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Abstract. In this paper, we present a secure multiparty computation
(MPC) subroutine for obliviously permuting elements in a private vector.
The subroutine makes use of the private data representations used in the
SPDZ protocol set; it can be composed with other privacy-preserving
operations in this set and it also provides active security with abort. The
online computation and communication complexity of the subroutine is
linear in the length of the permuted vector.

1 Introduction

Large secure multiparty computation (MPC) protocols are constructed on top of
MPC frameworks supporting a small number of primitive operations with private
data — input, output, addition, multiplication, conversions between integers and
bit-strings. These operations do not hide, which memory locations they access,
thus only supporting data-oblivious computations.

Certain frameworks support oblivious permutations that shuffle a vector of
private values in a manner that keeps the reordering private as well. Efficient
oblivious permutations are a useful subroutine for certain non-data-oblivious
algorithms, in particular the fast algorithms for sorting [11, 6], as well as for the
declassification of certain values without leaking their location in memory [5, 1].

Currently, truly efficient oblivious permutations (number of primitive opera-
tions being linear in the length of the vector, with small multiplicative overhead)
are supported only by MPC protocol sets with passive security and honest ma-
jority [16]. In this short paper, we show how to add them to the well-known
SPDZ [10] protocol set, which supports dishonest majority, as well as fail-stop
security (active attacks are detected). In SPDZ, the computation is split into
input-independent offline and efficient online phases. We describe the online
phase of oblivious permutations, state which offline precomputations our proto-
col requires, and discuss the possible implementations of the offline phase. We
state the security properties of both the online and offline phase, and argue the
security of our protocol.
State of the Art. Applying a sorting network to a random vector is the folk
method for random permutations. Laur et al. [16] gave the most widely used
permutation protocol for passively secure MPC; it’s (communication) complexity
is O(m) · 2O(n) (elements of vectors), where m is the length of the vector and n
the number of parties in the MPC protocol. The protocol is very efficient for a
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small n. Asharov et al. [2] gave a protocol with O(m logm) complexity, based
on techniques used for ORAM.

Oblivious (extended) permutations are needed for private function evalua-
tion. Mohassel et al. [17] achieve active security through a combination of MPC
and Mix-nets. Laud et al. [14] obtain it through post-execution verification, using
precomputed permutation tuples. Such tuples form one half of our solution.

Encodings of RAM computations for zero-knowledge proofs requires stating
that certain vectors describing memory accesses are permutations of each other.
Here, besides the earlier permutation network based solutions [4], Bootle et al. [7]
proposed a linear-time construction based on showing the equality of polynomials
that have the elements of one of the vectors as its roots [18]. Such polynomial
equality checking forms the second half of our solution.

Our approach is also an instance of first performing the computations with
passive security (but with privacy also against active attackers), and then veri-
fying the results using an actively secure protocol [12, 15].
Notation. The elements of a vector ~v are denoted v1, v2, . . .. Given a vector ~v of
lengthm, and a permutation π ∈ Sm (where Sm is the symmetric group of all per-
mutations on m elements), we let π(~v) denote the vector (vπ(1), vπ(2), . . . , vπ(m)).
We write ~w ← ~u + ~v to denote that ~w is the pointwise sum of ~u and ~v; other
operations may be used similarly. We use [m] to denote the set {1, . . . ,m}.
SPDZ [10] is an MPC protocol for n parties, tolerating up to (n−1) static active
corruptions, and providing fail-stop security, i.e. misbehaviour by a corrupted
party is detected, but the party is not ousted. Also, the misbehaviour does not
impact the privacy of honest parties. The protocol executes an arithmetic circuit
over a large finite field F, with all values secret-shared among the parties. The
protocol works has offline (input-independent) and online phases; in the offline
phase each party Pi has selected a private value αi (denote α = α1 + · · · +
αn), and parties have executed “heavyweight” protocols to generate correlated
values usable for linearizing all operations of the arithmetic circuit. In online
phase, the private representation JxK of a value x is a tuple of random values
((JxK1, γ(x)1), . . . , (JxKn, γ(x)n)), with the i-th party knowning JxKi and γ(x)i,
and with the values satisfying JxK1+· · ·+JxKn = x and γ(x)1+· · ·+γ(x)n = α·x
(this is called the “MAC of JxK”). Linear computations with private values can
be done locally by parties. Multiplication triples generated during the offline
phase are used for multiplication; the opening of values creates obligations to
check that the MAC of the opened value is correct. MAC checks can be done
without revealing α. Several MAC checks cost the same as one.

