
Securing Multiparty Protocols against the
Exposure of Data to Honest Parties

Peeter Laud1 and Alisa Pankova1,2,3

1 Cybernetica AS
2 Software Technologies and Applications Competence Centre (STACC)

3 University of Tartu
{peeter.laud|alisa.pankova}@cyber.ee

Abstract. We consider a new adversarial goal in multiparty protocols,
where the adversary may corrupt some parties. The goal is to manipulate
the view of some honest party in a way, that this honest party learns
the private data of some other honest party. The adversary itself might
not learn this data at all. This goal, and such attacks are significant
because they create a liability to the first honest party to clean its systems
from second honest party’s data; a task that may be highly non-trivial.
Cleaning the systems is essential to prevent possible security leaks in
future.
Protecting against this goal essentially means achieving security against
several non-cooperating adversaries, where only one adversary is active,
representing the real attacker, and each other adversary is passive, cor-
rupting only a single party. We formalize the adversarial goal by propos-
ing an alternative notion of universal composability. We show how ex-
isting, conventionally secure multiparty protocols can be transformed to
make them secure against the novel adversarial goal.

1 Introduction

Data is a toxic asset [1]. If it has been collected, then it has to be protected from
leaking. Hence one should not collect data that one has no or a little use of. To
make sure that one is not collecting such data, one should try to never learn that
data in the first place. In existing models of multiparty protocols, the security
goals of a party are not violated if it learns too much: according to the model,
an honest party may simply ignore the messages not meant to it or the data it
has learned because of the misbehaviour of some other party. In practice, such
forgetting of data may be a complex and expensive process, involving thorough
scrubbing or destruction of storage media.

An honest party’s attempt to not learn the data that it is not supposed to
learn, brings about an adversarial goal that has not been considered so far. The
adversary may deliberately try to cause some honest party to learn some other
honest party’s private data. The adversary’s inability to learn such data itself
does not imply the impossibility of such attacks.

In formalizing such attacks and security against them, we want to cover only
leaks that are due to the protocol itself. A protocol always runs in the context of

some larger system and we must be careful to exclude the side channels unrelated
to the protocol from the security definition.

The security of protocols is often proved in the universal composability (UC)
framework [2] which ensures that the protocol is secure not only when consid-
ered alone, but also when run in several sessions or in parallel with some other
protocols. This framework assumes that there is a single monolithic adversary
that controls all the corrupted parties. This model is not well-suited for defin-
ing the property we have in mind because an honest party trying to not learn
other honest parties’ data should really be modeled as passively corrupted, but
independent from the “real” adversary.

If we care about the views of honest parties, we could treat each honest party
as an independent adversary. There exist some alternative definitions of UC that
support multiple adversaries, such as CP (Collusion Preserving) computation [3]
or LUC (Local UC) [4]. These models are used to prove the protocol property
of preserving collusions, meaning that the parties cannot use the protocol to
exchange more information that they could do without the protocol. Treating
each honest party as a separate adversary, collusion-preserving property would
be sufficient to protect against leaking information to honest parties. However,
technical details prevent us from using CP or LUC as the basis for defining when
the adversary cannot make one honest party’s secrets leak to another honest
party. Namely, CP and LUC consider the joint view of all the adversaries as
the environment output. If each party is controlled by an adversary, then the
environment eventually gets the joint view of all the parties on the protocol.
Hence a number of techniques are unusable as the building blocks of protocols
deemed secure. Threshold secret sharing is one of the techniques ruled out, since
the environment gets all the shares and may reconstruct the shared secret. We
need a model where we can state that an honest party will never collude with
the other parties its view may be treated as being completely separated from
the other adversaries’ views. For this, we need a model weaker than CP or LUC.

Our contribution We define a “weak CP” (WCP), which splits the ad-
versary into mutually exclusive coalitions. The motivation behind splitting the
adversary to coalitions is to treat each honest party and the attacker as sepa-
rate entities that are not trying to collaborate. Instead of bounding the total
number of corrupted parties, we only bound the sizes of coalitions. Our model
does not focus on preventing the attacker from sending arbitrary data directly
to the honest parties, but rather on detecting the flaws in protocols where an
honest party is obliged to leak its secret to another honest party at some point.
More formally, we split the adversary A into {AH1 , . . . ,AHn } and AL, each AHi
representing a separate adversarial coalition. Only AHi may get messages from
the parties corrupted by it, but the attacks on the protocol are performed by
AL. We are interested in attacks that can be performed by AL without taking
into account the messages that AHi received from the protocol. We see if AL
succeeds in leaking information received by AHi to another adversary AHj . This

allows to capture the attacks where both AHi and AHj represent the views of
some honest parties.

After reviewing some preliminaries in Sec. 2 and related work in Sec. 3, we
give a formal definition of WCP and prove its composability in Sec. 4. In Sec. 5 we
give examples of new attacks that WCP detects. In Sec. 6 we show that although
UC emulation implies WCP emulation in presence of a passive adversary, it is
not the case for fail-stop, covert, and active adversaries. We also present some
transformations that make a protocol that is secure in UC model also secure in
WCP model.

2 Preliminaries

We give a brief review of the basic UC model [2]. UC considers systems of In-
teractive Turing Machines (ITM) connected to each other by input and output
communication tapes. Throughout this work, on the figures, ITMs are repre-
sented by boxes, and the communication tapes by arrows.

