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Abstract. Programming languages suitable for distributed computa-
tion contain constructs that should map well to the structure of the
underlying system executing the programs, while being easily usable
by the programmers and amenable to computer-aided verification. For
object-oriented languages, asynchronous method calls returning futures
that will be filled only after the called method has finished its execution
have been proposed as a reasonably simple and analyzable program-
ming construct. In this paper, we show how to map from a language
with asynchronous method calls and futures to a language with explicit
communication primitives and cryptographic operations. Our target lan-
guage is reasonably similar to common process calculi, and translating
it further to e.g. the applied pi calculus requires only known techniques.
The translation is valid even for programs executing in open environ-
ments, where method calls and futures can be transmitted between the
program and the environment.
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1 Introduction

One of the main issues in the interplay of object-orientation and distribution
in programming languages is the handling of method calls and returns between
loosely coupled objects without losing the benefits of synchronization [27]. In
this paper we are studying a language that proposes to strike a suitable bal-
ance between these issues. The Abstract Behavioral Specification (ABS) language
[22, 20] is an extension of Creol [23], currently used as the underlying formal-
ism in a large-scale collaborative effort for formal verification of adaptable and
evolvable software systems (http://hats-project.eu, [19]). The communica-
tion and synchronization abstractions of ABS have been carefully chosen to make
the language convenient to use in modeling and specifying various concurrent
systems [12, 21], while at the same time supporting formal analysis and verifica-
tion [11, 28]. Thus the usage of ABS allows the design of highly trusted flexible
software systems.

The inter-object messaging in ABS is based on asynchronous calls and fu-
tures. A method call immediately returns with a future that will be filled with
the called method’s result only after it has finished. At the same time, futures are
first-class values and may be stored or passed around similarly to atomic data



or object references. This makes possible very varied communication patterns
between objects. At the source level, this communication is secured — the se-
mantics of the language does not allow someone to intercept a message between
two objects or to replace it with a different one.

The issues of actually securing the inter-object communication were likely not
considered during the design of ABS. The advanced concepts in the construction
of the language do not map well into the concepts of security systems and it is not
clear at all how this communication should be protected in an actual distributed
implementation. A walled garden approach could be taken if the whole program
runs under a single authority; in this case, the communication between all objects
is protected by a single key and appropriate cryptographic protocols can be used
to prevent replays by the adversary. If the program is open — different objects
are controlled by different, mutually distrustful authorities — then this approach
no longer works as long as calls between different authorities as possible.

In this paper we show how the communication between objects in ABS can
be protected using cryptographic techniques. We propose a fully abstract trans-
lation from the ABS language to a language with explicit message-passing and
cryptographic operations — two programs in ABS are indistinguishable iff their
translations are indistinguishable. Hence this translation preserves all observable
properties of programs, including all different kinds of security properties (in-
tegrity, secrecy, non-interference, etc.). In this paper, we are considering the sym-
bolic semantics of cryptographic operations (perfect cryptography, or Dolev-Yao
model) [15]. For computational soundness, the results of [13] may be applicable
if encryption cycles are avoided. We believe that our implementation language
can be straightforwardly translated into well-known process calculi, e.g. the ap-
plied pi calculus, such that a program in our implementation language and its
translation are observationally equivalent. Besides being an interesting result in
characterizing which communication models can be fully abstracted using cryp-
tography (we discuss this more in the next section), our result also allows to carry
over the verification results obtained for the ABS language to its implementation
and thus serves as a validation of the design of ABS.

2 Related work

There has been a fair amount of work in securely translating the abstractions of
communication back into the exchanging of messages on point-to-point channels
between entities. This line of work was started by Abadi et al. [3, 4] who show
how channels protected by the knowledge of names can be securely implemented
using public channels where the messages are protected through cryptographic
means. The translation is applied to processes specified in the join-calculus [16];
its restrictive scope extrusion rules help to simplify the translation. The source
language is abstracted further by introducing authentication primitives in [5].
Authentication primitives in a π-calculus setting have been considered by Backes
et al. [8]. Securing the channels with cryptographic mechanisms has also been
explored by Bugliesi and Focardi [9], and by Mödersheim and Viganó [26] who



consider languages containing confidential and/or authentic channels between
principals and ways to simulate them on unprotected channels using cryptogra-
phy. Adão and Fournet [7] consider the translation of authentic channels between
principals directly into channels protected by cryptography in the computational
model [18]. Bugliesi and Giunti [10] give a translation for a variation of π-calculus
with normal scope extrusion rules, but with capability types on channel names
and a proxy service in the translated process that has no counterpart in the
original.

