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Abstract. We present a secure multiparty computation (SMC) protocol
for obliviously reading an element of an array, achieving constant online
communication complexity. While the total complexity of the protocol
is linear in the size of the array, the bulk of it is pushed into the offline
precomputation phase, which is independent of the array and the index
of the element.

Although private lookup is less general than oblivious RAM (ORAM), it
allows us to give new and/or more efficient SMC protocols for a number
of important computational tasks. In this paper, we present protocols for
executing deterministic finite automata (DFA), and for finding shortest
distances in sparse graphs.

All our protocols are given in the arithmetic black box model, which
allows them to be freely composed and used in larger applications.

Keywords: secure multiparty computation; arithmetic black box; pri-
vate lookup

1 Introduction

In Secure Multiparty Computation (SMC), p parties compute (y1, . . . , yp) =
f(x1, . . . , xp), with the party Pi providing the input xi and learning no more than
the output yi. For any functionality f , there exists a SMC protocol for it [36, 19].
While the general construction is inefficient in practice, several SMC frameworks
have appeared [12, 3, 6, 21, 29] and certain classes of algorithms can be executed
with reasonable efficiency on top of them. In particular, these algorithms should
have control flow and data access patterns that depend only or mostly on public
data.

Private information retrieval (PIR) and oblivious RAM (ORAM) are among
techniques for hiding the patterns of data access. They both posit a client-
server setting, where the client queries the elements in server’s memory without
the server learning which elements are accessed. For a n-element vector, the
asymptotic complexity of both PIR (which allows only reading) and ORAM
techniques (which also allow writing) is Õ(log2 n). To adapt these techniques
to the SMC setting, at least the client’s computations have to be performed
through SMC protocols. This brings further complications.



We provide an alternative mechanism for reading an element of a vector
according to a private index (private writing is not considered in this paper).
We give a private lookup protocol, the operations of which can be partitioned
into the offline part — these that can be done without knowing the actual
inputs —, and the online part — these that require the inputs. In case of private
lookup, it makes sense to consider even three phases — offline, vector-only (where
the actual vector, either public or private, is available) and online (where the
private index is also available). In our protocols, the online phase requires only a
constant number of costly SMC operations, while the bulk of the work is done in
the offline and, depending on the protocol and the secrecy of the vector elements,
in the vector-only phases. In cases where the main cost of SMC operations is
communication between parties, the offline (and vector-only) computations could
be performed using dedicated high-bandwidth high-latency channels.

Our private lookup protocols are universally composable, they may be freely
used as components in protocols for more complex privacy-preserving applica-
tions. In this paper we demonstrate their use in two applications that need obliv-
ious read access to data, but where the pattern for write accesses is public. We
have implemented SMC protocols for executing deterministic finite automata
(DFA), and for finding the single-source shortest distances (SSSD) in sparse
graphs. The latter protocol is based on the well-known Bellman-Ford algorithm.
In both protocols, the processed objects (automaton, input string, the graph)
are private, except for their sizes.

Our protocols inherit the security guarantees of the underlying SMC imple-
mentation. If the SMC implementation provides security against passive resp.
also active adversaries, then so do our protocols. If the security provided by the
SMC implementation is information-theoretical resp. only computational, then
this also applies to our protocols. Perhaps surprisingly, the protocols in this pa-
per are the first information-theoretically secure protocols for DFA execution,
if an information-theoretically secure protocol set for SMC is used. All previ-
ous protocols have used cryptographic constructions (encryption) that rely on
computational hardness assumptions for security.
Structure of the paper We review work related to privacy-preserving data
access, and to our example applications in Sec. 2. In Sec. 3 we describe the
framework in which our protocols are defined and their security and performance
properties stated. Sec. 4 presents the private lookup and discusses its security and
performance. In Sections 5 and 6 we describe our implementations of privacy-
preserving DFA execution and SSSD, and discuss their performance. Finally, we
draw the conclusions in Sec. 7.