A protocol π consists of ITMs Mi (i is a unique identifier in the given protocol
session) that mutually realize some functionality F . They may be connected to
each other, and may also use some “trusted” resource ITM R to mediate their
communication or even compute something for them. A special ITMA represents
the adversary that may corrupt some Mi and get access to their internal states.
There is a special ITM Z, the environment, that chooses the inputs for each Mi

and receives their outputs. This Z may contain the parties Pi sitting behind the
machines Mi, or any other protocols running in parallel or sequentially with π,
probably even some other sessions of π. Z also communicates with A and sees
which information it has extracted from the protocol.

In security proofs, one defines a functionality F represented by a “trusted”
ITM and describes what it computes exactly and which data is insensitive enough
to be output to the adversary deliberately. On the other hand, there is a protocol
π that has exactly the same communication ports with Z as F has, but that
consists of untrusted machines Mi and optionally some other smaller resource
R. Since π is usually more realistic than F , the goal is to show that π is secure
enough to be used instead of F , and this can be done by proving that any attack
(represented by A) against π can be converted to an attack (represented by some
As) against F . Formally, one proves that no environment Z is able to distinguish
whether π (with A) or F (with As) is running, regardless of the adversary A.

In our model, we treat different kinds of adversaries:

– Passive (honest-but-curious): the corrupted party follows the protocol
as an honest party would do, but it shares all its internal state with A.

– Fail-Stop [5]: the corrupted party follows the rules, but at some moment
it may try to stop the protocol, so that the computation fails. In this paper,
we use the definition where the party may stop the protocol only if it will
not be caught (by being caught we mean that all the honest parties of the
protocol consistently agree that this party is guilty).

– Covert [6]: the corrupted party may misbehave, but only as far as it will
not be caught.

– Active (malicious): the corrupted party does whatever it wants.

3 Related Work

The problem of leaking a secret to an honest party is not new. The multiparty
computation protocol of [7] is provided with a description of an attack that
allows the malicious party to leak a secret value of one honest party to a different
honest party. Very shortly, one considers three parties where at most one can
be maliciously corrupted. In the protocol, the first party generates a key and
sends it to the second party, which uses it to encrypt a secret and send it to the
third party. If the first party maliciously generates a weak key then the third
party will learn the second party’s secret. This attack remains unnoticed by the
traditional UC framework [2], and it could be detected using some other model
that assumes the existence of two distinct adversaries: the malicious one and the
semihonest one.

The abstract cryptography framework [8] does take into account multiple
adversaries. The more concrete frameworks [9–11] study the collusion-freeness
property of protocols whose main goal is to prevent smaller adversarial coali-
tions from forming larger coalitions using subliminal channels. A collusion-free
protocol prevents the parties from any communication. A collusion-preserving
protocol ensures that the parties cannot exchange more information that they
could without executing the protocol.

Extending the traditional UC framework [2] to multiple adversaries has been
considered in [3, 4]. In CP (Collusion Preserving computation) [3], there is a
separate adversary Ai for each party Pi. The adversaries communicate with
the protocol π using a communication resource R which in turn contributes to
defining the adversarial behaviour. The idea is that, in the real protocol, the
adversaries should be able to exchange only as much information as they could
in the ideal protocol. In LUC (Local UC) [4], each party Pi may be corrupted
by n− 1 adversaries A(i,j) that can deliver messages to the party Pi where the
sender identity of the delivered messages must be Pj . This model can be used
to express more interesting properties than CP allows.

In CP and LUC, the environment gets the joint view of all the adversaries.
Assigning an adversary to each honest party results in leaking all the data of
honest parties to the environment, and so an honest party gets turned into a
passively corrupted party. A secure protocol would have to be secure in the
setting where all the parties are corrupted.

One way to prevent the communication between the honest and the cor-
rupted parties is to assume that the environment is split into distinct parts
with constrained information movement. For example, [12] formalizes informa-
tion confinement property of a protocol. It splits the environment Z into high
and low subenvironments ZH and ZL where data is allowed to move from ZL
to ZH, but not the other way around. The confinement property is formally
achieved if ZL cannot guess a bit generated by ZH with non-negligible advan-
tage. This property needs to be checked in addition to ordinary UC security.
We use a simpler and cleaner solution in this paper, putting constraints onto
the adversary instead of the environment. This allows to embed the confinement
property into the definition of emulation.

4 Weak Collusion Preservation

In this section we present a model that allows to formalize the problems we
presented in Sec. 1. We need to define more formally what it means that the
protocol does not allow sensitive information to be leaked to honest parties.

4.1 Definitions

In this subsection we first repeat some definitions of UC and CP, and then adjust
them to WCP. In this paper, the simulation does not mean the transformation
of the adversary as S(A), but the parallel composition (S‖A), meaning that the
simulator S translates the messages moving between the real adversary A and
the ideal functionality F , but S does not get access to the other communication
ports of A. The reason is that although there is no difference for UC and CP
definitions, in our model getting control over all the ports ofAmay give too much
power to the simulator. We discuss it in more details when we define WCP.

Let EXECπ,A,Z be the probability ensemble of outputs of the environment
Z running the protocol π with the adversary A. Recall the definition of standard
UC emulation.