Abstract information protection primitives and their implementation has also
been considered in the language-based information flow security community.
Vaughan and Zdancewic [31] consider the packing/unpacking of information at
certain level of the information flow lattice; code executing with lower privileges
cannot access high-packed data. Fournet and Rezk [17] consider programs with
holes for adversary’s code; the program data must be protected across these
holes.

Abadi [1] has discussed the role full abstraction plays in the implementations
of secure systems, as well as the difficulties in achieving it. He notes that for
the full π-calculus, the unconstrained distribution of read-capabilities of chan-
nels, together with the requirement of forward secrecy (messages exchanged on
a channel before the adversary obtained the read-capability for that channel
remain secret) makes fully abstract translations to cryptographically protected
channels hard to construct. On the other hand, in the join-calculus [3, 4] only
write-capabilities can be distributed.

The constructs of ABS give rise to two different kinds of channels. An object
reference can be used to send messages (invoke methods) to that object. This
represents a channel where the write-capability can be freely distributed, but
the read-capability is only at the object. This channel is similar to the channels
of join-calculus. A future represents a channel where the read-capability can be
freely distributed, but the write-capability is owned by a single task. According
to π-calculus semantics, such channel would pose difficulties for a fully abstract
translation, but the semantics of ABS makes it possible by not requiring forward
secrecy. The handshake that takes place during a method invocation is possibly
the trickiest feature to translate. Here a message on the first kind of channel
causes the creation of a second kind of channel, such that the recipient has the
write- and the sender the read-capability. A method invocation is atomic in ABS,
hence the translation must be atomic, too.

3 The source language

3.1 Syntax

Our source language is a simplified version of (the object-oriented fragment
of) ABS, retaining all the interesting details of inter-object communication and
parallelism. We leave out the semaphore-based cooperative synchronization of
tasks belonging to the same object, as our translation is orthogonal to those and



it is well-known how to express semaphores in π-calculus [25]. The (abstract)
syntax of the source language is given in Figure 1. The notation X denotes a
sequence of X-s.

x | n | o | f local variable | task | object | field name

Pr ::= Cl B program

Cl ::= class C{T f M} class definition

M ::= T m(T x) B method definition

B ::= {T x s} method body

v ::= x | this | f variable

i ::= . . . | −1 | 0 | 1 | . . . integer

e ::= v | null | i | e⊕ e | e!m(e) | e.get | new C expression

s ::= v := e | return e | cs statement

cs ::= skip | if (e) s else s | while (e) s | s; s control statement

T ::= Int | C | Fut(T ) type

Fig. 1. Syntax of the source language

Let us explain the language constructs related to parallel distributed exe-
cution. Each object executes independently of others (i.e. the objects are the
grains of distribution), the objects communicate only by asynchronous method
calls (e.g. it is impossible to directly read or write some field of some object from
inside another object). Each object belongs to some class; different classes have
different methods. Each object may concurrently execute a number of tasks.
In ABS, the scheduling of tasks belonging to the same object, is cooperative
[20]. For simplifying the presentation in this paper, we let the tasks also exe-
cute independently of each other (the next task to make a step is chosen non-
deterministically from the set of all tasks). The names of objects and tasks are
picked from a countable set N.

The expression e!m(e) denotes the asynchronous call of the method m. The
call immediately returns a future. At the same time, a new task executing the
code of m is started at the receiver of the call. The get-construct is used to read
the value of that future, if it is available. If not, then get blocks. The expression
e⊕ e denotes the application of any binary operation to two expressions. In the
actual implementations, there may be several different operations. In particular,
⊕ may denote the comparison of two values.