2 Related work

Secure multiparty computation (SMC) protocol sets can be based on a variety
of different techniques, including garbled circuits [36], secret sharing [32, 17, 4]
or homomorphic encryption [9]. A highly suitable abstraction of SMC is the
universally composable Arithmetic Black Box (ABB) [14], the use of which allows



very simple security proofs for higher-level SMC applications. Using the ABB
to derive efficient privacy-preserving implementations for various computational
tasks is an ongoing field of research [11, 8, 1, 27], also containing this paper.

Conceptually, our protocols are most similar to private information retrieval
(PIR) [24], for which there exist protocols with O(log2 n) communication and
O(n/ log n) public-key operations [26]. We know of no attempts to implement
these techniques on top of SMC, though.

Oblivious RAM (ORAM) [20] is a more versatile technique with similar com-
munication complexity [33] (but higher round complexity and client’s memory
requirements). The integration of ORAM with SMC has been studied [13, 22,
18, 28]. In general, such systems require at least O(log3 n) overhead for oblivi-
ous data access. We also note that the “trivial” way of expanding the private
index into its characteristic vector and computing its scalar product with the
array brings O(n) overhead, but may be more efficient in practice due to smaller
constants hidden in the O-notation [25, 22].

In this paper, we present protocols for DFA execution, and for SSSD in sparse
graphs. In [15, 30], garbled circuits have been adapted for DFA execution, where
one party knows the DFA and the other one the input string. This approach,
which is not universally composable, works well if the automaton and alphabet
are small (but the input string may be long). In [34, 2, 16, 35], DFA execution
protocols based on homomorphic encryption are given, some of them resembling
PIR protocols. Privacy-preserving graph algorithms have been studied in [5] in
a non-composable manner. Composable SSSD protocols for dense graphs have
been studied in [1]. Recently, ORAM-with-SMC techniques have been used to
implement Dijkstra’s algorithm for sparse graphs [22].

3 Preliminaries

Universal composability (UC) [7] is a framework for stating security properties
of systems. It considers an ideal functionality F and its implementation π with
identical interfaces to the intended users. The latter is at least as secure as the
former, if for any attacker A there exists an attacker AS , such that π‖A and
F‖AS are indistinguishable to any potential user of π / F . The value of the
framework lies in the composability theorem: if π is at least secure as F , then
ξπ is at least as secure as ξF for any system ξ that uses π / F . We say that
such ξ is implemented in the F-hybrid model. When arguing about the security
of such ξ, we may assume that it uses the ideal functionality F as a subroutine.
All derived conclusions will be valid also for ξπ.

The arithmetic black box is an ideal functionality FABB. It allows its users (a
fixed number p of parties) to securely store and retrieve values, and to perform
computations with them. When a party sends the command store(v) to FABB,
where v is some value, the functionality assigns a new handle h (sequentially
taken integers) to it by storing the pair (h, v) and sending h to all parties. If a
sufficient number (depending on implementation details) of parties send the com-
mand retrieve(h) to FABB, it looks up (h, v) among the stored pairs and responds



with v to all parties. When a sufficient number of parties send the command
compute(op;h1, . . . , hk; params) to FABB, it looks up the values v1, . . . , vk cor-
responding to the handles h1, . . . , hk, performs the operation op (parametrized
with params) on them, stores the result v together with a new handle h, and
sends h to all parties. In this way, the parties can perform computations without
revealing anything about the intermediate values or results, unless a sufficiently
large coalition wants a value to be revealed.

The existing implementations of ABB are protocol sets πABB based on either
secret sharing [12, 3, 6] or threshold homomorphic encryption [14, 21]. Depending
on the implementation, the ABB offers protection against a honest-but-curious,
or a malicious party, or a number of parties (up to a certain limit). E.g. the im-
plementation of the ABB by Sharemind [3] consists of three parties, providing
protection against one honest-but-curious party.

In this paper, the protocols are given and their security (and correctness)
argued in the FABB-hybrid model. The arguments remain valid if FABB is replaced
with a secure implementation πABB.