Definition 1 (UC emulation [2]). Let π and φ be PPT (probabilistic polyno-
mial time) protocols. We say that π UC-emulates φ if there exists a PPT ma-
chine S, such that for any PPT adversary A, and for any PPT environment Z,
the probability ensembles EXECπ,A,Z and EXECφ,(S‖A),Z are indistinguishable
(denoted EXECπ,A,Z ≈ EXECφ,(S‖A),Z).

If the protocol φ is defined in a way that executing some ideal functionality
F is the only thing that the parties do, we may also say that the protocol π
UC-realizes F. Since Def. 1 does not specify the adversary type, we will fur-
ther explicitly specify whether a protocol emulates the functionality passively,
covertly, or actively.

We base our work on the collusion preserving (CP) computation of [3]. Al-
though CP is based on generalized universal composability (GUC) [13], which
assumes that the protocols may use some shared global setup, we first give a
simplified definition based on common UC. Differently from Def. 1, instead of
one monolithic adversary there are n adversaries A1, . . . ,An, one for each party.
It is assumed that they do not interact with the protocol directly, but use some
kind of communication resource. All the adversaries are connected with the en-
vironment Z, and hence potentially may use it for communication.

We give the definition of CP emulation in its simplified form (without shared
resources and the global setup).

Definition 2 (CP emulation [3]). Let π and φ be PPT n-party protocols.
We say that π CP-emulates φ if there exist mutually isolated PPT machines
S1, . . . , Sn, such that for any PPT adversaries A1, . . . ,An for any PPT environ-
ment Z, for A = {A1, . . . ,An}, AS = {(S1‖A1), . . . , (Sn‖An)}, the probability
ensembles EXECπ,A,Z and EXECφ,AS ,Z are indistinguishable.

In CP model, all the adversaries may still communicate through the environ-
ment, and so the values seen by any corrupted party may eventually get there.
We want to modify the construction in such a way that it would take into ac-
count that the distinct adversarial coalitions will never use Z to communicate.
Instead of assigning an adversary to each party, we assign an adversary to each
coalition. We put some additional constraints on the adversary that ensure that
the outputs of only one of these coalitions reach the environment.

Definition 3 (t-coalition split adversary). Let n be the number of parties,
and let [n] = {1, . . . , n}. A t-coalition split adversary A is a set of PPT machines
{AH1 , . . . ,AHn ,AL} defined as follows.

1. The adversary A is defined as a set PPT ITMs {AH1 , . . . ,AHn } (“high”) and
AL (“low”) where AHi [resp. AL] does not receive inputs from Z [resp. π] nor
give outputs to π [resp. Z]. Any communication inside A goes from ITM AL
to ITMs AHi .

2. The active adversary AH1 may corrupt up to t parties. Each party Pi that is
not corrupted by AH1 is corrupted by some passive adversary AHj .

3. There is some j ∈ [n], such that for all i ∈ [n]\{j}, the internal state of AHi
does not depend on the inputs coming from π. We call AHj the true adversary

and the other AHi -s the false adversaries.

The t-coalition split adversary is depicted on Fig. 1.

AH
n

AL

π

Z

AH
1

Fig. 1: t-coalition
split adversary

The property (1) lets the information moving from
Z to π to be controlled by a single adversary AL, and it
splits the information moving from π to Z amongst dif-
ferent receiving adversaries. The property (2) constructs
an actively corrupted coalition of size at most t, and lets
each honest party be controlled by a separate passive
adversary. The property (3) guarantees that the views
of different coalitions will not be merged.

Let C(k) be the set of party indices corrupted by AHk .
The execution model of a t-coalition split adversary is
the following.

– The corruption of a machine Mi into the coalition handled by AHj is de-

termined by AL, which sends a message (corrupt, i, j) to the protocol. After
the machine Mi receives that message, it forwards its internal state and all
further received messages to the adversary AHj .

– Any message m sent by Mi for i ∈ C(1), can be substituted by AL with
an arbitrary message m∗. Alternatively, AL may substitute m with ⊥, which
denotes cancelling delivery of m, or with >, which denotes that m remains
unchanged. The message > is need to enable AL to proceed with honest
protocol execution even if does not receive m.

We could define WCP emulation analogously to Def. 2, just replacing any
adversary with a t-coalition split adversary. However, we now need to be careful

∃S ∀Z ∀A
≈

Z

AH
n

AL

AH
1

π

Z

SH
1

SH
n

SL

φ AH
n

AL

AH
1

Fig. 2: t-WCP emulation

with the simulator definition. If we allow S to be an arbitrary PPT machine,
then it may happen that (S‖A) is no longer a t-coalition split adversary. Hence
we need to constrain the class of simulators.

Definition 4 (split simulator). A split simulator S = {SH1 , . . . , SHn , SL} con-
sists of PPT machines SHi and SL where

– the communication is allowed from SL to SHi for all i ∈ [n], but not the other
way around;

– the input ports of SHi are connected to π, and its output ports to AHi ;
– the input ports of SL are connected to AL, and its output ports to π.

We need to ensure that (S‖A) = {(SH1 ‖AH1), . . . (SHn ‖AHn), (SL‖AL)} is also
a t-coalition split adversary, since otherwise it may happen that we give more
power to the adversary that attacks an ideal functionality than to the adversary
that attacks a real functionality, and that would result in weaker security proofs.