2 Offline phase

In Fig. 1 we present our additions to the ideal functionality Fprep for the offline
phase of SPDZ. They allow each pair of parties to obtain additive shares of a
permutation of a vector, with the first party providing the permutation π ∈ Sm
and the second party also learning the vector. The correctness of the outputs is
not guaranteed if the parties are corrupt, but privacy still is. We call (π, ~z; ~x, ~y)
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On input Shuffle(m,Pj , Pk, π) from Pj and Shuffle(m,Pj , Pk) from Pk:

0. Ignore the query, if both Pj and Pk are corrupted
1. Pick random vectors ~x, ~y ∈ Fm. Put ~z = π(~x)− ~y
2. Set Xj = 〈π, ~z〉 and Xk = 〈~x, ~y〉
3. If Pc is corrupted and Ph is honest ({c, h} = {j, k}), then

– Output Xc to Pc and the adversary
– Get the description of a polynomial-time algorithm A from the adversary
– Output A(Xh) to Ph

4. Otherwise (both Pj and Pk are honest), output Xj to Pj and Xk to Pk

Fig. 1. Addition to the ideal functionality Fprep of the offline phase

a permutation tuple. A possible corresponding real implementation Πprep is dis-
cussed by Chase et al. [8] under the name Permute-and-Share, including the
trade-offs for executing the protocol several times in parallel with the same π.

3 Online phase

In the online phase, when evaluating an arithmetic circuit, we want to take a
number of already computed values, treat them as a vector, apply an oblivious
permutation to them, and continue computations with the permuted values.
Existing algorithms [11, 13] use oblivious permutations in a couple of different
ways. The operations we present below as additions to the SPDZ protocol set
Πonline cover all these ways.

3.1 Randomly permuting a vector

There is a private vector J~vK of length m, the elements of which we want to
permute, with no party, or a coalition of up to (n− 1) parties learning anything
about the permutation. The protocol for this operation is given in Fig. 2.

We see that during the i-th iteration of the main loop, the current share of
each party Pj (j 6= i) gets permuted with πi and then additively shared between

Pi and Pj . Here the share of Pj is ~y
(i,j)
1 (for the “value itself”) and ~y

(i,j)
2 (for the

MAC), while the share for Pi is ~rij and ~sij [14]. Having obtained such shares
from every other party, Pi defines his share for the next round be adding them
all up (step 1.3). In step (1.1.1), Pj sends his current shares to Pi, but they

are masked with random vectors ~x
(i,j)
k , hence there is no leakage. All parties

contribute to the resulting permutation π = π1 ◦ · · · ◦ πn, hence it stays private.
After the n-th iteration, parties obtain the shares of the output vector J~v(n)K.

In steps (2)–(3), the parties verify that ~v(n) is indeed a permutation of ~v(0).
For any vector ~u ∈ Fm, define the polynomial f~u(X) ∈ F[X] by f~u(X) =∏m
i=1(X−ui). Two polynomials f~u, f~u′ are equal if ~u and ~u′ are permutations of

each other [18]. In steps (2)–(3), this polynomial equality is tested by evaluating
f~v(0) and f~v(n) at a random point r and making sure that their difference is 0
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Input: private vector J~v(0)K of length m.
Output: private vector J~v(n)K, such that ~v(n) is a permutation of ~v(0)

Offline:
(1) Each party Pi selects a random permutation πi of length m.
(2) Each pair of parties Pi, Pj runs two instances of Fprep.Shuffle, with Pi providing

the input πi. Let the result of k-th instance be ~z
(i,j)
k for Pi and ~x

(i,j)
k , ~y

(i,j)
k for Pj

Online:
(1) For i going from 1 to n, do the following:
(1.1) For each j different from i, do the following:

(1.1.1) Pj sends ~w
(i,j)
1 ← J~v(i−1)Kj − ~x(i,j)1 and ~w

(i,j)
2 ← γ(~v(i−1))j − ~x(i,j)2 to Pi

(1.1.2) Pi computes ~rij ← πi(~w
(i,j)
1 ) + ~z

(i,j)
1 and ~sij ← πi(~w

(i,j)
2 ) + ~z

(i,j)
2

(1.1.3) Pj defines shares of the next round: J~v(i)Kj = ~y
(i,j)
1 and γ(~v(i))j = ~y

(i,j)
2 .