Typically, the ABB performs computations with values v from some ring R.
The set of operations definitely includes addition/subtraction, multiplication of
a stored value with a public value (this operation motivates the params in the
compute-command), and multiplication. Even though all algorithms can be ex-
pressed using just these operations, most ABB implementations provide more
operations (as primitive protocols) for greater efficiency of the implementations
of algorithms on top of the ABB. In all ABB implementations, addition, and mul-
tiplication with a public value occur negligible costs; hence they’re not counted
when analyzing the complexity of protocols using the ABB. Other operations
may require a variable amount of communication (in one or several rounds)
between parties, and/or expensive computation. The ABB can execute several
operations in parallel; the round complexity of a protocol is the number of com-
munication rounds all operations of the protocol require, when parallelized as
much as possible.

It is common to use JvK to denote the value v stored in the ABB. The notation
Jv1K op Jv2K denotes the computation of v1 op v2 by the ABB (translated to a
protocol in the implementation πABB).

In the next section, we give a protocol for private lookup. Formally, we are
presenting a secure implementation for the functionality FABB+LU that accepts
the same commands as FABB, answering them in the same manner. Addition-
ally, it accepts the command lookup(h1, . . . , hn, hidx). When a sufficient number
of parties has sent such command to FABB+LU, it looks up the value vidx cor-
responding to hidx and the value v′ corresponding to hvidx . It stores v′ together
with a new handle h′ and sends h′ to all parties.

The implementation πABB+LU is given in the FABB-hybrid model. It simply in-
vokes FABB for all FABB commands. The implementation of the lookup-command
is given below.



Algorithm 1: Private look-up protocol

Data: Vector of indices i1, . . . , im ∈ F\{0}
Data: Vector of values (Jvi1K, . . . , JvimK) with vi1 , . . . , vim ∈ F.
Data: Index JjK to be looked up, with j ∈ {i1, . . . , im}.
Result: The looked up value JwK = JvjK.
Offline phase

1 (JrK, Jr−1K) $← F∗

2 for k = 2 to m− 1 do JrjK← JrK · Jrj−1K;
3 Compute the coefficients λI

j,k from i1, . . . , im.
Vector-only phase

4 foreach k ∈ {0, . . . ,m− 1} do JckK←
∑m

l=1 λ
I
k,lJvlK;

5 foreach k ∈ {0, . . . ,m− 1} do JykK← JckK · JrkK;
Online phase

6 z ← retrieve(JjK · Jr−1K)
7 JwK =

∑m−1
k=0 zkJykK

4 Protocol for private lookup

Our protocol, depicted in Algorithm 1, takes the handles to elements vi1 , . . . , vim
(with arbitrary non-zero, mutually different indices) and the handle to the index
j stored inside the ABB, and returns a handle to the element vj . It represents the
elements as a polynomial V over a suitable field F, satisfying V (ij) = vij for all
j ∈ {1, . . . ,m} (with i1, . . . , im also belonging to F). The lookup then amounts to
the evaluation of the polynomial in a point. Similar ideas have appeared in [35]
(for DFAs). We will then combine these ideas with a method to move offline
most of the computations for the polynomial evaluation [27]. Both the idea and
the method have been slightly improved and expanded in this paper.

Let our ABB work with the values from the field F, where |F| ≥ m+1. There
exist protocols for generating a uniformly random element of F inside the ABB

(denote: JrK $← F), and for generating a uniformly random non-zero element of

F together with its inverse (denote: (JrK, Jr−1K) $← F∗). These protocols require
a small constant number of multiplications on average for any ABB [11].

There exist Lagrange interpolation coefficients λIj,k depending only on the

set I = {i1, . . . , im}, such that V (x) =
∑m−1
j=0 cjx

j , where cj =
∑m
k=1 λ

I
j,kvik .