Lemma 1. Let A = {AH1 , . . . ,AHn ,AL} be a t-coalition-split adversary, and let
S = {SH1 , . . . , SHn , SL} be a split simulator. Then the parallel simulation As =
{(SH1 ‖AH1), . . . , (SHn ‖AHn), (SL‖AL)} is also a t-coalition split adversary.

The proof of Lemma 1 can be found in the full version of this paper [14].

Definition 5 (t-WCP emulation). Let π and φ be n-party protocols. We say
that π WCP-emulates φ if there is a PPT split simulator S = {SH1 , . . . , SHn , SL},
such that for any PPT t-coalition split adversary A = {A1, . . . ,An}, and for
any PPT environment Z, for a t-coalition split adversary As = {(SH1 ‖AH1), . . . ,
(SHn ‖AHn), (SL‖AL)}, the probability ensembles EXECπ,A,Z and EXECφ,As,Z
are indistinguishable.

The definition is correct by Lemma 1. The t-WCP emulation is depicted on
Fig. 2. We emphasize that we intentionally require blackbox simulatability, i.e
the same simulator S must be suitable for an arbitrary adversary A. Intuitively,
in this case the simulator does not know which AHi is the true adversary, and
hence each SHi needs to simulate a proper view to all AHi , not only to the true
one. This is one reason why we use the parallel composition (SHi ‖AHi) for the
simulation, and not the transformation SHi (AHi) where the code of AHi could
potentially tell SHi directly whether AHi is true or false adversary.

4.2 Composition Theorem

Dummy Lemma The composition proofs of UC are simpler if instead of an
arbitrary adversary A we consider the dummy adversary D that only forwards
the messages between the protocol and the environment. This kind of adversary
is in some sense the strongest one since it delegates all the attacks to the envi-
ronment Z, and it just gives to Z the entire view of the corrupted parties. In
WCP model, the false adversaries are not allowed to forward the messages. If
we replace a false adversary with D, it will be too strong since the environment
Z becomes able to forward its inputs through D. We conclude that the dummy
lemma of UC (that works also for CP and LUC) is not straightforwardly ap-
plicable to WCP. Nevertheless, it holds if D satisfies the t-coalition adversary
definition.

Definition 6 (k-dummy t-coalition split adversary). Let n be the num-
ber of parties, and let k ∈ [n]. The k-dummy t-coalition split adversary Dk =
{DkH1 , . . . ,DkHn ,DkL} is a t-coalition split adversary, where:

– DkL = D is just a message forwarding ITM;
– DkHk = D is also a message forwarding ITM, but DkHi for i 6= k does not

forward the inputs that come from π (this is a actually a part of Def. 3).

For n parties, there are n different k-dummy adversaries D1, . . . ,Dn.

Lemma 2 (t-dummy lemma). Let π and φ be n-party protocols. Then π t-
WCP-emulates φ according to Def. 5 if and only if it t-WCP-emulates φ with
respect to all k-dummy t-coalition split adversaries for all k ∈ [n].

The proof of Lemma 2 can be found in the full version of this paper [14].

WCP Composition Theorem We prove that WCP definition is composable,
similarly to UC.

Theorem 1 (WCP composition theorem). Let ρ, φ, π be protocols such
that ρ uses φ as subroutine, and π t-WCP-emulates φ. Then protocol ρ[φ → π]
t-WCP-emulates ρ.

The proof of Thm. 1 can be found in the full version of this paper [14].

4.3 Relations to the Existing Notions

We show that t-WCP-emulation implies UC-emulation, and hence our security
definition is stronger. However, failure in achieving t-WCP-specific properties
does not provide an immediate UC security fallback in general (as in the case of
CP), but on the assumption that only t parties remain corrupted.

Since the ports between π and A are different for UC and WCP, we need to
define a transformation between UC and WCP functionalities, as it was done for
CP and LUC. The transformation is analogous, and it either splits the monolithic

adversary to distinct coalitions, or merges the coalitions into one monolithic
adversary. The formal definitions of these transformations are given in the full
version of this paper [14].

Theorem 2. Let π be a protocol that t-WCP emulates a protocol φ. Then π also
UC emulates φ in presence of at most t corrupted parties. However, there exists
protocols π and φ, such that π UC-emulates φ in presence of at most t corrupted
parties, but does not t-WCP emulate it.

The proof of Thm. 2 can be found in the full version of this paper [14].
We would also like to compare WCP and CP. In general, CP security is

stronger since a t-coalition split adversary is an instance of CP adversary where
the entire AL can be pushed into Z, and the collaboration of coalitions can be
also arranged through Z. The simulators Si of CP could be used as SHi in WCP.
The only problem is that the simulator Si of CP translates the messages between
Ai and φ in both directions, while WCP allows SHi to only forward messages
from φ to AHi . Using a single SL for simulating the other direction may fail
without knowing certain inputs that SHi has got from φ.

Hence we could straightforwardly use only such functionalities φ that do not
give to the adversary any outputs before they have already received from it all
the inputs.

Definition 7 (one-time input protocol). A protocol φ is called one-time
input if all the inputs that it gets from the adversary A are obtained before any
output is given by φ to A.

We show that, assuming that the number of corrupt parties is the same,
and φ is one-time input protocol, then CP emulation implies WCP emulation.
However, depending on the choice of t, it may happen that t-WCP is strictly
weaker than CP.

