
Confidentiality analyses correct wrt.
computational semantics

Peeter Laud

peeter l@ut.ee

Tartu Ülikool

Cybernetica AS

HUT, 27.05.2003 – p.1/40

Overview

Computationally secure information flow.

A program analysis, correct wrt. above.

Confidentiality in cryptographic protocols.

A very simple analysis.

Using the def. of secure encryption.

HUT, 27.05.2003 – p.2/40

Problem statement

Program

secret
inputs

{inputs

public
outputs

}

outputs

Inputs come from a known source, i.e. the distribution of
inputs is known.

Public outputs should be independent of secret inputs.

We want tools checking that.

The input to these tools is the program text.
. . . possibly also the description of input distribution.

HUT, 27.05.2003 – p.3/40

Programming language — syntax

The WHILE-language (simple imperative language).

P ::= x := o(x1, . . . , xk)

| skip

| P1; P2

| if b then P1 else P2

| while b do P
′

b, x, x1, . . . , xk ∈ Var. o ∈ Op. Enc, Gen ∈ Op.

HUT, 27.05.2003 – p.4/40

Programming language — semantics

Denotational semantics: [[P]] : State→ State⊥.
State = Var→ Val.
State⊥ has an extra element ⊥, denoting nontermination.

For each o ∈ Op with arity k, a function [[o]] : Valk → Val is
given.
Semantics is defined inductively over program structure.

This is the traditional setup. . .

HUT, 27.05.2003 – p.5/40

Cryptographic considerations

Security definitions in theoretical cryptography require
primitives with probabilistic functionality;
the security parameter.

Also, all values are bit-strings.

Therefore:

[[P]] = {[[P]]n}n∈N;

[[P]]n : Staten → D(Staten⊥);

Staten = Var→ Valn;

Valn = {0, 1}∗.

Also, [[o]] = {[[o]]n}n∈N, [[o]]n : Valkn → D(Valn).

HUT, 27.05.2003 – p.6/40

Computationally secure information flow

A program has CSIF, if its public outputs are
computationally independent from its secret inputs.

Secret inputs — initial values of variables in
VarS ⊆ Var.

Public outputs — final values of variables in
VarP ⊆ Var.

Let Dn ∈ D(Staten) be the distribution of input states for
security parameter n. Computational independence means:

{|(sn|VarS
, tn|VarP

) : sn ← Dn, tn ← [[P]]n(sn)|} ≈

{|(sn|VarS
, t′n|VarP

) : sn, s′n ← Dn, t′n ← [[P]]n(s′n)|}

HUT, 27.05.2003 – p.7/40

Programs running in polynomial time

This def. is good for programs running in expected
polynomial time.

If a program leaks information only after exponentially long
time, then the previous definition still considers it insecure.

Let P
` be a program that makes at most `(n) steps of P.

If P has not stopped, then P
` stops in a special state ⊥.

(` — a polynomial)

P
` can be expressed in the WHILE-language.

The rewrite of P to P
` is quite simple.

P is secure :⇐⇒ ∀` : P
` is secure.

HUT, 27.05.2003 – p.8/40

Timing-insensitive def.

Definition on previous slide is timing-sensitive.
This is good.

Sometimes we do not want timing sensitivity.
Good timing-sensitive analyses are hard to
construct.
Timing issues seem to be orthogonal to
computational issues.

P is secure :⇐⇒ ∃`0 ∀` ≥ `0 : P
` is secure.

To analyse P, we analyse P
`.

. . . but the number of executed steps is only checked
at loop heads.

HUT, 27.05.2003 – p.9/40

Program analysis’s approach

Analysis

Desc. of inputs

Program text “Secure”

or

“Maybe not secure”

Having secure information flow is uncomputable in
general.

Description of inputs — whatever is known about D.
. . . and expressible in the domain of the analysis.

HUT, 27.05.2003 – p.10/40

Domain of the analysis

Analysis maps the description of the input distribution to
the description of the output distribution.

Description of D = {Dn}n∈N is
(X, K) ∈ P(P(Var)× P(Var))× P(Var).

(X, Y) ∈ X, if X and Y are independent in D.
k ∈ K, if (the value of) k is distributed like a key.

Assume the program does not change the variables in
VarS.

If (VarS ,VarP) ∈ Xoutput, then the program has secure
information flow.

The analysis is defined inductively over the program
structure.