These coefficients are public and computed in the offline phase of Alg. 1.
Correctness The definition of ck gives

∑m−1
k=0 ckl

k = vl for all l ∈ {i1, . . . , jm}.
We can now verify that w =

∑m−1
k=0 ykz

k =
∑m−1
k=0 ckr

kjkr−k = vj .
Security and privacy To discuss the security properties of a protocol in
the FABB-hybrid model, we only have to consider which extra information the
adversary may be able to obtain from the retrieve-commands, and how it can
affect the run of the protocol through the values it store-s (the latter is significant
only if the adversary is active). There are no store-commands in Alg. 1. The
results of the retrieve-commands are uniformly randomly distributed elements of



F∗, independent of everything else the adversary sees. These can be simulated
without any access to vi1 , . . . , vim and j. Hence Alg. 1 is secure and private
against the same kinds of adversaries that the used implementation πABB of
FABB can tolerate.
Complexity In the offline stage, we perform m − 2 multiplications. We also
generate one random invertible element together with its inverse, this genera-
tion costs the same as a couple of multiplications [11]. The round complexity of
this computation, as presented in Alg. 1 is also O(m), which would be bad for
online computations. For offline computations, the acceptability of such round
complexity mainly depends on the latency of the used communication channels.
The offline phase could be performed in O(1) rounds [11] at the cost of increas-
ing the number of multiplications a couple of times. In the vector-only phase,
the computation of the values JckK is free, while the computation of the values
JykK requires m − 1 multiplications (the computation of Jy0K is free). All these
multiplications can be performed in parallel. If the vector v were public then the
computation of JykK would have been free, too. The only costly operations in
the online phase is a single multiplication and a single retrieve-operation; these
have similar complexities in existing ABB implementations.

4.1 Speeding up the offline phase

The preceding complexity analysis is valid for any implementation of the ABB.
Some implementations contain additional efficient operations that speed up cer-
tain phases of Alg. 1. If we use the additive secret sharing based implementation,
as used in Sharemind [4], and a binary field F, then we can bring down the
complexity of the offline phase to O(

√
m) as shown in the following.

The Sharemind ABB is realized by three parties, offering protection against
passive attacks by one of the parties. The ABB stores elements of some ring R;
a value v ∈ R is represented by πABB as JvK = (JvK1, JvK2, JvK3) ∈ R3 satisfying
JvK1+JvK2+JvK3 = v, where the share JvKi is kept by the i-th party Pi. Messages
depending on these shares are sent among the parties, hence it is important
to rerandomize JvK before each use. The resharing protocol [4, Algorithm 1]
(repeated here as Alg. 2; all indices of the parties are modulo 3) is used for this
rerandomization. We note that in this algorithm, the generation and distribution
of random elements can take place offline. Even better, only random seeds can
be distributed ahead of the computation and new elements of R generated from
them as needed. Hence we consider the resharing protocol to involve only local
operations and have the cost 0 in our complexity analysis.

If the ring R is a binary field F, then the additive sharing is actually bit-wise
secret sharing: JvK = JvK1 ⊕ JvK2 ⊕ JvK3, where ⊕ denotes bit-wise exclusive or.
For such sharings, the usual arithmetic operations with shared values in Z2n are
more costly, compared to additive sharings over Z2n , but equality checks and
comparisons are cheaper [4]. As most operations with array indices are expected
to be comparisons, bit-wise secret sharing may be a good choice for them.

Sharemind’s multiplication protocol [4, Algorithm 2] (repeated as Alg. 3) is

based on the equality (JuK1 + JuK2 + JuK3)(JvK1 + JvK2 + JvK3) =
∑3
i,j=1JuKiJvKj .



Algorithm 2: Resharing protocol JwK← Reshare(JuK) in Sharemind [4]

Data: Value JuK
Result: Value JwK such that w = u and the components of JwK are independent

of everything else

Party Pi generates ri
$← R, sends it to party Pi+1

Party Pi computes JwKi ← JuKi + ri − ri−1

Algorithm 3: Multiplication protocol in the ABB of Sharemind [4]

Data: Values JuK and JvK
Result: Value JwK, such that w = uv

1 Ju′K← Reshare(JuK)
2 Party Pi sends Ju′Ki to party Pi+1

3 Jv′K← Reshare(JvK)
4 Party Pi sends Jv′Ki to party Pi+1

5 Party Pi computes Jw′Ki ← Ju′Ki · Jv′Ki + Ju′Ki · Jv′Ki−1 + Ju′Ki−1 · Jv′Ki
6 JwK← Reshare(Jw′K)

After the party Pi has sent JuKi and JvKi to party Pi+1 (here and subsequently,
all party indices are modulo 3), each of these nine components of the sum can
be computed by one of the parties. The multiplication protocol is secure against
one honest-but-curious party [4, Theorem 2]. Indeed, as the sending of JuKi
from Pi to Pi+1 takes place after resharing JuK, the value JuKi is a uniformly
random number independent of all other values Pi+1 sees. Hence the simulator
for Pi+1’s view could itself generate this value. The same consideration also
underlies the security proof of the specialized offline phase protocol given in
Alg. 4, the properties of which we discuss below.