(1.2) Pi computes ~rii ← πi(J~v(i−1)Ki) and ~sii ← πi(γ(~v(i−1))i)

(1.3) Pi defines shares of the next round: J~v(i)Ki =
∑
j ~r

(i)
ij and γ(~v(i))i =

∑
j ~s

(i)
ij .

(2) Parties pick fresh random JrK, Jr′K ∈ F, and Reveal r // SPDZ supports this

(3) Parties check whether Reveal
(
Jr′K · (

∏m
i=1(r − Jv(n)i K)−

∏m
i=1(r − Jv(0)i K))

)
= 0

Fig. 2. Obliviously shuffling a private vector

(masking the result with r′ before opening it). We know that if the polynomial
f~v(n) − f~v(0) is non-zero, then it has at most m roots, hence the probability of
test (2)–(3) falsely accepting is at most m/|F|.

The equality check for polynomials involves a number of multiplications,
whose implementation includes the check of MACs on the multiplicands. Obvi-
ously, all these MAC checks have to pass before the value f~v(n)(r) − f~v(0)(r) is
revealed in the equality check.

Complexity With n computing parties and a vector of length m, the round
complexity (of the online phase) of the protocol is O(n+logm). Here O(n) comes
from the the loop (1) and O(logm) comes from the computation of the products
of length m in (3). The logm term can be removed at the cost increasing the
number of (binary) multiplications several times [3].

The communication complexity of the online phase is O(n2m), when we con-
sider the elements of F to have constant size. This holds, because at each itera-
tion of the loop (1), one party exchanges O(m) elements of F with every other
party. The communication complexity of the offline phase is somewhat larger
than O(n2m), because an implementation of a single invocation of Fprep.Shuffle
needs somewhat more than O(m) communication [8].

3.2 Creating a random permutation and applying it

We may also want to “create and store” a random oblivious permutation, such
that it can be applied to several vectors during the later steps of the computation.
For the creation, we pick a vector ~u(0) ∈ Fm, where all elements are different,
classify it, and apply the protocol in Fig. 2 to it. To represent this permutation
π, each party stores his πi. Also, the protocol stores both J~u(0)K and J~u(n)K.
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Input: private vector J~v(0)K of length m, and private vectors J~u(0)K, J~u(n)K representing
a private permutation π. Each party Pi also has π, such that π1 ◦ · · · ◦ πn = π.
Output: private vector J~v(n)K, such that v

(n)
i = v

(0)

π(i) for all i ∈ [m].
Offline:
Each pair of parties Pi, Pj runs two instances of Fprep.Shuffle, with Pi providing the

input πi. Let the result of k-th instance be ~z
(i,j)
k for Pi and ~x

(i,j)
k , ~y

(i,j)
k for Pj

Online:
Apply the steps (1) of the online phase of Fig. 2, obtaining J~v(n)K
(2) Parties pick fresh random JrK, Jr′K, JsK ∈ F and Reveal r, s
(3) Parties evaluate the following expression, open it, and check that it is 0

Jr′K ·
(∏m

i=1
(r − Jv(n)i K− s · Ju(n)

i K)−
∏m

i=1
(r − Jv(0)i K− s · Ju(0)

i K)
)

Fig. 3. Applying a private permutation to a private vector

The protocol for applying a stored π to a private vector J~v(0)K is given in
Fig. 3. It assumes that the identity of the permutation we want to apply is
already known during the offline phase. This is a natural assumption, if, during
the offline phase, we already know the computation that we want to do once
we have the data. Even if the assumption does not hold, the protocol in Fig. 3
can still be used, because a permutation tuple (ρ, ~z; ~x, ~y) for parties Pi, Pj with
a random permutation ρ can easily be converted to another permutation tuple
with an arbitrary permutation τ known to Pi by Pi sending ρ−1 ◦ τ to Pj , which
the parties then apply to ~z and ~y. If ρ is a random permutation then it is a
sufficient mask for that message, preserving the privacy of τ from Pj .

The functionality and privacy arguments of this protocol are the same as for
the protocol in Fig. 2. For the correctness check, consider the bivariate polyno-
mial g~u,~v ∈ F[X,Y ] for ~u,~v ∈ Fm, defined by g~u,~v(X,Y ) =

∏m
i=1(X − vi − uiY ).