HUT, 27.05.2003 – p.11/40

Example: analysing assignments

Consider the program x := o(x1, . . . , xk).

If (X ∪ {x1, . . . , xk}, Y) ∈ Xinput

then (X ∪ {x1, . . . , xk, x}, Y) ∈ Xoutput.

HUT, 27.05.2003 – p.12/40

Analysing encryptions — problems

Let k be distributed like a key in Dinput.

Consider the program l := k + 1.
Then {l} is not independent of {k} in Doutput.

Consider the program x := Enc(k, y).
Then {x} is not independent of {k} in Doutput.

To check whether x and k come from the same or
from different samples of Doutput, try to decrypt x
with k.

These two cases should be distinguished as l is usable for

decryption but x is not.

HUT, 27.05.2003 – p.13/40

Encrypting black boxes

Let k ∈ Var. Let Sn be a program state.

Sn([k]E) denotes a black box that encrypts with k. I.e.
Sn([k]E) has an input tape and an output tape;
When a bit-string w is written on the its tape,

[[Enc]]n(Sn(k), w)

is invoked and the result written to the output tape.

Indistinguishability can be defined for distributions over
black boxes.

Independence can be defined, too.

Security of ([[Gen]], [[Enc]]) is defined as the
indistinguishability of certain black boxes.

HUT, 27.05.2003 – p.14/40

Security of encryption

(G, E) is secure against CPA, iff

{| Ek(·) : k ← G|} ≈ {| Ek(0) : k ← G|}

(G, E) is which-key concealing, iff

{|(Ek(·) , Ek′(·)) : k, k′ ← G|} ≈ {|(Ek(·) , Ek(·)) : k ← G|}

([[Gen]], [[Enc]]) must satisfy both.

HUT, 27.05.2003 – p.15/40

Modified domain of the analysis

Let Ṽar = Var] {[x]E : x ∈ Var}.

Description of a distribution D is

(X, K) ∈ P(P(Ṽar)× P(Ṽar))× P(Var) .

(X, Y) ∈ X if X and Y are independent in D.
k ∈ K, if the distribution of [k]E according to D is
indistinguishable from [[Enc]]

k
(·) .

HUT, 27.05.2003 – p.16/40

Analysing encryptions

Consider the program x := Enc(k, y).

If (X, Y) ∈ Xinput

and k ∈ Kinput

and ({[k]E}, X ∪ Y ∪ {y}) ∈ Xinput

then (X ∪ {x}, Y) ∈ Xoutput.
Generally ({[k]E}, {[k]E}) ∈ Xinput, hence ({x}, {[k]E}) ∈ Xoutput.

If we have a program l := k + 1, then ({l}, {[k]E}) 6∈ Xoutput.

HUT, 27.05.2003 – p.17/40

On security def. of encryptions

In the definition a system is considered, consisting of
the adversary,
the encrypting black box,
. . .

The key is inside the black box.
I.e. the usage of the key is quite restricted.

Programming language puts no restrictions on the
usage of the variable containing the key.

Requirement ({[k]E}, X ∪ Y ∪ {y}) ∈ Xinput gives the
necessary restrictions.

HUT, 27.05.2003 – p.18/40

Analysing key generations

Consider the program k := Gen().

If (X, Y) ∈ Xinput

then k ∈ Koutput

and (X ∪ {[k]E}, Y ∪ {[k]E}) ∈ Xoutput.

HUT, 27.05.2003 – p.19/40

Analysing if-then-else

Consider the program if b then P1 else P2.
Let {x1, . . . , xk} = Varasgn ⊆ Var be
the set of variables assigned to in
P1 and P2.

Let Var′ = Var ∪̇
{N, xtrue

1
, . . . , xtrue

k
, xfalse

1
, . . . , xfalse

k
}

Program at right has the same
functionality.

P
true
1 is P1, where each xi is

replaced with xtrue
i

.

Similarly for P
false
2 .

N := b

xtrue
1

:= x1

xfalse
1

:= x1
. . .
xtrue
k

:= xk

xfalse
k

:= xk

P
true
1

P
false
2

x1 := N ? xtrue
1

: xfalse
1

. . .
xk := N ? xtrue

k
: xfalse

k

HUT, 27.05.2003 – p.20/40

Analysing ? :

Consider the program x := b ? y : z. Let y, z ∈ Kinput.

