrm{P})\left(B_{\circ}\right)\right) \subseteq \mathcal{A}(\overline{\mathrm{P}})\left(\xi\left(B_{\circ}\right)\right)$ for
$\mathrm{P} \equiv$ if b then P_{1} else P_{2} by induction over program structure, then the set $\operatorname{Var}_{\mathrm{NS}}$ for P_{1} and P_{2} additionally contains d^{\prime}.

Program transformation (3/3)

- To define $\mathcal{T}($ while b do $\mathrm{P}, \mathrm{d})$, introduce the construct .* to the programming language.
- The semantics of P^{*} is the fix-point of iterating $\llbracket \mathrm{P} \rrbracket$. Similarly, $\mathcal{A}\left(\mathrm{P}^{*}\right)$ is the fix-point of iterating $\mathcal{A}(\mathrm{P})$.
- $\mathcal{T}($ while $b d o \mathrm{P}, \mathrm{d})$ is defined as
$\left[\mathrm{d}^{\prime}:=\mathrm{Nil} ;\left[\text { if } \text { b then } \mathcal{T}\left(\mathrm{P}, \mathrm{d}^{\prime}\right) \text { else skip }\right] ; \operatorname{tmp}:=\mathrm{d} ; \mathrm{d}:=\left(\mathrm{d}^{\prime}, \mathrm{tmp}\right)\right]^{*}$,
where d^{\prime} and tmp are new variables.

Addendum to the analysis \mathcal{A}

Let the program P be
$\mathrm{x}_{1}:=\mathrm{N} ? \mathrm{x}_{1}^{\text {true }}: \mathrm{x}_{1}^{\text {false }} ; \mathrm{x}_{2}:=\mathrm{N} ? \mathrm{x}_{2}^{\text {true }}: \mathrm{x}_{2}^{\text {false }} ; \cdots ; \mathrm{x}_{\mathrm{k}}:=\mathrm{N} ? \mathrm{x}_{\mathrm{k}}^{\text {true }}: \mathrm{x}_{\mathrm{k}}^{\text {false }}$
Let A_{\circ} be the initial analysis information. Let

$$
\begin{aligned}
X & \subseteq \operatorname{Var} \backslash\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\} & (X, \mathrm{~N}) & \in A_{\circ} \\
Y & \subseteq\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{k}}\right\} & \left(X \cup Y^{\text {true }}, \mathrm{x}_{\mathrm{i}}^{\text {true }}\right) & \in A_{\circ} \\
\mathrm{i} & \in\{1, \ldots, \mathrm{k}\} & \left(X \cup Y^{\text {false }}, \mathrm{x}_{\mathrm{i}}^{\text {false }}\right) & \in A_{\circ}
\end{aligned}
$$

then we may take $\left(X \cup Y, \mathrm{x}_{\mathrm{i}}\right) \in A_{\text {• }}$.

This addendum is necessary for relating \mathcal{A} and \mathcal{B}.

Concluding remarks

- Relative secrecy can be used to give semantics to some constructs.
- It may also be a tool for modularizing the security analysis.
- Particularly in the case, when the security of different operations has different flavor.
- Information-theoretic, complexity-theoretic, etc.
- The "right way" of defining the transfer functions is not yet so clear.
- I.e. the way that gives the most intuitive analysis results.
- The intuition itself does not yet exist.