As specified in Fig. 1, the language does not contain means to prevent type
errors. We assume that reasonable default values are used whenever a type error
is detected at runtime (0 for integers, null for object references, a never-available
future for futures, including the results of method calls on null).



3.2 Operational Semantics

The semantics of a program Pr is a labeled transition system (LTS). In general,
a LTS is a quadruple L = (S,A,→, s0), where S is the set of states, A is the set
of labels (both can be infinite), → is a subset of S × A × S, and s0 ∈ S is the

starting state. We write s
α−→ s′ for (s, α, s′) ∈→. We assume that A contains a

special label τ that we call the silent label. A LTS communicates with its outside
environment through its transitions that carry non-silent labels.

The semantics [[Pr ]] of ABS programs (as closed systems) is given in [20].
The semantics of a program as a closed system can be seen as a LTS where all
transitions are labeled τ . An open-system semantics of an ABS-like language is
considered in [6] and our treatment is a simplified version of that.

A run-time configuration —the state of the LTS— of a program is a set of ob-
jects. Each object is related to zero or more tasks. The configuration also records
object and task names that are made known to the environment. Formally, the
run-time configurations are as follows:

P ::= o[C, σ, ϕ] | n 〈o, σ, s〉 | p(o) | p(n) | P ‖ P

Each object is represented by its identifier o, its class C, its state σ (the values of
its fields), and the values of the futures it has received ϕ (a mapping from names
to values). Each task is represented by its identifier n, its object o, the statement
s that is yet to be executed in this task, and its state σ (the values of its local
variables). Both o and n are names. The names of objects and tasks do not
repeat inside a configuration. The operation ‖ is considered to be commutative
and associative.

The notation p(o) means that the name o is public — the environment knows
it. It is possible for an environment to know the name o without the object
o[C, σ, ϕ] being part of the configuration. This means that the environment con-
trols and executes that object. The notation p(n) means the same for task names
n. For a configuration P , let N (P ) denote all object and task names in the con-
figuration. Let Np(P ) and Nl(P ) denote all public names in P , and all local
names in P (i.e. names of objects and tasks present in P ), respectively.

The evaluation contexts for expressions and statements are defined as follows.
We let c range over the constants — integers, null, and names. The hole [] will
be filled with the expression that will be evaluated during the next computation
step.

e[] ::= [] | e[] ⊕ e | c⊕ e[] | e[]!m(e) | c!m(c, e[], e) | e[].get
s[] ::= v := e[] | return e[] | if (e[]) s else s | while (e[]) s | s[]; s

The transition rules of the LTS [[Pr]] are given in Fig. 2. In these rules we
make the following convention: if a task n〈o, . . .〉 is part of a configuration, then
the object o[. . .] is also a part of it, even if it is not shown.

In the semantics, the rule (acall1) describes a method call from an object o to
o′, both in the configuration. A new task is created which starts in a suspended
state. The call immediately returns a future whose value is equal to the name of



n〈o, σ, s[x]〉 τ−→ n〈o, σ, s[σ(x)]〉
(rv)

n〈o, σ, x := c〉 τ−→ n〈o, σ[x 7→ c], skip〉
(wv)

o[C, σ, ϕ] ‖ n〈o, σ′, s[f ]〉 τ−→ o[C, σ, ϕ] ‖ n〈o, σ′, s[σ(f)]〉
(rf)

o[C, σ, ϕ] ‖ n〈o, σ′, f := c〉 τ−→ o[C, σ[f 7→ c], ϕ] ‖ n〈o, σ′, skip〉
(wf)

n〈o, σ, s[c1 ⊕ c2]〉 τ−→ n〈o, σ, s[[[⊕]](c1, c2)]〉
(arith)

n〈o, σ, skip; s〉 τ−→ n〈o, σ, s〉
(skip)

n〈o, σ, s1〉
τ−→ n〈o, σ, s′1〉

n〈o, σ, s1; s2〉
τ−→ n〈o, σ, s′1; s2〉

(seq)

c 6= 0

n〈o, σ, if (c) s1 else s2〉
τ−→ n〈o, σ, s1〉

(if1)
n〈o, σ, if (0) s1 else s2〉

τ−→ n〈o, σ, s2〉
(if2)

c 6= 0

n〈o, σ,while (c) s〉 τ−→ n〈o, σ, s;while (c) s〉
(while1)

n〈o, σ,while (0) s〉 τ−→ n〈o, σ, skip〉
(while2)

body(m) = s stask = s[c/params(m)] n′ 6= n

o′[. . .] ‖ n 〈o, σ, s[o′!m(c)]〉 o→o′−−−→
o′[. . .] ‖ n 〈o, σ, s[n′]〉 ‖ n′ 〈o′, σinit, stask〉 ‖ p(o) ‖ p(o′)