Privacy We have to show that the view of a single party Pi can be simulated
without access to the shares held by other parties. Party Pi receives messages
only in lines 4 and 9 of Alg. 4. In both cases, it receives a share of a freshly
reshared value. Hence this message can be simulated by a uniformly random
number, as discussed above.

Complexity We consider local computation and resharings to be free, hence
we have to count the number of messages sent by the parties. It is easy to see
that a party sends at most

√
m+ 1 elements of the field F in lines 4 and 9 of

Alg. 4. This is also the round complexity of Alg. 4. But by tracking the data
dependencies in the first loop, we see that its iterations no. 2k−1, . . . , 2k−1 could
be done in parallel for each k ∈ {1, . . . , q − 1}. Hence Alg. 4 could be executed
in O(logm) rounds.

Correctness We can use Alg. 4 only if F is a binary field. In this case squaring
a shared value JuK is a local operation: (JuK1 + JuK2 + JuK3)2 = JuK21 + JuK22 + JuK23
and the computation of Ju2Ki = JuK2i only requires the knowledge of JuKi. Regard-
ing Alg. 4, note that its first loop satisfies the invariant that in the beginning
of each iteration, each party Pi knows the values Jv0Ki, . . . , Jv2j−1Ki and also



Algorithm 4: Computing (Jv2K, . . . , JvmK) from JvK in Sharemind

Data: m ∈ N and the value JvK, where v ∈ F, char F = 2
Result: Values Ju0K, . . . , JumK, where uj = vj

1 q ← dlog
√
m+ 1e

2 Ju0K← (1, 0, 0)
3 Ju1K← Reshare(JvK)
4 Party Pi sends Ju1Ki to party Pi+1

5 for j = 1 to 2q−1 − 1 do
6 Pi computes Ju2jKi ← JujK2i and Ju2jKi−1 ← JujK2i−1

7 Pi computes JtKi ← JujKi · Juj+1Ki + JujKi · Juj+1Ki−1 + JujKi−1 · Juj+1Ki
8 Ju2j+1K← Reshare(JtK)
9 Party Pi sends Ju2j+1Ki to party Pi+1

10 foreach j ∈ {2q, . . . ,m} do
11 Let (r, s) ∈ {0, . . . , 2q − 1}, such that 2qr + s = j

12 Party Pi computes JtKi ← JurK2
q

i · JusKi + JurK2
q

i · JusKi−1 + JurK2
q

i−1 · JusKi
13 JujK← Reshare(JtjK)

Jv0Ki−1, . . . , Jv2j−1Ki−1. With these values, it can compute Jv2jKi and Jv2j+1Ki
(effectively, we are computing v2j = (vj)2 and v2j+1 = vj · vj+1). Party Pi can
also compute Jv2jKi−1. It receives Jv2j+1Ki−1 from Pi−1. In the second loop, we
compute vj = (vr)2

q · vs for j = 2q · r + s. Again, J(vr)2
q

Ki is locally computed
from JvrKi by squaring it q times.

4.2 Speeding up the vector-only phase

A different kind of optimization is available if the ABB implementation is based
on Shamir’s secret sharing [32], using Gennaro et al.’s multiplication protocol [17]
(examples are VIFF [12] and SEPIA [6]). Such ABB impelementations (for p
parties), secure against t parties can be given if 2t+ 1 ≤ p (for passive security)
or 3t + 1 ≤ p (for active security). In such implementation, a value v ∈ F for a
field F of size at least p+ 1 is stored in the ABB as JvK = (JvK1, . . . , JvKp), such
that there exists a polynomial f over F with degree at most t and satisfying
f(0) = v and f(ci) = vi for all i ∈ {1, . . . , p}, where C = {c1, . . . , cp} is a set of
mutually different, public, fixed, nonzero elements of F. The share vi is kept by
the i-th party Pi.