Theorem 3. Let t be the total number of corrupted parties. Let π be a protocol
that CP emulates a one-time input protocol φ. Then π also t′-WCP emulates φ
for any t′ ≤ t. However, there exists a t′ < t and protocol π and φ, such that π
t′-WCP emulates φ, but does not CP emulate it.

The proof of Thm. 3 can be found in the full version of this paper [14].

5 Attacks Detected in WCP Model

In this section we show why WCP is a suitable model for pointing out the
problems we mentioned in Sec. 1. We present some properties related to leaking
information to an honest party that can be captured by t-WCP, but not by UC,
CP, LUC. Since CP lets the adversaries to communicate through an arbitrary
resource R, the security in CP model may be dependent on the particular choice
of R, which allows it to be stronger as well as weaker than the other models.
In order to make the definitions similar, we assume that R delivers to Ai the

internal state of Mi, and the adversary Ai may also replace any message m sent
by Mi by a message m∗ of Ai’s own choice.

The relations of our protocols and functionalities with the adversaries are
described as A(i), where i is some party identifier, and A(i) corresponds to all
i-related adversaries, which is just A for UC, Ai for CP, Ac(i) for WCP, and
Ai,1, . . . ,Ai,n for LUC. More details about transformations between different
adversaries can be found in the full version of this paper [14].

We now present an ideal functionality F0 and two of its possible realizations
π1 and π2. We see that, while for UC, CP, LUC these realizations either both
realize or do not realize F0, they are different in t-WCP model.

Let Enc(key,message) be some symmetric computationally secure encryp-
tion scheme that is secure with respect to a uniformly distributed key.

Ideal. The ideal functionality F0 takes a secret s from a certain party Pi. If Pi
is actively corrupted, then F0 outputs s to each A(j) for j ∈ [n]. The adversary
is allowed to abort the protocol. If it does not, F0 outputs 0 to each party.

Protocol 1. Consider the protocol π1 where a (symmetric) key is generated
as k =

∑
`∈I k` where I is a set of arbitrarily chosen t parties that are supposed

to generate k` from uniform distribution. All k` are sent to the party Mi that
encrypts a secret s with this key and sends Enc(k, s) to some party Mj . If any
party refuses to send its message, the protocol aborts.

Protocol 2. Consider an analogous protocol π2 which works in exactly the
same way, but where Mi itself generates one more share kt+1 of k, and sends it
to all other parties.

We now compare these protocols in various models.

UC: Assuming that the total number of corrupted parties is at most t, both
π1 and π2 UC-realize F0. If Mi is corrupted, then S gets s from F0 and can
simulate everything. Otherwise, the adversary either gets only the key k (if Pj
is not corrupted), or it gets Enc(k, s) and up to all shares of k except one (if
Pj is corrupted). If the number of corrupted parties is at least t+ 1, then both
protocols are insecure since all the key shares and the Enc(k, s) may leak to Z.

CP, LUC: If Mi is corrupted, then the key generating parties may use their
shares of k as side channels for collaborating with A(i), and hence neither π1
nor π2 does not realize F0. Let Mi be honest. Assuming that the total number
of corrupted parties is at most t, the functionalities π1 and π2 both realize F0.
If at least one key generating party is honest, the simulator S(j) only needs to
simulate Enc(k, s) as if the key was uniform. If all the key generating parties are
corrupt, then k might not be uniform, but in this case Pj is uncorrupted, and
Sj does not have to simulate anything. If the total number of corrupted parties
is at least t+ 1, then both the k and Enc(k, s) may leak to Z, and hence π1 and
π2 are both insecure, similarly to UC.

WCP: The protocol π2 does t-WCP-realize F0, but π1 does not. If Mi is
corrupted, then all SHj get s from F0, and SL gets from AL all the shares of k

that SL delivers to all SHj , so these side-channels are not taken into account by
WCP. Let Mi be honest. In π1, if all the t key generating parties are corrupted,
then SHj has to simulate Enc(k, s) based on the bad key k that no longer comes

from uniform distribution and might be known by Z. Although SL might have
sent the bad key k to SHj , it still does not know s, and hence cannot simulate
Enc(k, s). In π2, the key k comes from a uniform distribution in any case, since
at least one share is generated by the uncorrupted Mi itself. The question is
whether k may leak to Z if all the key generating parties are controlled by
an adversarial coalition of size t, as they also get the final share kt+1 at some
moment. We care about the simulation by SHj only if AHj is the true adversary.
In this case, the entire key generating coalition has been controlled by a false
adversary that never leaks the final share kt+1 to Z.

An analysis of a particular multiparty computation protocol of [7] related to
bad key generation, and another example of an attack captured by WCP model,
are given in the full version of this paper [14].

6 Achieving t-WCP Security

We start from a protocol that is secure against t < n/2 passively corrupted
parties. In this section, we show how such a protocol can be made secure against
t < n/2 actively corrupted parties, allowing up to all the other parties to be
passively corrupted (i.e “semihonest majority” assumption).

6.1 Adversaries Weaker than Active

First, we show that UC and t-WCP emulations are equivalent definitions if the
UC model allows at least t parties to be corrupt, and the adversary is passive.
This shows that it does not make sense to define a special transformation for
making a protocol passively secure in t-WCP model.

Theorem 4. Let π be a protocol that passively UC-emulates a protocol φ in
presence of t corrupted parties. Then π also passively t-WCP emulates φ.

