
Relative Secrecy
and

Semantics of Declassification
Peeter Laud

peeter_l@ut.ee

Tartu Ülikool
Cybernetica AS

Supported by the Tiger University Project of Estonian Information Technology Foundation

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.1/23

Problem statement

Program

secret inputs public outputs

non-secret outputsother inputs

other outputs

Does the program satisfy the following secrecy condition?

The public outputs are made public. . .

but nothing must be revealed about the secret inputs. . .

except that we have determined that revealing
non-secret outputs will not expose anything sensitive.

Formal definition? Program analysis?

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.2/23

Structure of the talk

Syntax of language, etc.

Security definition.

Program analysis.
Analysis domain, simplifying assumptions.

These assumptions do not lessen the generality.
Transfer functions (a framework for them).

The declassify-statement.
Simple program analysis (unconnected to
semantics).
Rewriting declassify-statements.
Relation of two analyses.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.3/23

Program Language

The WHILE-language.

P ::= x := o(x1, . . . , xk)

| skip

| P1; P2

| if b then P1 else P2

| while b do P
′

The set of program states State is Var → Val.
x, x1, . . . , xk, b ∈ Var, o ∈ Op.

Secret inputs — initial values of variables in VarS ⊆ Var

Public outputs — final values of variables in VarP ⊆ Var

Non-secret outputs — final values of variables in VarNS

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.4/23

Type of deterministic semantics

The denotational semantics maps program’s input state
to its output state.

[[P]] : State → State⊥

defined inductively over program structure;
State⊥ = State ∪̇{⊥};
⊥ denotes nontermination.

For now, our approach is termination-insensitive.
Issues with termination are probably orthogonal to
other issues.
we therefore assume [[P]] : State → State.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.5/23

Non-interference

Usual definition:
The values of program’s public outputs must be determined
by the values of its “other” inputs.

∃f : (Var\VarS → Val) → (VarP → Val)

such that for all S ∈ State

[[P]](S)|VarP
= f(S|Var\VarS

) .

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.6/23

Relative secrecy

With non-secret outputs:
The values of program’s public outputs must be determined
by the values of its “other” inputs and its non-secret outputs.

∃f : (Var\VarS → Val) × (VarNS → Val) → (VarP → Val)

such that for all S ∈ State

[[P]](S)|VarP
= f(S|Var\VarS

, [[P]](S)|VarNS
) .

We let S1 =X S2 denote S1|X = S2|X , where X ⊆ Var.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.7/23

Relative secrecy

In other words: for all S1, S2 ∈ State:

S1 =Var\VarS
S2 ∧ [[P]](S1) =VarNS

[[P]](S2) ⇒

[[P]](S1) =VarP
[[P]](S2)

If we assume P does not change the variables in Var\VarS

(this assumption is w.l.o.g), then

[[P]](S1) =Var\VarS
[[P]](S2) ∧ [[P]](S1) =VarNS

[[P]](S2) ⇒

[[P]](S1) =VarP
[[P]](S2)

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.8/23

Abstract domain

Given S ⊆ State and X, Y, Z ⊆ Var, we are interested if

S1 =X S2 ∧ S1 =Y S2 ⇒ S1 =Z S2

holds for all S1, S2 ∈ S.

It can be found if we know for all X ⊆ Var and z ∈ Var if

S1 =X S2 ⇒ S1(z) = S2(z)

holds for all S1, S2 ∈ S.

We abstract P(State) by P(P(Var) × Var).
Let α be the abstraction function.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.9/23

Analysis — overall approach

Let A◦ be the abstraction of the set of possible input
states.

Apply the abstract semantics of P to A◦, giving A•.
A• approximates the abstraction of the set of
possible output states.
It is a conservative approximation — some pairs
(X, z) may be missing.

If
(

(Var\VarS) ∪ VarNS, x
)

∈ A• for all x ∈ VarP, then
consider the program secure.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.10/23

Properties of abstraction

Let A = α(S) for some S ∈ State. Then
({z}, z) ∈ A,
(X, z) ∈ A ⇒ (X ∪ Y, z) ∈ A,
(X ∪ {y}, z) ∈ A ∧ (X, y) ∈ A ⇒ (X, z) ∈ A

hold for all X, Y ⊆ Var and y, z ∈ Var.

If A ⊆ P(Var) ×Var satisfies these implications then we
call A closed.

The closure of A is the smallest closed set containing A.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.11/23

Analysis of assignments

The analysis A(x := o(x1, . . . , xk)), applied to A◦, will
construct A• by

kill x, i.e. remove all (X, z) where x ∈ X or x = z;
add ({x1, . . . , xk}, x);
construct the closure.

(we assume that x 6∈ {x1, . . . , xk})

If some xi can be found from some set
X ⊆ {x, x1, . . . , xk} after the operation, then also add
(X, xi) during the second step.

Example: y can be found from {x, z} after x := y + z.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.12/23

Analysis of skip and composition

A(skip) is the identity function.

A(P1; P2) = A(P2) ◦ A(P1).

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.13/23

Analysis of if − then − else

Consider the program if b then P1 else P2.
Let {x1, . . . , xk} = Varasgn ⊆ Var be
the set of variables assigned to in
P1 and/or P2.

