Confidentiality analyses correct wrt. computational semantics

Peeter Laud

peeter_l@ut.ee

Tartu Ülikool

Cybernetica AS

Overview

- Computationally secure information flow.
- A program analysis, correct wrt. above.
- Confidentiality in cryptographic protocols.
- A very simple analysis.
- Using the def. of secure encryption.

Problem statement

Inputs come from a known source, i.e. the distribution of inputs is known.

- Public outputs should be independent of secret inputs.
- We want tools checking that.
- The input to these tools is the program text.
 - possibly also the description of input distribution.

Programming language — syntax

The WHILE-language (simple imperative language).

b, x, x₁, ..., x_k \in Var. $o \in$ Op. $\mathcal{E}nc, \mathcal{G}en \in$ Op.

Programming language — semantics

Denotational semantics: $\llbracket P \rrbracket$: State \rightarrow State_{\perp}.

 $\mathbf{State} = \mathbf{Var} \rightarrow \mathbf{Val}.$

 \mathbf{State}_{\perp} has an extra element \perp , denoting nontermination.

For each $o \in Op$ with arity k, a function $\llbracket o \rrbracket : Val^k \to Val$ is given. Semantics is defined inductively over program structure.

This is the traditional setup...

Cryptographic considerations

Security definitions in theoretical cryptography require

- primitives with probabilistic functionality;
- the security parameter.
- Also, all values are bit-strings.

Therefore:

 $\ \, \llbracket \mathsf{P} \rrbracket = \{\llbracket \mathsf{P} \rrbracket_n\}_{n\in\mathbb{N}};$

$$\ \, [\![\mathsf{P}]\!]_n : \mathbf{State}_n \to \mathcal{D}(\mathbf{State}_{n\perp});$$

•
$$Val_n = \{0, 1\}^*.$$

Also, $\llbracket o \rrbracket = \{\llbracket o \rrbracket_n\}_{n \in \mathbb{N}}, \llbracket o \rrbracket_n : \operatorname{Val}_n^k \to \mathcal{D}(\operatorname{Val}_n).$

Computationally secure information flow

A program has CSIF, if its public outputs are computationally independent from its secret inputs.

- Secret inputs initial values of variables in $Var_S \subseteq Var$.
- Public outputs final values of variables in $Var_P \subseteq Var$.

Let $D_n \in \mathcal{D}(\mathbf{State}_n)$ be the distribution of input states for security parameter *n*. Computational independence means:

$$\{ (s_n |_{\mathbf{Var}_S}, t_n |_{\mathbf{Var}_P}) : s_n \leftarrow D_n, t_n \leftarrow [\![\mathsf{P}]\!]_n(s_n) \} \approx \\ \{ (s_n |_{\mathbf{Var}_S}, t'_n |_{\mathbf{Var}_P}) : s_n, s'_n \leftarrow D_n, t'_n \leftarrow [\![\mathsf{P}]\!]_n(s'_n) \} \}$$

Programs running in polynomial time

This def. is good for programs running in expected polynomial time.

If a program leaks information only after exponentially long time, then the previous definition still considers it insecure.

- Let P^ℓ be a program that makes at most ℓ(n) steps of P.
 If P has not stopped, then P^ℓ stops in a special state ⊥.
 (ℓ a polynomial)
- P^{ℓ} can be expressed in the WHILE-language.
 - The rewrite of P to P^{ℓ} is quite simple.

P is secure : $\iff \forall \ell : \mathsf{P}^{\ell}$ is secure.

Timing-insensitive def.

- Definition on previous slide is timing-sensitive.
 - This is good.
- Sometimes we do not want timing sensitivity.
 - Good timing-sensitive analyses are hard to construct.
 - Timing issues seem to be orthogonal to computational issues.

P is secure : $\iff \exists \ell_0 \ \forall \ell \geq \ell_0 : \mathsf{P}^{\ell}$ is secure.

- To analyse P, we analyse P^{ℓ} .
 - ... but the number of executed steps is only checked at loop heads.

Program analysis's approach

- Having secure information flow is uncomputable in general.
- Description of inputs whatever is known about D.
 ...and expressible in the domain of the analysis.

