On the computational soundness of cryptographically masked flows

Peeter Laud

peeter.laud@ut.ee

http://www.ut.ee/~peeter_l

Tartu University & Cybernetica AS & Institute of Cybernetics

Motivation

- Usual non-interference too strong for programs with encryption.
- Cryptographic security definitions
 - use complex domains,
 - are notationally heavy.
- The definitions for computational non-interference suffer from the same problems.
- Could we abstract from these definitions? Is there some formalism, where
 - the domain and the definition of non-interference were more "traditional",
 - In NI for a program in this domain would mean computational NI for the "same" program in the real-world semantics?

Cryptographically masked flows

- Aslan Askarov, Daniel Hedin, Andrei Sabelfeld. Cryptographically-Masked Flows. SAS 2006.
- A proposal for the formalism that abstracts away complexity-theoretic details, but leaves (most of) everything else intact.
- Encryption is modeled non-deterministically.
- Possibilistic non-interference with extra leniency for encrypted values.
- Does NI in this model imply computational NI? Are cryptographically masked flows computationally sound?
- Acknowledgement: the above question was asked by David Sands during our Dagstuhl-event.

The programming language

In this talk: The WHILE-language with extra operations:

- key generation, encryption, decryption
- pairing, projection
- In the [AHS06]-paper: more...
 - Parallel processes with global variables and message channels
 - Two encryption schemes (one for public values only)

Semantics

- Big-step SOS from a configuration to a set of final states.
- The state consists of
 - The memory mapping from variables to values;
 - The "key-stream" the values of keys generated in the future.
- All operations, except encryption, are deterministic.

Encryption Systems

- Three algorithms:
 - \mathcal{K} key generation, zero arguments, probabilistic;
 - \mathcal{E} encryption, two arguments, probabilistic;
 - \mathcal{D} decryption, two arguments, deterministic.
- Correctness: $\mathcal{D}(k, \mathcal{E}(r; k, x)) = x$ for all
 - keys k that can be output by \mathcal{K} ;
 - possible random coins r used by \mathcal{E} .
- The random coins used by *E* are called the *initial vector*.
- **\square** may produce an error.

Semantics

- Big-step SOS from a configuration to a set of final states.
- The state consists of
 - The memory mapping from variables to values;
 - The "key-stream" the values of keys generated (by \mathcal{K}) in the future.
- All operations, except encryption, are deterministic.
- Encryption models the randomized encryption algorithms of the real world:
 - To encrypt x with the key k, choose an *initial vector* r and compute $\mathcal{E}(r; k, x)$.
 - In reality, r is chosen probabilistically, here it is modeled by non-deterministic choice.

Low-equivalence of memories

- \checkmark Let the variables be partitioned to $\mathbf{Var}_{\mathrm{H}}$ and $\mathbf{Var}_{\mathrm{L}}$.
- Let the values be tagged with their types key, encryption, pair, other (integer).
- \checkmark $n \sim_{\mathrm{L}} n;$
- $k \sim_{\mathrm{L}} k;$
- $\mathcal{E}(r; k_1, x_1) \sim_{\mathbf{L}} \mathcal{E}(r; k_2, x_2)$ for all x_1, x_2, k_1, k_2 .
- $S_1 \sim_L S_2$ if $S_1(x) \sim_L S_2(x)$ for all $x \in \operatorname{Var}_L$.

Possibilistic non-interference

Program *P* is non-interfering if

- for all states S_1, S_2 and keystreams G_1, G_2 , such that $S_1 \sim_L S_2$
- It $S_i = \{S' \mid (S_i, G_i) \longrightarrow (S', G')\}$ for $i \in \{1, 2\}$, then
- for all $S'_1 \in S_1$
- there must exist $S'_2 \in S_2$
- such that $S'_1 \sim_L S'_2$.

(and vice versa)

"Real-world" semantics

- Big step SOS maps an initial configuration to a probability distribution over final states.
 - Let us not consider non-termination.
 - And assume that the program terminates in a reasonable number of steps.
- Initial state is distributed according to some D.
- The program P is non-interferent if no algorithm A using a reasonable amount of resources can guess b from

$$b \leftarrow_R \{0, 1\}, S_0, S_1 \leftarrow D$$

 $S' \leftarrow \llbracket P \rrbracket(S_b)$
give $(S_0|_{\mathbf{Var}_H}, S'|_{\mathbf{Var}_L})$ to \mathcal{A}

Soundness theorem

If the program P satisfies the following conditions:

_ ...