If (X, Y) ∈ Xinput and ({[y]E}, {[z]E}, X ∪ Y ∪{b}) ∈ Xinput

then (X ∪ {[x]E}, Y ∪ {[x]E}) ∈ Xoutput.

If ({[y]E, [z]E}, {b}) ∈ Xinput then x ∈ Koutput.

(X1, . . . , Xk) ∈ X means

(X1, X2) ∈ X

(X1 ∪X2, X3) ∈ X

. .
(X1 ∪ · · · ∪Xk−1, Xk) ∈ X

HUT, 27.05.2003 – p.21/40

Analysing loops

Consider the program while b do P.

Its analysis is the repeated application of the analysis of

if b then P else skip

It stabilises due to finiteness of the domain and monotonicity

of the analysis.

HUT, 27.05.2003 – p.22/40

Active adversaries — problem statement

A

S

B

M

. . .

A

secret

M remains confidential if for all adversaries A, the adver-

sary’s experience is independent of M .

HUT, 27.05.2003 – p.23/40

Language for protocols

A party is a sequence of statements. Statements are:

k := Gen x := random

x := (y1, . . . , ym) y := πm
i

(x)

x := encrk(y) y := decrk(x)

send x x := receive

check(x = y)

Protocol is a set of parties.

Some additional statements (generation of long-term
keys) are done at the very beginning of execution.

Each variable may occur at LHS at most once.

HUT, 27.05.2003 – p.24/40

Semantics

Protocol runs in parallel with the adversary.

Adversary takes care of message forwarding.

If something goes wrong during the execution of a
party, then this party becomes stuck.

check(x = y) returns false;
operand types do not match the operator;
a message does not decrypt.

Parties execute one statement at a time, the adversary
does the scheduling.

When a party gets stuck, the adversary is not
notified immediately.

HUT, 27.05.2003 – p.25/40

Adversary’s experience

Adversary learns the values of the variables x, where
send x is a statement in some party.

No timing information is available, because the
adversary schedules.

Therefore there is again a set of public variables VarP ,
whose values make up the entire experience.

VarP = {x | some party contains send x}

HUT, 27.05.2003 – p.26/40

Denning-style analysis

Suppose a statement x := O(x1, . . . , xm) occurs in some
party.

x1, . . . , xm are all variables occuring in RHS.
O can be any operation — tupling, projection,
decryption, encryption.

There is information flow from xi to x.
Denote xi ⇒ x.

Protocol is insecure, if M
∗
⇒ x for some x ∈ VarP .

Otherwise it is secure.

An extremely conservative analysis.

HUT, 27.05.2003 – p.27/40

Security against CCA

Encryption system (G, E, D) is secure against CCA, if

{|(Ek(·) , Dk(·)) : k ← G|}

is indistinguishable from

{|(Ek(0) , Dk(·)) : k ← G|}

by all adversaries that do not give the output of the left black

box to the right black box.

HUT, 27.05.2003 – p.28/40

Main idea

Replace statements x := encr k(y) with statements
x := encrk(Z), where [[Z]] = 0.

Z is a new variable.

This makes the information flow relation⇒ sparser.

The replacement is valid only when certain conditions
are satisfied.

Valid ≡ does not change the adversary’s experience.

HUT, 27.05.2003 – p.29/40

Conditions for replacing

When replacing the statement x := encr k(y). . .

We must know exactly, where else the key k is used.
The same key may occur under different names.
To find it out, we symbolically execute the protocol.

When computing the values of the variables in VarP ,
the key k may only be used to encrypt and decrypt.

We may not decrypt the ciphertexts created with key k.
We achieve this with a program transformation.

HUT, 27.05.2003 – p.30/40

Symbolic execution of protocols

We assign a term to each variable. They terms T are

const(x) tuplem(T1, . . . , Tm)

secret(M) πm
i

(T)

key(x) encr(l, Tk, Ty)

key(l) decr(Tk, Ty)

random(l) received(l)

stuck

l — statement label.

. . .(x) is assigned to the variable x that is initialised
before the run of the protocol.

There are some obvious simplification rules.

HUT, 27.05.2003 – p.31/40

Symbolic execution of Check -s

There are some rules telling us, when the bit-strings
corresponding to two terms are certainly different.

For check(x = y), we check whether terms assigned to
x and y are certainly different.