Let Var′ = Var ∪̇
{N, xtrue

1
, . . . , xtrue

k
, xfalse

1
, . . . , xfalse

k
}

Program at right has the same
functionality.

P
true
1 is P1, where each xi is

replaced with xtrue
i

.

Similarly for P
false
2 .

N := b

xtrue
1

:= x1

xfalse
1

:= x1
. . .
xtrue
k

:= xk

xfalse
k

:= xk

P
true
1

P
false
2

x1 := N ? xtrue
1

: xfalse
1

. . .
xk := N ? xtrue

k
: xfalse

k

Analyse the program at right instead.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.14/23

Analysis of while

A(while b do P), applied to A◦, repeatedly applies
A(if b then P else skip) to it, until reaching a fix-point.

Correctness follows from

[[while b do P]] = [[while b do P]] ◦ [[if b then P else skip]] .

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.15/23

The declassification statement

We add the statement

declassify(x),

where x ∈ Var to the language.

Its semantics is equal to that of skip.

Its intuitive meaning — currently the value of variable x

does not give away anything about the secret inputs.

This intuitive meaning is reflected in the analysis.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.16/23

A simple analysis with declassification

Consider a simple analysis that maps initial public
variables to final public variables.

B(P) : P(Var) → P(Var), where the domain and range
are sets of public variables.

B(x := o(x1, . . . , xk))(B◦) =

{

B◦ ∪ {x}, if x1, . . . , xk ∈ B◦

B◦\{x}, otherwise.

B(declassify(x))(B◦) = B◦ ∪ {x}

Other statements: as before.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.17/23

The relationship of analyses

Let B ⊆ Var. Given VarS and VarNS, let

ξ(B) := {
(

(Var\VarS) ∪ VarNS, x
)

: x ∈ B} .

The function ξ binds the domains of B and A.

We want to define a program transformation · and a set
VarNS, such that for all programs P and B◦ ⊆ Var:

ξ
(

B(P)(B◦)
)

⊆ A(P)(ξ(B◦)) .

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.18/23

Program transformation (1/3)

Let d be a new variable. Then

P :=
[

d := Nil; T(P, d)
]

and VarNS = {d}. Here T works as follows:

T(x := o(x1, . . . , xk), d) =
[

x := o(x1, . . . , xk)
]

;

T(declassify(x), d) :=
[

tmp := d; d := (x, tmp)
]

, where tmp

is a new variable;
Note that in the analysis A, both y and z can be
found from x after x := (y, z).

T(skip, d) = skip;

T(P1; P2, d) = T(P1, d); T(P2, d);

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.19/23

Program transformation (2/3)

T(if b then P1 else P2, d) :=

d′ := Nil;
[

if b then T(P1, d
′) else T(P2, d

′)
]

; tmp := d; d := (d′, tmp)

where d′ and tmp are new variables.

When proving ξ
(

B(P)(B◦)
)

⊆ A(P)(ξ(B◦)) for
P ≡ if b then P1 else P2 by induction over program structure,
then the set VarNS for P1 and P2 additionally contains d′.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.20/23

Program transformation (3/3)

To define T(while b do P, d), introduce the construct ·∗ to
the programming language.

The semantics of P
∗ is the fix-point of iterating [[P]].

Similarly, A(P∗) is the fix-point of iterating A(P).

T(while b do P, d) is defined as
[

d′ := Nil;
[

if b then T(P, d′) else skip
]

; tmp := d; d := (d′, tmp)
]∗

,

where d′ and tmp are new variables.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.21/23

Addendum to the analysis A

Let the program P be

x1 := N ? xtrue
1

: xfalse
1

; x2 := N ? xtrue
2

: xfalse
2

; · · · ; xk := N ? xtrue
k

: xfalse
k

Let A◦ be the initial analysis information. Let

X ⊆ Var\{x1, . . . , xk} (X, N) ∈ A◦

Y ⊆ {x1, . . . , xk} (X ∪ Y true, xtrue
i

) ∈ A◦

i ∈ {1, . . . , k} (X ∪ Y false, xfalse
i

) ∈ A◦

then we may take (X ∪ Y, xi) ∈ A•.

This addendum is necessary for relating A and B.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.22/23

Concluding remarks

Relative secrecy can be used to give semantics to
some constructs.

It may also be a tool for modularizing the security
analysis.

Particularly in the case, when the security of different
operations has different flavor.

Information-theoretic, complexity-theoretic, etc.

The “right way” of defining the transfer functions is not
yet so clear.

I.e. the way that gives the most intuitive analysis
results.
The intuition itself does not yet exist.

Dagstuhl seminar “Language-based Security”, 5.-10.10.2003 – p.23/23

	
	Problem statement
	Structure of the talk
	Program Language
	Type of deterministic semantics
	Non-interference
	Relative secrecy
	Relative secrecy
	Abstract domain
	Analysis --- overall approach
	Properties of abstraction
	Analysis of assignments
	Analysis of $skipstmt $ and composition
	Analysis of $mathit {if}-mathit {then}-mathit {else}$
	Analysis of $mathit {while}$
	The declassification statement
	A simple analysis with declassification
	The relationship of analyses
	Program transformation (1/3)
	Program transformation (2/3)
	Program transformation (3/3)
	Addendum to the analysis $mathcal {A}$
	Concluding remarks