(acall1)

o′ 6= o names(c) = {c1, . . . , ck} n′ 6∈ {n, c1, . . . , ck}

n 〈o, σ, s[o′!m(c)]〉 ‖ p(o′)
o→n′[o′.m(c)]−−−−−−−−−→

n 〈o, σ, s[n′]〉 ‖ p(o′) ‖ p(o) ‖ p(c1) ‖ · · · ‖ p(ck)

(acall2)

n 6∈ names(c) = {c1, . . . , ck} body(m) = s stask = s[c/params(m)]

o[. . .] ‖ p(o) ‖ p(c1) ‖ · · · ‖ p(ck)
n=o!m(c)−−−−−−→

o[. . .] ‖ p(o) ‖ p(c1) ‖ · · · ‖ p(ck) ‖ p(n) ‖ n〈o, σinit, stask〉

(acall3)

ϕ(n′) is undefined

o[C, σ, ϕ] ‖ n′〈o′, σ′, return c; s〉 o←o′−−−→
o[l, C, σ, ϕ[n′ 7→ c]] ‖ n′〈o′, σ′, return c; s〉 ‖ p(o) ‖ p(o′)

(return1)

p(n) ‖ n〈o, σ, return c; s〉 n[c]←o−−−−→ p(n) ‖ n〈o, σ, return c; s〉 ‖ p(o) ‖ p(names(c))
(return2)

n 6= n′ ϕ(n′) is undefined

o[C, σ, ϕ] ‖ p(n′) ‖ p(names(c))
o←n′[c]−−−−−→

o[C, σ, ϕ[n′ 7→ c]] ‖ p(n′) ‖ p(o) ‖ p(names(c))

(return3)

ϕ(n′) is defined

o[C, σ, ϕ] ‖ n〈o, σ′, s[n′.get]〉 τ−→ o[C, σ, ϕ] ‖ n〈o, σ′, s[ϕ(n′)]〉
(get)

�
νn−−→ p(n)

(newn)
o′ 6= o

n〈o, σ, s[new C]〉 τ−→ n〈o, σ, s[o′]〉 ‖ o′[C, σinit, ϕempty]
(newc)

�
νo−→ p(o)

(newo)
P

α−→ P ′ Nf(α) ∩Nl(P
′′) = ∅

P ‖ P ′′ α−→ P ′ ‖ P ′′
(frame)

Fig. 2. Operational semantics of the source language



the new task. This call is visible to the environment (o made a method call to o′),
but called method and its arguments are supposed to be protected. The names
o and o′ both become known to the environment, too. This is our design choice,
because protecting against eavesdropping is supposedly cheap, but protecting
against traffic analysis is expensive. The rule (acall2) describes a method call
from an object o in the configuration to an object o′ in the environment. In
this case, the environment learns the caller, as well as all arguments of the
method. The rule (acall3) describes a call from the environment to an object
in the configuration. A name can be among the arguments of the call only if
it is already known to the environment. There is no constraint on the integer
arguments.

The rules (returni) describe the returning of the result of a completed task. If
the object receiving the value belongs to the configuration, it saves the returned
value in its ϕ-component. Later, the get-expression may read it from ϕ; this is
no longer visible to the environment. We have made a design choice that the
result of a completed task may be returned to an object at most once. Most
importantly, this means that all expressions n.get in the tasks of some object o
return the same value. In a different object o′, the value of n.get may be different
(if n is the name of a task managed by the environment). In an implementation,
it is simple to ensure the uniqueness of returned values in a single object, while
comparing them across all objects requires complex protocols, e.g. Byzantine
agreement.