Domain of the analysis

- Analysis maps the description of the input distribution to the description of the output distribution.
- Description of $D = \{D_n\}_{n \in \mathbb{N}}$ is $(\mathfrak{X}, \mathfrak{K}) \in \mathcal{P}(\mathcal{P}(\mathbf{Var}) \times \mathcal{P}(\mathbf{Var})) \times \mathcal{P}(\mathbf{Var}).$
 - $(X, Y) \in \mathfrak{X}$, if X and Y are independent in D.
 - $k \in \mathcal{K}$, if (the value of) k is distributed like a key.
- Assume the program does not change the variables in Var_S.
- If $(Var_S, Var_P) ∈ X_{output}$, then the program has secure information flow.
- The analysis is defined inductively over the program structure.

Example: analysing assignments

Consider the program $\mathbf{x} := o(\mathbf{x}_1, \dots, \mathbf{x}_k)$. If $(X \cup {\mathbf{x}_1, \dots, \mathbf{x}_k}, Y) \in \mathcal{X}_{input}$ then $(X \cup {\mathbf{x}_1, \dots, \mathbf{x}_k, \mathbf{x}}, Y) \in \mathcal{X}_{output}$.

Analysing encryptions — problems

Let k be distributed like a key in D_{input} .

- Consider the program 1 := k + 1.
 Then {1} is not independent of {k} in D_{output}.
- Consider the program x := & nc(k, y).
 Then {x} is not independent of {k} in D_{output}.
 - To check whether x and k come from the same or from different samples of D_{output}, try to decrypt x with k.

These two cases should be distinguished as 1 is usable for decryption but x is not.

Encrypting black boxes

- Let $k \in Var$. Let S_n be a program state.
- $S_n([k]_{\mathcal{E}})$ denotes a black box that encrypts with k. I.e.
 - $S_n([k]_{\mathcal{E}})$ has an input tape and an output tape;
 - \bullet When a bit-string w is written on the its tape,

 $\llbracket \mathcal{E}nc \rrbracket_n(S_n(\mathbf{k}), w)$

is invoked and the result written to the output tape.

- Indistinguishability can be defined for distributions over black boxes.
 - Independence can be defined, too.
- Security of ([[Gen]], [[Enc]]) is defined as the indistinguishability of certain black boxes.

Security of encryption

• $(\mathfrak{G}, \mathfrak{E})$ is secure against CPA, iff

$$\{ [\mathcal{E}_k(\cdot)] : k \leftarrow \mathcal{G} \} \approx \{ [\mathcal{E}_k(\mathbf{0})] : k \leftarrow \mathcal{G} \}$$

 \checkmark (9, &) is which-key concealing, iff

$$\{\!\!(\overline{\mathcal{E}_k(\cdot)},\overline{\mathcal{E}_{k'}(\cdot)}) : k,k' \leftarrow \mathcal{G}\}\!\!\} \approx \{\!\!(\overline{\mathcal{E}_k(\cdot)},\overline{\mathcal{E}_k(\cdot)}) : k \leftarrow \mathcal{G}\}\!\!\}$$

 $(\llbracket \mathfrak{G}en \rrbracket, \llbracket \mathfrak{E}nc \rrbracket)$ must satisfy both.

Modified domain of the analysis

- Let $\widetilde{\operatorname{Var}} = \operatorname{Var} \uplus \{ [x]_{\mathcal{E}} : x \in \operatorname{Var} \}.$
- Description of a distribution D is

 $(\mathfrak{X}, \mathfrak{K}) \in \mathfrak{P}(\widetilde{\mathbf{Var}}) \times \mathfrak{P}(\widetilde{\mathbf{Var}})) \times \mathfrak{P}(\mathbf{Var}) \ .$

- $(X,Y) \in \mathfrak{X}$ if X and Y are independent in D.
- $\mathbf{k} \in \mathcal{K}$, if the distribution of $[\mathbf{k}]_{\mathcal{E}}$ according to D is indistinguishable from $[\![\mathcal{E}nc]\!]_k(\cdot)\!]$.