By our arguments in Sec. 3.1, two polynomials g~u,~v and g~u′,~v′ are equal iff the
vector of polynomials (v1 + u1Y, . . . , vm + umY ) is a permutation of the vector
(v′1 + u′1Y, . . . , v

′
m + u′mY ). But this is only possible if ~u′ is a permutation of ~u,

and ~v′ is the same permutation of ~v. In Fig. 3, we check the equality of g~u(n),~v(n)

and g~u(0),~v(0) by evaluating their difference at a random point (r, s) and checking
that it is zero (again masking with r′). We thus obtain that the permutation
that brings ~v(0) into ~v(n) is the same that brought ~u(0) into ~u(n).

3.3 Applying the inverse of a random permutation

After creating and storing the representation J~u(0)K, J~u(n)K of a random permu-
tation π, we may want to apply π−1 to a private vector J~v(0)K [13]. The protocol
for this application is basically the same as the one given in Fig. 3, with the
following differences: (a) the offline phase is executed with inputs π−11 , . . . , π−1n ,
(b) the main loop (iterations indexed by i) runs from n down to 1, and (c) the

test in step (3) swaps Jv(n)i K and Jv(0)i K.
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3.4 Optimizations

As remarked by Chase et al. [8], running in parallel several instantiations of the
implementation of Fprep.Shuffle with the same permutation π may have better
communication complexity than running them independently. Our online phase
requires several permutation tuples with the same permutation, if the overlaying
privacy-preserving computation invokes the protocol in Fig. 3 many times, hence
the parallel execution is a natural fit.

In the offline phase, we generate permutation tuples of the form (π, ~z; ~x, ~y).
When applying the inverse of a permutation, we need permutation tuples that
contain π−1. We can anticipate that need and create these tuples separately.
However, we can also transform the tuple (π, ~z; ~x, ~y) into the permutation tuple
(π−1, π−1(−~z); ~y, ~x) with no interaction between the parties.

4 Security analysis

In previous section, we presented our additions to the protocol Πonline. The
extended Πonline is required to be at least as secure as the extended ideal func-
tionality Fonline. The extensions to latter consist of idealized versions to permute
a vector, make a random permutation, and apply it, all working with handles to
private values, and all abortable by the adversary. For space reasons, we omit
precise descriptions.

Security is proved by giving a simulator between Fonline and Πonline. The
simulator runs a copy of the real protocol inside, using real inputs of corrupted
parties (which the adversary gave to the machines implementing the protocol
on behalf of those parties), and dummy inputs for honest parties. The adver-
sary cannot tell the difference between Πonline and Fonline‖Sonline, because all
messages the honest parties send to corrupted parties are uniformly random.
Whenever a value y is revealed, which may happen at the end of the protocol,
or at other steps of the overlaying algorithm (e.g. after comparisons in a non-
data-oblivious sorting algorithm), Fonline tells Sonline, what the value of y is.
The simulator then obtains the shares of corrupted parties from the adversary,
and adjusts the shares of the honest parties, such that they add up to y. The
same additive correction is applied to honest parties’ shares of γ(y) (the sim-
ulator knows α). If the subsequent MAC check between the simulator and the
adversary fails, then the simulator tells Fonline to stop.

The evaluation of the check in step (3) of Figs. 2–3 does not involve Fonline.
It is performed by Sonline and the adversary. If it fails (the MACs do not pass
the check, or the computed difference is non-zero), then Sonline tells Fonline to
stop. Again, the view of the adversary during this check consists of uniformly
randomly distributed values in F.

5 Conclusions

This paper gives the first presentation of an efficient permutation protocol for
secure MPC, with security against active adversaries, and with compatibility
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towards the well-known SPDZ protocol set. Both the communication complexity
and the round complexity of the online phase of the protocol are highly attractive
in the context of a small number of computing parties, which is expected to be
the most frequent use-case. This opens up a large body of efficient algorithms,
built on top of passively secure, honest-majority MPC systems, for conversion
onto systems with active security.

Our future work involves the choice of implementation details for both the
online and offline phases of our protocols. It is also worthwhile to study, to which
extent our protocols are adaptable to other rings, similarly to SPDZ [9].
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