The proof of Thm. 4 is based on the fact that a passive adversary will not
interact with the protocol, and so all the false adversaries do not interact with
the protocol at all. The only true adversary is handled as in the UC model. A
more formal proof be found in the full version of this paper [14].

A fail-stop adversary [5] follows the protocol as the honest parties do, but
it also may force the corrupt parties to abort the protocol. Differently from the
passive adversary case, the measures taken in the case when some party attempts
to stop the protocol may result in leaking a secret to some honest party.

As a simple example, let us take the transmission functionality Ftr that has
been used in [15, 16] to prevent the protocol from aborting by pointing out the
exact party that has aborted the protocol. This helps against a fail-stop adversary
that does not want to be accused in cheating. Suppose that a party Pi should be
sending a message mij to another party Pj . If Pi refuses to send the message to
Pj , then there is no way for neither party to prove whether Pi is indeed silent,
or Pj has already received mij but just accuses Pi. The realization of Ftr works
on the assumption that the majority of parties follows the protocol. If there is a

Let [n] = {1, . . . , n}, where n is the number of parties. Let As = {AsH1 , . . . ,AsHn ,AsL}
be the ideal t-coalition split adversary. Let c(i) be the index of the coalition to which
the party Pi belongs.
Ftr works with unique message identifiers mid, encoding a sender s(mid) ∈ [n] and a
receiver r(mid) ∈ [n]. Some (n, t) threshold sharing scheme is defined.
Secure transmit: Receiving (transmit,mid,m) from Ps(mid) and (transmit,mid) from
all (semi)honest parties, store (mid,m, r(mid)), mark it as undelivered, and output
(mid, |m|) to all AsHi . If the input of Ps(mid) is invalid (or there is no input), and
Pr(mid) is (semi)honest, then output (corrupt, s(mid)) to all parties.
Secure broadcast: Receiving (broadcast,mid,m) from Ps(mid) and (broadcast,mid)
from all (semi)honest parties, store (mid,m, bc), mark it as undelivered, output
(mid, |m|) to all AsHi . If the input of Ps(mid) is invalid, output (corrupt, s(mid)) to
all parties.
Synchronous delivery: At the end of each round, for each undelivered (mid,m, r)
send (mid,m) to Pr; mark (mid,m, r) as delivered. For each undelivered (mid,m, bc),
send (mid,m) to each party and all AsHi ; mark (mid,m, bc) as delivered.

Fig. 3: Ideal functionality Ftr

fail-stop conflict between Pi and Pj , then the message should just be broadcast
by Pi to all the parties, so that they get the evidence that Pj indeed received
it. Now if Pi decides to abort the protocol, then it will be blamed by everyone.
The definition of Ftr is given in Fig. 3.

Compared to [15,16], we need to modify the realization of Ftr in such a way
that it would be secure in t-WCP model. Namely, Pi may no longer broadcast
the message to all the parties, since some honest party Pk may receive a message
that Pi and Pj would exchange privately.

We propose a slight modification to the realization of Ftr given in [15]. Now
for each message bitstring mij transmitted from Pi to Pj , there is a random
bit mask qmij that is known by both Pi and Pj , but not anyone else (this can
be done by sharing a common randomness between each pair of parties). In the
case of conflict, Pi signs and broadcasts m′ij = mij ⊕ qmij to all the parties, and
Pj computes m′ij ⊕ qmij .

Lemma 3. Assuming that the majority of parties are at least semihonest, there
exists an realization of Ftr that is secure in t-WCP model.

Lemma 3 is proven by construction of a certain realization of Ftr in the full
version of this paper [14].

If all the communication in the protocol is performed using Ftr, then UC se-
curity implies WCP security for any fail-stop adversary. This result can be easily
extended to any covert adversary [6] that will not cheat if it will be caught with
a non-negligible probability. If the initial protocol is able to detect any covert
adversary in the UC model, we may assume that a covert adversary will act as
passive anyway, and AL will not attempt to modify the flow of π since otherwise
it will be detected. Hence we may be sure that, if a covert adversary will not
attempt to cheat, then UC-emulation implies t-WCP emulation. Nevertheless,

it is more difficult to reason about fallback security, i.e what happens if the ad-
versary does not follow the protocol regardless of being punished. There may be
still more attacks in the t-WCP model than in the UC model, and this will be
discussed in more details in Sec. 6.2.

We conclude our discussion about the weaker than active adversary with the
following theorem.

Theorem 5. Let π be a protocol where the parties use the functionality Ftr
for communication. Let π UC-emulate a protocol φ in presence of t covertly
corrupted parties. If the majority of parties is at least semihonest, then π also
t-WCP emulates φ, assuming that the strongest adversaries are at most covert.

The proof of Thm. 5 can be found in the full version of this paper [14].

6.2 Active Adversary

For constructing a multiparty protocol secure against active adversaries, we fol-
low the general pattern used in other related works [17, 18]. Initially, there is a
multiparty protocol secure only against a passive adversary. In order to make it
secure against an active adversary, on each round, each party needs to provide
a zero-knowledge proof that it has followed the protocol rules.

On Fig. 4, we present a functionality Fvmpc that we use to compute one
protocol round. In the full version of this paper [14], we give a protocol that
t-WCP realizes Fvmpc. The implementation relies on Byzantine agreement, and
so it works only under (semi)honest majority assumption.