Analysing encryptions

Consider the program $\mathbf{x} := \mathcal{E}nc(\mathbf{k}, \mathbf{y})$. If $(X, Y) \in \mathcal{X}_{input}$ and $\mathbf{k} \in \mathcal{K}_{input}$ and $(\{[\mathbf{k}]_{\mathcal{E}}\}, X \cup Y \cup \{\mathbf{y}\}) \in \mathcal{X}_{input}$ then $(X \cup \{\mathbf{x}\}, Y) \in \mathcal{X}_{output}$. Generally $(\{[\mathbf{k}]_{\mathcal{E}}\}, \{[\mathbf{k}]_{\mathcal{E}}\}) \in \mathcal{X}_{input}$, hence $(\{\mathbf{x}\}, \{[\mathbf{k}]_{\mathcal{E}}\}) \in \mathcal{X}_{output}$.

If we have a program l := k + 1, then $(\{l\}, \{[k]_{\mathcal{E}}\}) \notin \mathfrak{X}_{output}$.

On security def. of encryptions

- In the definition a system is considered, consisting of
 - the adversary,
 - the encrypting black box,
 - **.**..
- The key is <u>inside</u> the black box.
 - I.e. the usage of the key is quite restricted.
- Programming language puts no restrictions on the usage of the variable containing the key.
- Requirement ({[k]_&}, X ∪ Y ∪ {y}) ∈ X_{input} gives the necessary restrictions.

Analysing key generations

Consider the program $\mathbf{k} := \mathfrak{G}en()$. If $(X, Y) \in \mathfrak{X}_{input}$ then $\mathbf{k} \in \mathfrak{K}_{output}$ and $(X \cup \{[\mathbf{k}]_{\mathcal{E}}\}, Y \cup \{[\mathbf{k}]_{\mathcal{E}}\}) \in \mathfrak{X}_{output}$.

Analysing if-then-else

Consider the program *if* b *then* P_1 *else* P_2 .

- Let $\{x_1, \ldots, x_k\} = Var_{asgn} \subseteq Var$ be the set of variables assigned to in P_1 and P_2 .
- Let $\operatorname{Var}' = \operatorname{Var} \dot{\cup}$ $\{N, x_1^{\mathsf{true}}, \dots, x_k^{\mathsf{true}}, x_1^{\mathsf{false}}, \dots, x_k^{\mathsf{false}}\}$
- Program at right has the same functionality.
- P^{true} is P₁, where each x_i is replaced with x^{true}_i.
- Similarly for P_2^{false} .

N := b $\mathbf{x}_{1}^{\mathsf{true}} := \mathbf{x}_{1}$ $\mathbf{x}_{1}^{\mathsf{false}} := \mathbf{x}_{1}$ $\mathbf{x}_{k}^{\mathsf{true}} := \mathbf{x}_{k}$ $\mathbf{x}_{k}^{\mathsf{false}} := \mathbf{x}_{k}$ P_1^{true} P₂^{false} $\mathbf{x_1} := \mathbb{N} ? \mathbf{x_1^{true}} : \mathbf{x_1^{false}}$ $x_k := \mathbb{N} ? x_{\flat}^{\mathsf{true}} : x_{\flat}^{\mathsf{false}}$

Analysing ? :

Consider the program x := b? y : z. Let $y, z \in \mathcal{K}_{input}$.

- If $(X, Y) \in \mathfrak{X}_{\text{input}}$ and $(\{[y]_{\mathcal{E}}\}, \{[z]_{\mathcal{E}}\}, X \cup Y \cup \{b\}) \in \mathfrak{X}_{\text{input}}$ then $(X \cup \{[x]_{\mathcal{E}}\}, Y \cup \{[x]_{\mathcal{E}}\}) \in \mathfrak{X}_{\text{output}}$.
- $\ \, {\hbox{\rm lf}} \ (\{[y]_{\mathcal E}, [z]_{\mathcal E}\}, \{b\}) \in {\mathfrak X}_{\rm input} \ {\hbox{\rm then}} \ x \in {\mathfrak K}_{\rm output}.$

 $(X_1,\ldots,X_k)\in\mathfrak{X}$ means

$$(X_1, X_2) \in \mathfrak{X}$$
$$(X_1 \cup X_2, X_3) \in \mathfrak{X}$$
$$(X_1 \cup \cdots \cup X_{k-1}, X_k) \in \mathfrak{X}$$

Analysing loops

Consider the program *while* b *do* P.