Our optimization relies on the computation of a scalar product J
∑k
i=1 uiviK

from the values Ju1K, . . . , JukK and Jv1K, . . . JvkK stored inside the ABB having
the same cost as performing a single multiplication of stored values. For refer-
ence, Alg. 5 presents the scalar product protocol in the SSS-based ABB pro-
viding passive security (thus 2t + 1 ≤ p) [17]. The multiplication protocol can
be obtained from it simply by letting the length of the vectors to be 1. In this
protocol, the values λCi are the Lagrange interpolation coefficients satisfying
f(0) =

∑p
i=1 λ

C
i f(ci) for any polynomial f over F of degree at most 2t. The



Algorithm 5: Scalar product protocol in an SSS-based ABB [17]

Data: Vectors (Ju1K, . . . , JunK) and (Jv1K, . . . , JvnK)
Result: Value JwK, such that w =

∑n
j=1 ujvj

Party Pi computes di ←
∑n

j=1JujKiJvjKi
Party Pi picks a random polynomial fi of degree at most t, such that fi(0) = di.
Party Pi sends fi(cj) to Pj

Party Pi computes JwKi ←
∑p

j=1 λ
C
j fj(ci).

Algorithm 6: Improved vector-only and online phases of the private
lookup protocol

Data: Lagrange interpolation coefficients λI
j,k

Data: Random non-zero JrK and its powers Jr−1K, Jr2K, . . . , Jrm−1K.
Data: Vector of values (Jvi1K, . . . , JvimK) with vi1 , . . . , vim ∈ F.
Data: Index JjK to be looked up, with j ∈ {i1, . . . , im}.
Result: The looked up value JwK = JvjK.
Vector-only phase

1 foreach k ∈ {0, . . . ,m− 1} do JckK←
∑m

l=1 λ
I
k,lJvlK;

Online phase

2 z ← retrieve(JjK · Jr−1K)
3 foreach j ∈ {0, . . . ,m− 1} do JζjK← zjJrjK;
4 JwK = (Jc0K, . . . , Jcm−1K) · (Jζ0K, . . . , Jζm−1K)

protocols providing active security are much more complex [10], but similarly
have equal costs for multiplication and scalar product.

Table 1. Communication costs (in ele-
ments of F) of different private lookup
protocols

Sharing offline vec-only online

additive 3
√
m 6m 12

(public v) 3
√
m 0 12

Shamir’s 6m 0 15
(public v) 6m 0 9

Our optimization consists of a reorder-
ing of the operations of the vector-only
and online phases of the private lookup
protocol, as depicted in Alg. 6. We see
that compared to Alg. 1, we have moved
the entire computation of the products
zjJcjKJrjK to the online phase, thereby re-
ducing the vector-only phase to the com-
putation of certain linear combinations.
The online phase becomes more complex,
but only by a single scalar product, which
costs the same as a single multiplication. The correctness and privacy arguments
for Alg. 6 are the same as for Alg. 1.

Unfortunately, we cannot use the optimizations of both Sec. 4.1 and Sec. 4.2
at the same time, as the cost of converting from one representation to the other
would cancel any efficiency gains. If we have three parties and seek passive
security against one of them, then our choices are given in Table. 1. Recall that
multiplication in both representations and retrieval in the additive representation



requires the communication of 6 field elements in total. Retrieval in Shamir’s
secret sharing based representation requires 3 field elements to be sent.

5 Protocol for DFA execution

A DFA is a tuple A = (Q,Σ, δ, q0, F ), where Q is a set of states, Σ is the
alphabet (a set of characters), q0 ∈ Q is the initial state, F ⊆ Q is the set
of final states and δ : Q × Σ → Q is the transition function. To execute a
string w = w1 · · ·w` ∈ Σ∗ on A means to find the states q1, . . . , q`, such that
qi = δ(qi−1, wi) for all i ∈ {1, . . . , `} and check whether q` ∈ F .

