
On the computational soundness of
cryptographically masked flows

Peeter Laud
peeter.laud@ut.ee

http://www.ut.ee/˜peeter l

Tartu University & Cybernetica AS & Institute of Cybernetics

Mobius annual meeting, 05.-07.06.2007 – p. 1/23

Motivation

Usual non-interference too strong for programs with
encryption.

Cryptographic security definitions
use complex domains,
are notationally heavy.

The definitions for computational non-interference suffer
from the same problems.

Could we abstract from these definitions? Is there some
formalism, where

the domain and the definition of non-interference
were more “traditional”,
NI for a program in this domain would mean
computational NI for the “same” program in the
real-world semantics?

Mobius annual meeting, 05.-07.06.2007 – p. 2/23

Cryptographically masked flows

Aslan Askarov, Daniel Hedin, Andrei Sabelfeld.
Cryptographically-Masked Flows. SAS 2006.

A proposal for the formalism that abstracts away
complexity-theoretic details, but leaves (most of)
everything else intact.

Encryption is modeled non-deterministically.

Possibilistic non-interference with extra leniency for
encrypted values.

Does NI in this model imply computational NI? Are
cryptographically masked flows computationally sound?

Acknowledgement: the above question was asked by
David Sands during our Dagstuhl-event.

Mobius annual meeting, 05.-07.06.2007 – p. 3/23

The programming language

In this talk: The WHILE-language with extra operations:
key generation, encryption, decryption
pairing, projection

In the [AHS06]-paper: more. . .
Parallel processes with global variables and
message channels
Two encryption schemes (one for public values only)

Mobius annual meeting, 05.-07.06.2007 – p. 4/23

Semantics

Big-step SOS from a configuration to a set of final
states.

The state consists of
The memory — mapping from variables to values;
The “key-stream” — the values of keys generated in
the future.

All operations, except encryption, are deterministic.

Mobius annual meeting, 05.-07.06.2007 – p. 5/23

Encryption Systems

Three algorithms:
K — key generation, zero arguments, probabilistic;
E — encryption, two arguments, probabilistic;
D — decryption, two arguments, deterministic.

Correctness: D(k,E(r; k, x)) = x for all
keys k that can be output by K;
possible random coins r used by E.

The random coins used by E are called the initial vector.

D may produce an error.

Mobius annual meeting, 05.-07.06.2007 – p. 6/23

Semantics

Big-step SOS from a configuration to a set of final
states.

The state consists of
The memory — mapping from variables to values;
The “key-stream” — the values of keys generated
(by K) in the future.

All operations, except encryption, are deterministic.

Encryption models the randomized encryption
algorithms of the real world:

To encrypt x with the key k, choose an initial vector r

and compute E(r; k, x).
In reality, r is chosen probabilistically, here it is
modeled by non-deterministic choice.

Mobius annual meeting, 05.-07.06.2007 – p. 7/23

Low-equivalence of memories

Let the variables be partitioned to VarH and VarL.

Let the values be tagged with their types — key,
encryption, pair, other (integer).

n ∼L n;

k ∼L k;

x1 ∼L y1 ∧ x2 ∼L y2 ⇒ (x1, x2) ∼L (y1, y2);

E(r; k1, x1) ∼L E(r; k2, x2) for all x1, x2, k1, k2.

S1 ∼L S2 if S1(x) ∼L S2(x) for all x ∈ VarL.

Mobius annual meeting, 05.-07.06.2007 – p. 8/23

Possibilistic non-interference

Program P is non-interfering if

for all states S1, S2 and keystreams G1, G2, such that
S1 ∼L S2

let Si = {S′ | (Si, Gi) −→ (S′, G′)} for i ∈ {1, 2}, then

for all S′
1 ∈ S1

there must exist S′
2 ∈ S2

such that S′
1 ∼L S′

2.

(and vice versa)

Mobius annual meeting, 05.-07.06.2007 – p. 9/23

“Real-world” semantics

Big step SOS — maps an initial configuration to a
probability distribution over final states.

Let us not consider non-termination.
And assume that the program terminates in a
reasonable number of steps.

Initial state is distributed according to some D.

The program P is non-interferent if no algorithm A using
a reasonable amount of resources can guess b from

b←R {0, 1}, S0, S1 ← D

S′ ← [[P]](Sb)

give (S0|VarH
, S′|VarL

) to A

Mobius annual meeting, 05.-07.06.2007 – p. 10/23

Soundness theorem

If the program P satisfies the following conditions:
. . .

and the encryption system satisfies the following
conditions

IND-KDM-CPA- and INT-PTXT-security

and P satisfies possibilistic non-interference

then P satisfies computational non-interference.

The conditions put on P should be verifiable in the
possibilistic model.

Otherwise we lose the modularity of the approach.

Mobius annual meeting, 05.-07.06.2007 – p. 11/23

Condition: ciphertexts only from E

∼L’s relaxed treatment of ciphertexts must be restricted
to values produced by the encryption operation.

Otherwise, consider the following program:

k := newkey; p1 := enc(k, s)

r := getIV(p1); p2 := ẽnc(r + 1; k, s)

Initial state ({s 7→ vs}, vk :: G) is mapped to
{
{p1 7→ E(vr; vk, vs), p2 7→ E(vr + 1; vk, vs)} vr ∈ Coins

}

that does not depend (for ∼L) on initial secrets.

Mobius annual meeting, 05.-07.06.2007 – p. 12/23

Counter mode of using a block cipher

IV

y0

IV + 1

Ek

x1

y1

IV + 2

Ek

x2

y2

IV + 3

Ek

x3

y3

IV + 4

Ek

x4

y4

A good encryption system.