Its analysis is the repeated application of the analysis of

if b then P else skip

It stabilises due to finiteness of the domain and monotonicity of the analysis.

Active adversaries — problem statement

M remains confidential if for all adversaries A, the adversary's experience is independent of *M*.

Language for protocols

A party is a sequence of statements. Statements are:

$$\begin{aligned} \mathbf{k} &:= \mathfrak{G}en & \mathbf{x} := \mathbf{random} \\ \mathbf{x} &:= (\mathbf{y}_1, \dots, \mathbf{y}_m) & \mathbf{y} := \pi_i^m(\mathbf{x}) \\ \mathbf{x} &:= encr_{\mathbf{k}}(\mathbf{y}) & \mathbf{y} := decr_{\mathbf{k}}(\mathbf{x}) \\ \mathbf{send} \mathbf{x} & \mathbf{x} := \mathbf{receive} \\ \mathbf{check}(\mathbf{x} = \mathbf{y}) \end{aligned}$$

- Protocol is a set of parties.
- Some additional statements (generation of long-term keys) are done at the very beginning of execution.
- Each variable may occur at LHS at most once.

Semantics

Protocol runs in parallel with the adversary.

- Adversary takes care of message forwarding.
- If something goes wrong during the execution of a party, then this party becomes stuck.
 - check(x = y) returns false;
 - operand types do not match the operator;
 - a message does not decrypt.
- Parties execute one statement at a time, the adversary does the scheduling.
 - When a party gets stuck, the adversary is not notified immediately.

Adversary's experience

- Adversary learns the values of the variables x, where send x is a statement in some party.
- No timing information is available, because the adversary schedules.
- Therefore there is again a set of public variables Var_P , whose values make up the entire experience.

 $\operatorname{Var}_P = \{x \mid \text{some party contains send } x\}$

Denning-style analysis

- Suppose a statement $x := O(x_1, \dots, x_m)$ occurs in some party.
 - x_1, \ldots, x_m are <u>all</u> variables occuring in RHS.
 - O can be any operation tupling, projection, decryption, encryption.
- There is information flow from x_i to x.
 - Denote $x_i \Rightarrow x$.
- Protocol is insecure, if $M \stackrel{*}{\Rightarrow} x$ for some x ∈ Var_P.
 Otherwise it is secure
 - Otherwise it is secure.

An extremely conservative analysis.

Security against CCA

Encryption system $(\mathfrak{G}, \mathcal{E}, \mathcal{D})$ is secure against CCA, if

$$\{\!\!\!(\mathcal{E}_k(\cdot) \, , \mathcal{D}_k(\cdot) \,) : k \leftarrow \mathcal{G} \}\!\!\!\}$$

is indistinguishable from

$$\{\!\!(\boldsymbol{\mathcal{E}}_k(\mathbf{0}), \boldsymbol{\mathcal{D}}_k(\cdot)) : k \leftarrow \boldsymbol{\mathcal{G}}\}\!\!\}$$

by all adversaries that do not give the output of the left black box to the right black box.

Main idea

- Replace statements $x := encr_k(y)$ with statements
 $x := encr_k(Z)$, where [Z] = 0.
 - z is a new variable.
- This makes the information flow relation \Rightarrow sparser.
- The replacement is valid only when certain conditions are satisfied.
 - Valid \equiv does not change the adversary's experience.

Conditions for replacing

When replacing the statement $x := encr_k(y)...$

- \checkmark We must know exactly, where else the key ${\bf k}$ is used.
 - The same key may occur under different names.
 - To find it out, we symbolically execute the protocol.
- When computing the values of the variables in Var_P , the key k may only be used to encrypt and decrypt.
- We may not decrypt the ciphertexts created with key k.
 - We achieve this with a program transformation.

Symbolic execution of protocols

We assign a term to each variable. They terms T are

$\underline{const}(\mathbf{x})$	$\underline{tuple^m}(T_1,\ldots,T_m)$
$\underline{secret}(\mathtt{M})$	$\underline{\pi_i^m}(T)$
$\underline{key}(\mathbf{x})$	$\underline{encr}(l, T_{k}, T_{y})$
$\underline{key}(l)$	$\underline{decr}(T_{\mathbf{k}}, T_{\mathbf{y}})$
$\underline{random}(l)$	$\underline{received}(l)$
\underline{stuck}	

- *l* statement label.
- \dots (x) is assigned to the variable x that is initialised before the run of the protocol.
- There are some obvious simplification rules.