- and the encryption system satisfies the following conditions
 - IND-KDM-CPA- and INT-PTXT-security
- and P satisfies possibilistic non-interference
- then P satisfies computational non-interference.

- The conditions put on P should be verifiable in the possibilistic model.
 - Otherwise we lose the modularity of the approach.

Condition: ciphertexts only from \mathcal{E}

- $\checkmark \sim_{\rm L}$'s relaxed treatment of ciphertexts must be restricted to values produced by the encryption operation.
- Otherwise, consider the following program:

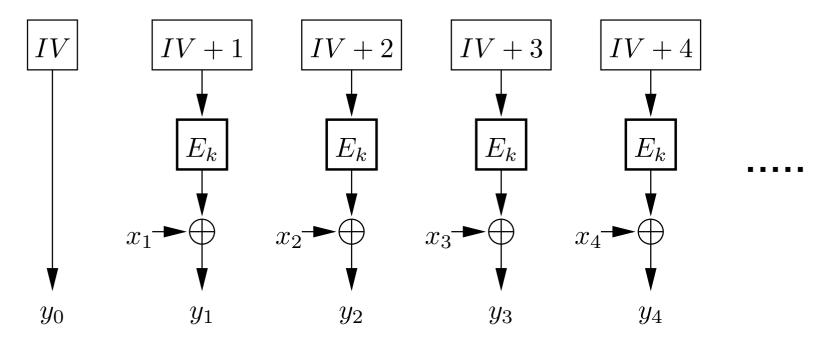
$$k := \mathsf{newkey}; p_1 := \mathsf{enc}(k, \mathbf{s})$$
$$r := \mathsf{getIV}(p_1); p_2 := \widetilde{\mathsf{enc}}(r+1; k, \mathbf{s})$$

Initial state $({s \mapsto v_s}, v_k :: G)$ is mapped to

$$\left\{ \left\{ p_1 \mapsto \mathcal{E}(v_r; v_k, v_s), p_2 \mapsto \mathcal{E}(v_r + 1; v_k, v_s) \right\} \middle| v_r \in \mathbf{Coins} \right\}$$

that does not depend (for $\sim_{
m L}$) on initial secrets.

Counter mode of using a block cipher



- A good encryption system.
- If we used it on the previous slide, then we could learn $v_{s1} \oplus v_{s2}$, $v_{s2} \oplus v_{s3}$, $v_{s3} \oplus v_{s4}$,...

Security of encryption systems

• Let \mathcal{O}_0 and \mathcal{O}_1 be the following interactive machines:

- on initialization, generate $k \leftarrow \mathcal{K}()$;
- on query $x \in \{0,1\}^*$
 - \mathfrak{O}_0 returns $\mathcal{E}(k, x)$,
 - \mathfrak{O}_1 returns $\mathcal{E}(k, 0^{|x|})$.
- Encryption system is IND-CPA-secure if no reasonably powerful adversary \mathcal{A} can guess b from the interaction with \mathcal{O}_b .
- **IND-CPA** with multiple keys: O_0 and O_1
 - on initialization generate $k_i \leftarrow \mathcal{K}()$ for all $i \in \mathbb{N}$;
 - on query (i, x) use the key k_i for x as before.
- IND-CPA with multiple keys is equivalent to IND-CPA.

More security considerations

- Encryption cycles are not excluded, hence we must use encryption systems secure in the presence of key dependent messages.
- Our definition of possibilistic NI also hides
 - the identities of keys,
 - the length of messages.

IND-KDM-CPA

- Let \mathcal{O}_0 and \mathcal{O}_1 be the following:
 - On initialization
 - \mathfrak{O}_0 generates keys k_i , $i \in \mathbb{N}$;
 - \mathfrak{O}_1 generates the key k.
 - On input (*i*, *e*) where *e* is an expression with free variables *k_j* the machine O₀
 - evaluates e, letting k_j refer to its keys,
 - encrypts the result with k_i and returns it; and the machine \mathcal{O}_1 returns $\mathcal{E}(k, 0^{\text{const}})$.
- If no reasonably powerful adversary A can guess b from the interaction with Ob then the encryption system is IND-CPA-secure, which-key concealing and length-concealing in the presence of key-dependent messages.