We use Fvmpc to construct a protocol transformation WCP-Comp (Fig. 5)
that uses Fvmpc to compute each round. The transformation is analogous to
Comp of [18,19]). Having WCP-Comp, we may prove the following theorem.

Theorem 6. Let π be a protocol that passively UC-emulates a protocol φ in
presence of t corrupted parties. Assuming that the majority of parties is at least
semihonest, the protocol WCP-Comp(π) t-WCP emulates φ in presence of a coali-
tion of t active adversaries.

The proof of Thm. 6 can be found in the full version of this paper [14].

7 Conclusions

We have defined WCP model, which a stronger version of UC that additionally
allows to capture the cases where the information leaks to some honest party. It
makes the protocol reliable not on some participants’ unconditional honestness,
but rather on their non-collusion which seems a more realistic assumption. The
definition is weak enough to make WCP security relatively easily achievable.
We have proposed a scheme transforming passively secure protocols with one
adversary up to actively secure protocols with semihonest majority and multiple
adversaries. Our transformation relies on semihonest majority assumption.

Let [n] = {1, . . . , n}, where n is the number of parties. Let As = {AsH1 , . . . ,AsHn ,AsL}
be the ideal t-coalition split adversary. Let c(i) be the index of the coalition to which
the party Pi belongs. By Def. 3, let 1 be the index of the actively corrupted coalition
(in this way, C(1) is the set of indices of actively corrupted parties). Fvmpc works with
session identifiers sid, where ri[sid] is the randomness of Pi, x̄i[sid] are all the inputs
of Pi committed so far, and m̄i[sid] are all the messages received by Pi so far, and
mij [sid, `] are the committed outputs of Pi to Pj (there can be several such outputs
for the same sid, representing different rounds).
Random tape generation On input (gen rnd, sid, i) from all (semi)honest parties,
Fvmpc randomly generates ri. It outputs ri to Pi and also sends (randomness, i, ri) to
AsHc(i). Fvmpc treats ri as the committed randomness for Pi’s computation. Alterna-

tively, a message ⊥ may come from AsL, and in this case the randomness generation
fails.
Input commitment On input (commit input, sid, i,xi) from the party Pi and
(commit input, sid, i) from all (semi)honest parties, Fvmpc appends xi to x̄i[sid]. For
i ∈ C(1), it sends (input, i,xi) to AsHc(i). Alternatively, a message (corrupt, j) may come

from AsL with j ∈ C(1). Fvmpc defines B0 = {j | (corrupt, j) has been sent by AsL}.
Message commitment On input (commit msg, sid, i, j, `,m) from the party Pi and
(commit msg, (sid, `), i, j) from all (semi)honest parties, Fvmpc stores mij [sid, `] = m.
Alternatively, a message (corrupt, j) may come from AsL with j ∈ C(1). Fvmpc defines
B0 = {j | (corrupt, j) has been sent by AsL}.
Verification On input (verify, sid, C, i, j, `) from all (semi)honest parties, where C is
the description of circuit that corresponds to the computation of a message for Pj

by Pi, Fvmpc checks if mij [sid, `] and all the values x̄i[sid], ri[sid], m̄i[sid] neces-
sary for computing C(x̄i[sid], ri[sid], m̄i[sid]) are committed. If they are, Fvmpc com-
putes m′

ij = C(x̄i[sid], ri[sid], m̄i[sid]). If m′
ij = mij [sid, `], then Fvmpc outputs

(approved, sid, C, i, j, `,mij [sid, `]) to Pj and (approved, sid, C, i, j) to all other parties.
It appends mij to m̄j [sid] and outputs mij to AsHc(j). If j ∈ C(1), then Fvmpc appends

m′
ij to m̄j [sid] even if m′

ij 6= mij . In any case, it outputs C to each adversary AH
k .

Fvmpc definesM = B0∪{i ∈ [n] | ∃j : m′
ij 6= mij [sid, `]}. For all i /∈ C(1), AsL sends

(blame, i,Bi) to Fvmpc, with M⊆ Bi ⊆ C. Fvmpc outputs (blame, sid, `,Bi) to Pi.

Fig. 4: The ideal functionality for verifiable computations

References

1. Bruce Schneier. Data is a toxic asset, March 2016. https://www.schneier.com/

blog/archives/2016/03/data_is_a_toxic.html.

2. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In FOCS, pages 136–145. IEEE Computer Society, 2001.

3. Joël Alwen, Jonathan Katz, Ueli Maurer, and Vassilis Zikas. Collusion-preserving
computation. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology - CRYPTO 2012 - 32nd Annual Cryptology Conference, Santa Bar-
bara, CA, USA, August 19-23, 2012. Proceedings, volume 7417 of Lecture Notes in
Computer Science, pages 124–143. Springer, 2012.

4. Ran Canetti and Margarita Vald. Universally composable security with local adver-
saries. In Ivan Visconti and Roberto De Prisco, editors, Security and Cryptography
for Networks - 8th International Conference, SCN 2012, Amalfi, Italy, September

Let xi be the vector of inputs of the party Pi in the protocol π. Let ri be the randomness
used by Pi.

1. Random tape generation. When activating WCP-Comp(π) for the first time with
session identifier sid, all (semi)honest parties send (gen rnd, sid, i) to Fvmpc for all
i ∈ [n].