In our implementation, the size of the problem — the numbers |Q| = m,
|Σ| = n and |w| = ` — is public, but δ and F are private. We need private
lookup to implement δ. It is represented as a table of |Q| · |Σ| private values. We
compute the private index from Jqi−1K and JwiK and use it to find JqiK from this
table, seen as a vector of length N = mn. We have implemented DFA execution
using both additive sharing and Shamir’s sharing, in fields GF (p) for p = 232−5
and GF (232). We have measured the performance of Alg. 1 in all cases, as well
as the optimizations of Alg. 4 and Alg. 6 in appropriate cases. Our tests were
performed on three computing nodes, each of which was deployed on a separate
machine. The computers in the cluster were connected by an Ethernet local area
network with link speed of 1 Gbps. Each computer in the cluster had 48 GB of
RAM and a 12-core 3 GHz CPU with Hyper Threading.

Our implementation is sub-optimal in the round complexity (which is O(`)),
as it faithfully implements the definition of the DFA execution. Hence the run-
ning time of the online phase is currently dominated by the latency of the net-
work. On the other hand, this also implies that many instances of DFA execution
run in parallel would have almost the same runtime (for online phase) as the sin-
gle instance. It is well-known that the DFA execution could be implemented in
parallel fashion, using O(log `) time (or SMC rounds). This, however, increases
the total work performed by the algorithm by a factor of O(m).

We see that for the vector-only phase of the private lookup, we need the
description of δ, but not yet the string w. This corresponds very well to cer-
tain envisioned cloud services, in particular to privacy-preserving spam filtering,
where the spamminess is detected with regular expressions.

Table 2 presents the actual running times of our DFA execution implementa-
tion. All running times are in milliseconds, given with 2–3 significant digits. We
have measured the running time for different automaton sizes m and alphabet
sizes n, with N = mn being between 6 and 30000. The length of the input string
was always 2000 — the work performed by the algorithm, as well as its timing
behavior is perfectly linear in this length.

We see that the running time of the online phase is indeed only slightly
dependent on N : it is ≈ 286 + 0.042N µs per character of the input string
when using the field GF (p) (for GF (232), it is around 290 + 0.105N). This
slight dependence on N is caused by the local computations, the amount of
which depends on N . Its effect would be even lower if the network latency were



Table 2. DFA execution benchmarks (times in milliseconds, ` = 2000)

(m,n) = (3, 2) (15, 10) (100, 30) (1000, 30)

Using only Alg. 1 for lookup

GF (p), additive
offline 7 120 2260 23000
vector-only 4 75 1440 22000
online 560 590 830 3100

GF (232), additive
offline 11 160 3000 30000
vector-only 5 110 2200 49000
online 563 620 1230 6800

GF (p), Shamir
offline 7 120 2600 27000
vector-only 4 86 1520 23000
online 580 580 810 3100

GF (232), Shamir
offline 12 200 3900 38000
vector-only 6 128 2400 53000
online 570 620 1190 6800

With optimizations of Alg. 4 or Alg. 6
GF (232), additive offline 12 72 1140 10600

GF (p), Shamir
vector-only 0 1 89 8100
online 900 900 1230 4300

GF (232), Shamir
vector-only 0 2 310 32000
online 900 940 1900 13000

higher. Other phases depend much more on N : offline phase requires 0.4N µs
and vector-only phase 0.23N + 4.7 · 10−6N2 µs per character for GF (p).

Among related work, running times of their algorithm implementations have
been presented in [15, 30]. Our implementation is significantly more efficient
than [15]. They report the running time of 8 seconds for processing a string of
length ` = 10 on an automaton with mn = 40000. Compare this number with
our reported running time of ≈ 3 seconds for the online phase or even with
≈ 40 seconds for all three phases of processing a 2000-character string on an
automaton with mn = 30000.