Condition: keys used only at \mathcal{E} **and** \mathcal{D} ...

- ...and vice versa.
- Consider the program

 $k_1 := \text{newkey}; \text{if } \mathsf{B}(k_1) \text{ then } k_2 := k_1 \text{ else } k_2 := \text{newkey } \mathbf{fi}; \dots$

• Afterwards, k_2 is not distributed as coming from \mathcal{K} .

What may be decrypted

- The possibilistic semantics only allows to decrypt legitimate ciphertexts.
- We may phrase this as a condition on the programs.
- Or we may require that the encryption system provides integrity for plaintexts:
- Let 0 be the following:
 - On initialization, it generates $k \leftarrow \mathcal{K}()$;
 - On query x, it returns $\mathcal{E}(k, x)$.
- No reasonably powerful adversary \mathcal{A} interacting with \mathfrak{O} may be able to produce a ciphertext c, such that
 - $\mathcal{D}(k,c) = m$ (i.e. \mathcal{D} does not fail);
 - \mathcal{A} did not query \mathcal{O} with m.

Enforcing those conditions

 \checkmark Give types to variables: the types τ are

 $\tau ::= int \mid key \mid enc(\tau) \mid (\tau, \tau)$

- ✓ We may want to compute with ciphertexts, hence we subtype $enc(\tau) \leq int$.
- Types of operations:
 - arithmetic operations: $int^k \rightarrow int$;
 - pairing: $\tau_1 \times \tau_2 \rightarrow (\tau_1, \tau_2)$; *i*-th projection: $(\tau_1, \tau_2) \rightarrow \tau_i$;
 - key generation: $1 \rightarrow key$;
 - encryption: $key \times \tau \rightarrow enc(\tau)$; decryption: $key \times enc(\tau) \rightarrow \tau$;
 - **•** guards: *int*.
- [AHS06] already has such a type system.

Removing decryptions

Change the real-world program:

• Give names to keys: replace each k := newkey with

$$k := \mathsf{newkey}; k_{\mathsf{name}} := c; c := c + 1$$

• for each ciphertext record the key name and the plaintext in the auxiliary variables. Replace $y := \mathcal{E}(k, x)$ with

$$y := \mathcal{E}(k, x); y_{\text{keyname}} := k_{\text{name}}; y_{\text{ptext}} := x$$

• Replace the statements $x := \mathcal{D}(k, y)$ with

if $k_{\text{name}} = y_{\text{keyname}}$ then $x := y_{\text{ptext}}$ else $x := \bot$ fi

The low-visible semantics does not change.

$\textbf{Encryption} \rightarrow \textbf{random number gen.-tion}$

- Apply the definition of IND-KDM-CPA to the real-world program:
 - Replace each $\mathcal{E}(k, y)$ with $\mathcal{E}(k_0, 0)$.
- $\mathcal{E}(k_0, 0)$ generates random numbers according to a certain distribution.
- In the possibilistic NI, we also treat encryption as random number generation.
 - As only the initial vector matters.

Possib. secrecy \Rightarrow **probab. secrecy**

Let h be a number from 1 to 100. Consider the following program

if $rnd(\{0,1\}) = 1$ then l := h else $l := rnd(\{1, ..., 100\})$

- The possible values of l do not depend on h.
- But their distribution depends on h.
- We can come up with similiar examples in our language.
 Using *E* in place of rnd.
- Hence using ciphertexts in computations is questionable as well.
- Remove the subtyping $enc(\tau) \leq int$.

The conditions for the program

The variables are typed, as specified before.

 $\tau ::= int \mid key \mid enc(\tau) \mid (\tau, \tau)$

(no subtyping)

- The operations respect those types.
- Failures to decrypt are visible in the possibilistic semantics.

- Our theorem holds now.
 - In a program point, two ciphertexts are either equal or independent.