2. Activation due to new input. When activated with input (sid,xi), party Pi proceeds
as follows.

(a) Input commitment: At any moment when a party Pi should commit an in-
put, all the (semi)honest parties send (commit input, sid, i) to Fvmpc. Pi sends
(commit input, sid, i,xi) to Fvmpc and adds xi to the list of inputs x̄i (this list
is initially empty and contains Pi’s inputs from the previous activations of π).
Pi then proceeds to the next step.

(b) Protocol computation: Let m̄i be the series of messages that were transmitted
to Pi in all the activations of π until now (m̄i is initially empty). Pi runs the
code of π on its input list x̄i, messages m̄i, and random tape ri. If π instructs
Pi to transmit a message, Pi proceeds to the next step.

(c) Outgoing message transmission: Let m`
ij be the outgoing message that Pi

sends in π to Pj on `-th round. As soon as the `-th round starts, all the
(semi)honest parties send (commit msg, sid, i, j, `) to Fvmpc for all i, j ∈ [n].
Pi sends (commit msg, sid, i, j, `,m`

ij) to Fvmpc.

3. Activation due to incoming message Let C`
ij be the description of the arithmetic

circuit representing the computation of Pi on the `-th round that finally out-
puts m`

ij to Pj . As soon as each party has finished with its computation of the
`-th round, it sends (verify, sid, C`

ij , i, j, `) to Fvmpc. Upon receiving a message
(approved, sid, C`

ij , i, j, `,m
`
ij) from Fvmpc, Pj appends m`

ij to m̄j and proceed
with the Step 2b above. All the other (semi)honest parties wait for the message
(approved, sid, C`

ij , i, j, `) from Fvmpc to proceed with the Step 2b.
In addition, Fvmpc outputs a message (blame, sid, `,Bi) to each (semi)honest Bi.
The way in which (semi)honest parties handle the set Bi depends on the particular
protocol π.

4. Output: Whenever π generates an output value, WCP-Comp(π) generates the same
output value.

Fig. 5: The compiled protocol WCP-Comp(π)

5-7, 2012. Proceedings, volume 7485 of Lecture Notes in Computer Science, pages
281–301. Springer, 2012.

5. Zvi Galil, Stuart Haber, and Moti Yung. Cryptographic computation: Secure fault-
tolerant protocols and the public-key model (extended abstract). In Carl Pomer-
ance, editor, Advances in Cryptology - CRYPTO 87, volume 293 of Lecture Notes
in Computer Science, pages 135–155. Springer Berlin Heidelberg, 1988.

6. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

7. Payman Mohassel, Mike Rosulek, and Ye Zhang. Fast and secure three-party
computation: The garbled circuit approach. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and Communications Security, CCS ’15, pages
591–602, New York, NY, USA, 2015. ACM.

8. Ueli Maurer and Renato Renner. Abstract cryptography. In Bernard Chazelle,
editor, Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing,
China, January 7-9, 2011. Proceedings, pages 1–21. Tsinghua University Press,
2011.

9. Joël Alwen, abhi shelat, and Ivan Visconti. Collusion-free protocols in the mediated
model. In David Wagner, editor, Advances in Cryptology - CRYPTO 2008, 28th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 17-
21, 2008. Proceedings, volume 5157 of Lecture Notes in Computer Science, pages
497–514. Springer, 2008.

10. Joël Alwen, Jonathan Katz, Yehuda Lindell, Giuseppe Persiano, abhi shelat, and
Ivan Visconti. Collusion-free multiparty computation in the mediated model. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, 29th Annual Inter-
national Cryptology Conference, Santa Barbara, CA, USA, August 16-20, 2009.
Proceedings, volume 5677 of Lecture Notes in Computer Science, pages 524–540.
Springer, 2009.

11. Matt Lepinski, Silvio Micali, and abhi shelat. Collusion-free protocols. In Harold N.
Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium
on Theory of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 543–552.
ACM, 2005.

12. Shai Halevi, Paul A. Karger, and Dalit Naor. Enforcing confinement in distributed
storage and a cryptographic model for access control. IACR Cryptology ePrint
Archive, 2005:169, 2005.

13. Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally com-
posable security with global setup. In Salil P. Vadhan, editor, Theory of Cryp-
tography, 4th Theory of Cryptography Conference, TCC 2007, Amsterdam, The
Netherlands, February 21-24, 2007, Proceedings, volume 4392 of Lecture Notes in
Computer Science, pages 61–85. Springer, 2007.

14. Peeter Laud and Alisa Pankova. Securing multiparty protocols against the exposure
of data to honest parties. Cryptology ePrint Archive, Report 2016/650, 2016.
http://eprint.iacr.org/2016/650.

15. Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert
security at low cost. In Daniele Micciancio, editor, TCC, volume 5978 of Lecture
Notes in Computer Science, pages 128–145. Springer, 2010.

16. Peeter Laud and Alisa Pankova. Preprocessing-based verification of multiparty
protocols with honest majority. Cryptology ePrint Archive, Report 2015/674, 2015.
http://eprint.iacr.org/.

17. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. In STOC, pages
218–229. ACM, 1987.

18. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In John H. Reif, editor,
Proceedings on 34th Annual ACM Symposium on Theory of Computing, May 19-
21, 2002, Montréal, Québec, Canada, pages 494–503. ACM, 2002.

19. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. IACR Cryptology ePrint
Archive, 2002:140, 2002.