Our running times do not seem that impressive when compared to [30], where,
with a more optimized implementation inspired by garbled circuits, running
times as low as 12 seconds are reported for n = 2 and {m, `} = {20, 150000}.
But even then, if we consider mn` to be a valid measure of the size of the
problem, our implementation is a couple of times faster (and the online phase
requires only 10% of that time). Also, they are solving a narrower problem,
with one of the parties knowing the automaton and the other knowing the input
string, while our protocols are universally composable. On the other hand, their
implementation is secure against malicious adversaries, while we have tested our
protocols only on ABB implementations secure against passive attacks only.



Table 3. SSSD execution benchmarks (times in seconds)

n 100 100 100 100 300 300 300 600 600 600 1000 1000 2000

m 100 600 1000 9900 300 1800 3000 600 3600 6000 1000 6000 2000

offline 0.3 1.3 1.9 19 5.2 31 52 41 240 400 190 1100 1540

online 6.0 7.9 9.2 68 10.4 49 72 39 190 310 110 580 550

6 Protocol for SSSD

Let G = (V,E) be a directed graph with s, t : E → V giving the source and
target, and w : E → N giving the length of each edge. Let v0 ∈ V . Bellman-Ford
(BF) algorithm for SSSD starts by defining d0[v] = 0, if v = v0, and d0[v] =∞ for
v ∈ V \{v0}. It will then compute di+1[v] = min(di[v],mine∈t−1(v) di[s(e)]+w(e))
for all v ∈ V and i ∈ {0, . . . , |V | − 2}. The vector d|V |−1 is the result of the
algorithm.

We have implemented the BF algorithm on top of the Sharemind platform,
hiding the structure of the graph, as well as the lengths of edges. In our implemen-
tation, the numbers n = |V | and m = |E| are public, and so are the in-degrees of
vertices (obviously, these could be hidden by using suitable paddings). In effect,
the mapping t in the definition of the graph is public, while the mappings s and
w are private. During the execution, we use private lookup to find di[s(e)]. As
the vectors di have to be computed one after another, but the elements of the
same vector can be computed in parallel, our implementation has O(n) rounds
in the online phase.

As the vector di is not yet available at the start of computation, we use the
optimized vector-only phase to avoid an O(n) factor during the execution of the
BF algorithm. Hence we use Shamir’s secret sharing based ABB implementation.
We have to perform arithmetic and comparisons with secret values, hence we
must use a prime field as the field F (we use GF (p) with p = 232 − 5).

Table 3 presents the actual running times of our implementation of the
Bellman-Ford algorithm on sparse graphs. All running times are in seconds,
given with 2–3 significant digits. We have measured the running time for differ-
ent graphs with n vertices (where 100 ≤ n ≤ 2000) and m edges, also matching
the problem sizes in related work. Hence we have included cycle graphs (where
m = n), as well as the complete directed graph on 100 vertices (with m = 9900).
We also believe that in applications, the used graphs are often planar. Thus we
have selected the parameters of certain graphs to match planar graphs, where
most faces are triangles and edges are bidirectional (m ≈ 6n).

We see that in our tests, the offline phase requires around 4.74n2 +1.28mn+
0.181mn2 µs, and the online phase around 14.7n2+67.3mn+0.0257mn2 µs. The
asymptotic running time of the BF algorithm is O(mn). Hence we see that the
online phase depends much less on the mn2 term than the offline phase.

The running times reported in related work are much higher. The protocols
of [1] are implemented on VIFF [12], running with three parties on a single



machine, and requiring 5622 s for SSSD in 128-vertex complete graph. Compare
this with our running time of 87 s (offline+online) for the 100-vertex complete
graph. We require (550+1540) s (online+offline) for a graph with m = n = 2000.
In [22], the same graph requires around 10000 s with implementation based on
SPDZ [23] (hence their time probably does not include SPDZ precomputations).

7 Conclusions

In this paper, we have shown that arithmetic black boxes support fast lookups
from private tables according to a private index. We have used this operation
to obtain very efficient algorithms for certain tasks. Our results show that for
private lookups in an ABB, complex techniques based on Oblivious RAMs [13]
are not necessary. Beside the DFA execution or the Bellman-Ford algorithms,
we expect our techniques to have wide applicability in making algorithms with
sensitive data reading patterns privacy preserving.
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