Symbolic execution of *Check-s*

- There are some rules telling us, when the bit-strings corresponding to two terms are certainly different.
- For check(x = y), we check whether terms assigned to x and y are certainly different.
 - If yes, the protocol party is stuck.
 - If no, then we replace the more complex term with the simpler one everywhere.
 - Complexity is the same as size.
 - But: the terms containing subterms <u>received(l)</u> are the most complex.

We consider the key corresponding to $\underline{key}(l)$ to be used exactly where the subterm key(l) occurs.

Replacing decryptions

Let k be used for encryption at statements

$$x_1:=\mathit{encr}_{k_1}(y_1),\quad\ldots,\quad x_m:=\mathit{encr}_{k_m}(y_m)$$
 Replace $z:=\mathit{decr}_k(w)$ by

$$z := case w of$$

$$x_1 \rightarrow y_1$$

$$\dots$$

$$x_m \rightarrow y_m$$

$$else \rightarrow decr_k(w)$$

(w)

No change to adversary's view

Semantics of *case-constructs*

- \checkmark z is assigned the first y_i, where x_i matches w.
- If this y_i has not been defined yet, then the protocol party gets stuck.
 - This never happens in our transformed protocols.
- A yet undefined x_i never matches.

Ciphertext integrity

An encryption system $(\mathfrak{G}, \mathcal{E}, \mathcal{D})$ has ciphertext integrity, if:

No PPT algorithm \mathcal{A} with access to oracles $\mathcal{E}_k(\cdot)$ and

 $\mathcal{D}_k(\cdot)$ can submit to $\mathcal{D}_k(\cdot)$ a bit-string y, such that

• $\mathcal{D}_k(y)$ exists, i.e. *y* is a valid ciphertext;

• y was not an output of $\mathcal{E}_k(\cdot)$.

i.e. we need no *else*-clause.

If nothing matches in a *case*-statement, then the protocol party gets stuck.

See [Bellare and Namprempre, ASIACRYPT 2000] for constructions of encryption primitives.

The replacement — wrap-up

- Do the symbolic execution.
- Choose a key $\underline{key}(\mathbf{x})$ or $\underline{key}(l)$, such that
 - In terms assigned to $y \in Var_P$, this $\underline{key}(...)$ occurs only as the key in en-/decryptions.
- Replace the decryption statements z := decr_k(y), where the term assigned to k is this key(...).
 - Replace them with *case*-statements.
- Provide the encryption statements $x := encr_k(y)$, where the term assigned to k is this key(...).
 - Replace them with $x := encr_k(Z)$.

Getting rid of case-statements

$$z := case w of x_1 \rightarrow y_1 \cdots x_m \rightarrow y_m,$$

where

$$\mathbf{x_1} := \mathit{encr}_{\mathbf{k_1}}(\mathbf{y_1}), \quad \ldots, \quad \mathbf{x_m} := \mathit{encr}_{\mathbf{k_m}}(\mathbf{y_m})$$

is replaced by

wait(s) $check(w = x_i)$ $z := y_i$

and signal(s) is added after $x_i := encr_{k_i}(y_i)$.

i is chosen nondeterministically (we get m new protocols). *s* is a new semaphore.

Executing wait(s) before signal(s) gets stuck.

Handling wait-s and signal-s

- in the next round, the symbolic execution must proceed in an order consistent with wait-s and signal-s.
 - We may have to do simultaneous symbolic execution of the parties.
- If there are cyclic dependencies, then the statements in and after the cycle are stuck.

Conclusions

- Cryptographic effects can be faithfully abstracted away.
- Resulting analyses are not overwhelmingly complex.

Future work

- Track the keys in the first analysis presented.
- Do not track the keys in an analysis with active adversaries.
 - Assume that keys are never sent out.
- More expressive language for the second analysis.
- More cryptographic primitives.
 - Public key encryption, digital signatures,...
- Other security properties. (Integrity)
- Different security definitions for cryptographic primitives.
 - Encryption as a PRP...
- One-way functions.
 - New confidentiality definition is necessary.