If we used it on the previous slide, then we could learn
vs1 ⊕ vs2, vs2 ⊕ vs3, vs3 ⊕ vs4,. . .

Mobius annual meeting, 05.-07.06.2007 – p. 13/23

Security of encryption systems

Let O0 and O1 be the following interactive machines:
on initialization, generate k ← K();
on query x ∈ {0, 1}∗

O0 returns E(k, x),
O1 returns E(k, 0|x|).

Encryption system is IND-CPA-secure if no reasonably
powerful adversary A can guess b from the interaction
with Ob.

IND-CPA with multiple keys: O0 and O1

on initialization generate ki ← K() for all i ∈ N;
on query (i, x) use the key ki for x as before.

IND-CPA with multiple keys is equivalent to IND-CPA.

Mobius annual meeting, 05.-07.06.2007 – p. 14/23

More security considerations

Encryption cycles are not excluded, hence we must use
encryption systems secure in the presence of key
dependent messages.

Our definition of possibilistic NI also hides
the identities of keys,
the length of messages.

Mobius annual meeting, 05.-07.06.2007 – p. 15/23

IND-KDM-CPA

Let O0 and O1 be the following:
On initialization

O0 generates keys ki, i ∈ N;
O1 generates the key k.

On input (i, e) where e is an expression with free
variables kj the machine O0

evaluates e, letting kj refer to its keys,
encrypts the result with ki and returns it;

and the machine O1 returns E(k, 0const).

If no reasonably powerful adversary A can guess b from
the interaction with Ob then the encryption system is
IND-CPA-secure, which-key concealing and
length-concealing in the presence of key-dependent
messages.

Mobius annual meeting, 05.-07.06.2007 – p. 16/23

Condition: keys used only atE and D. . .

. . . and vice versa.

Consider the program

k1 := newkey; if B(k1) then k2 := k1 else k2 := newkey fi; . . .

Afterwards, k2 is not distributed as coming from K.

Mobius annual meeting, 05.-07.06.2007 – p. 17/23

What may be decrypted

The possibilistic semantics only allows to decrypt
legitimate ciphertexts.

We may phrase this as a condition on the programs.

Or we may require that the encryption system provides
integrity for plaintexts:

Let O be the following:
On initialization, it generates k ← K();
On query x, it returns E(k, x).

No reasonably powerful adversary A interacting with O

may be able to produce a ciphertext c, such that
D(k, c) = m (i.e. D does not fail);
A did not query O with m.

Mobius annual meeting, 05.-07.06.2007 – p. 18/23

Enforcing those conditions

Give types to variables: the types τ are

τ ::= int | key | enc(τ) | (τ, τ)

We may want to compute with ciphertexts, hence we
subtype enc(τ) ≤ int .

Types of operations:

arithmetic operations: intk → int ;
pairing: τ1 × τ2 → (τ1, τ2); i-th projection: (τ1, τ2)→ τi;
key generation: 1→ key ;
encryption: key × τ → enc(τ);
decryption: key × enc(τ)→ τ ;
guards: int .

[AHS06] already has such a type system.
Mobius annual meeting, 05.-07.06.2007 – p. 19/23

Removing decryptions

Change the real-world program:
Give names to keys: replace each k := newkey with

k := newkey; kname := c; c := c + 1

for each ciphertext record the key name and the
plaintext in the auxiliary variables. Replace
y := E(k, x) with

y := E(k, x); ykeyname := kname; yptext := x

Replace the statements x := D(k, y) with

if kname = ykeyname then x := yptext else x := ⊥ fi

The low-visible semantics does not change.
Mobius annual meeting, 05.-07.06.2007 – p. 20/23

Encryption → random number gen.-tion

Apply the definition of IND-KDM-CPA to the real-world
program:

Replace each E(k, y) with E(k0, 0).

E(k0, 0) generates random numbers according to a
certain distribution.

In the possibilistic NI, we also treat encryption as
random number generation.

As only the initial vector matters.

Mobius annual meeting, 05.-07.06.2007 – p. 21/23

Possib. secrecy6⇒ probab. secrecy

Let h be a number from 1 to 100. Consider the following
program

if rnd({0, 1}) = 1 then l := h else l := rnd({1, . . . , 100})

The possible values of l do not depend on h.

But their distribution depends on h.

We can come up with similiar examples in our language.
Using E in place of rnd.

Hence using ciphertexts in computations is
questionable as well.

Remove the subtyping enc(τ) ≤ int .

Mobius annual meeting, 05.-07.06.2007 – p. 22/23

The conditions for the program

The variables are typed, as specified before.

τ ::= int | key | enc(τ) | (τ, τ)

(no subtyping)

The operations respect those types.

Failures to decrypt are visible in the possibilistic
semantics.

Our theorem holds now.
In a program point, two ciphertexts are either equal
or independent.

Mobius annual meeting, 05.-07.06.2007 – p. 23/23

	Motivation
	Cryptographically masked flows
	The programming language
	Semantics
	Encryption Systems
	Semantics
	Low-equivalence of memories
	Possibilistic non-interference
	``Real-world'' semantics
	Soundness theorem
	Condition: ciphertexts only from $mathcal {E}$
	Counter mode of using a block cipher
	Security of encryption systems
	More security considerations
	IND-KDM-CPA
	Condition: keys used only at $mathcal {E}$ and $mathcal {D}$dots
	What may be decrypted
	Enforcing those conditions
	Removing decryptions
	Encryption $ightarrow $ random number gen.-tion
	Possib. secrecy $
ot Rightarrow $ probab. secrecy
	The conditions for the program