If yes, the protocol party is stuck.
If no, then we replace the more complex term with
the simpler one everywhere.

Complexity is the same as size.
But: the terms containing subterms received(l) are
the most complex.

We consider the key corresponding to key(l) to be used ex-

actly where the subterm key(l) occurs.

HUT, 27.05.2003 – p.32/40

Replacing decryptions

Let k be used for encryption at statements

x1 := encrk1(y1), . . . , xm := encrkm(ym)

Replace z := decrk(w) by

z := case w of

x1 → y1

.
xm → ym

else→ decrk(w)

No change to
adversary’s
view

HUT, 27.05.2003 – p.33/40

Semantics of case-constructs

z is assigned the first yi, where xi matches w.

If this yi has not been defined yet, then the protocol
party gets stuck.

This never happens in our transformed protocols.

A yet undefined xi never matches.

HUT, 27.05.2003 – p.34/40

Ciphertext integrity

An encryption system (G, E, D) has ciphertext integrity, if:

No PPT algorithm A with access to oracles Ek(·) and

Dk(·) can submit to Dk(·) a bit-string y, such that

Dk(y) exists, i.e. y is a valid ciphertext;

y was not an output of Ek(·) .

i.e. we need no else-clause.

If nothing matches in a case-statement, then the
protocol party gets stuck.

See [Bellare and Namprempre, ASIACRYPT 2000] for
constructions of encryption primitives.

HUT, 27.05.2003 – p.35/40

The replacement — wrap-up

Do the symbolic execution.

Choose a key key(x) or key(l), such that

In terms assigned to y ∈ VarP , this key(. . .) occurs
only as the key in en-/decryptions.

Replace the decryption statements z := decr k(y), where
the term assigned to k is this key(. . .).

Replace them with case-statements.

Replace the encryption statements x := encr k(y), where
the term assigned to k is this key(. . .).

Replace them with x := encrk(Z).

HUT, 27.05.2003 – p.36/40

Getting rid of case-statements

z := case w of x1 → y1 · · · xm → ym,

where

x1 := encrk1(y1), . . . , xm := encrkm(ym)

is replaced by

wait(s)

check(w = xi)

z := yi

and signal(s) is added after xi := encrki(yi).

i is chosen nondeterministically (we get m new protocols).
s is a new semaphore.

Executing wait(s) before signal(s) gets stuck.
HUT, 27.05.2003 – p.37/40

Handling wait-s and signal -s

in the next round, the symbolic execution must proceed
in an order consistent with wait-s and signal -s.

We may have to do simultaneous symbolic execution
of the parties.

If there are cyclic dependencies, then the statements in
and after the cycle are stuck.

HUT, 27.05.2003 – p.38/40

Conclusions

Cryptographic effects can be faithfully abstracted away.

Resulting analyses are not overwhelmingly complex.

HUT, 27.05.2003 – p.39/40

Future work

Track the keys in the first analysis presented.

Do not track the keys in an analysis with active
adversaries.

Assume that keys are never sent out.

More expressive language for the second analysis.

More cryptographic primitives.
Public key encryption, digital signatures,. . .

Other security properties. (Integrity)

Different security definitions for cryptographic primitives.
Encryption as a PRP. . .

One-way functions.
New confidentiality definition is necessary.

HUT, 27.05.2003 – p.40/40

	Overview
	Problem statement
	Programming language --- syntax
	Programming language --- semantics
	Cryptographic considerations
	Computationally secure information flow
	Programs running in polynomial time
	Timing-insensitive def.
	Program analysis's approach
	Domain of the analysis
	Example: analysing assignments
	Analysing encryptions --- problems
	Encrypting black boxes
	Security of encryption
	Modified domain of the analysis
	Analysing encryptions
	On security def. of encryptions
	Analysing key generations
	Analysing if-then-else
	Analysing $?:$
	Analysing loops
	Active adversaries --- problem statement
	Language for protocols
	Semantics
	Adversary's experience
	Denning-style analysis
	Security against CCA
	Main idea
	Conditions for replacing
	Symbolic execution of protocols
	Symbolic execution of $mathit {Check}$-s
	Replacing decryptions
	Semantics of $mathit {case}$-constructs
	Ciphertext integrity
	The replacement --- wrap-up
	Getting rid of $mathit {case}$-statements
	Handling $mathit {wait}$-s and $mathit {signal}$-s
	Conclusions
	Future work