Rule (newc) describes the creation of a new object. The creation is invisi-
ble to the environment, which does not learn the name of the new object. This
allows the new object to be initialized by its creator (the first method call to
the newly created object must necessarily come from the program, not from the
environment, unless the program chooses to leak the identity of the newly gen-
erated object before placing any calls). This also allows the identities of objects
to serve as passwords (that the adversary does not know). So the programmer
can control how much interaction with the environment is allowed/possible.

The environment can also generate new names for objects and tasks (rules
(newn) and (newo)); � denotes the empty environment (unit element for ‖).
Finally, the (frame) rule states that each of the steps can also occur in a larger
context, if the context does not interfere with the step. The set Nf(α) denotes all
names in α that cannot be local names in a configuration to which a transition
labeled by α is made. It is defined by

Nf(o→ n′[o′.m(c)]) = {o′, n′} Nf(νn) = {n}
Nf(o← n′[c]) = {n′} Nf(νo) = {o} .

For other labels, Nf(α) = ∅. Also, when writing P ′ ‖ P ′′, we assume the objects
and tasks in P ′ and P ′′ have different names.

The initial configuration for the program Cl {T x s} will consist of just the
task n0 〈null, σ, s〉. This task is the only task that is not tied to an object (all
tasks created later will be tied to some object).

We denote the set of all labels occurring in Fig. 2 by Act src.



4 The implementation language

We now present our implementation language. Its main differences from the
source language are

– explicit message passing replaces asynchronous method calls;
– the spawning of new tasks is decided locally;
– cryptographic techniques, not the knowledge of names is used to protect the

communication between objects;
– objects and tasks do not have names, but are identified through their keys.

As such, the communication primitives of our implementation language are the
same as in well-known cryptographic process calculi, e.g. the applied pi-calculus
[2]. We retain the syntactic constructions for classes, methods, and program state
from our source language. It is known how to translate these constructions into
the π-calculus [24, 29]. Thus we believe that we are justified in considering our
implementation language as a dialect of the applied pi-calculus.

4.1 Syntax

Our implementation language contains cryptographic operations for the con-
struction of messages exchanged between objects. The exact set of available
operations does (mostly) not affect the syntax or semantics of the language,
hence we defer its specification to Sec. 5 where we explain how to translate from
the source to the implementation language. We assume we are given a signa-
ture Σ containing possible operations together with their arities. Also, there is
an equational theory over cryptographic messages that specifies the cancellation
and other rules. We let F range over the operations in Σ. For each F ∈ Σ, there
will be an an operation that can be invoked in expressions; this operation applies
F to its arguments. By overloading the notation, we let F denote that operation
as well (hence the rule (crypt) in Fig. 4).

Still, there are a couple of operations that we need Σ to contain. As we want
to identify the objects by their public keys, we require Σ to contain unary oper-
ations ·+ and ·−. No cancellation rules are associated with just these operations.

The syntax of the implementation language is given in Fig. 3. Compared to
the source language, the first difference that we spot is the extra method body
— the “main method” — in the class declarations. We denote the main method
of a class C by C.run. This method is executed immediately after an object
has been created and it will remain active for the entire lifetime of the object.
Another difference is, that we require each class to have fields kpub and kpriv
where the public and private key of a newly generated object are saved upon its
creation.

The expressions e!m(e) for method calls and e.get for reading the value of
a future have disappeared from the language. Instead, there is a statement
send(e1, e2) that sends the message e2 to the object with the public key e1.
There is also an expression recv that returns a message that has been sent to
this object. Note that messages are sent to objects, not tasks.



x | a | f local variable | atom | field name

Pr ::= Cl B program

Cl ::= class C{T f M B} class definition

M ::= T m(T x) B method definition

B ::= {T x s} method body

v ::= x | this | f variable

i ::= . . . | −1 | 0 | 1 | . . . integer

e ::= v | null | i | e⊕ e | a | F (e, . . . , e)

| new C | recv | newatom | unbox(e) expression

s ::= v := e | send(e, e) | spawn m(e) | cs statement

cs ::= skip | if (e) s else s | while (e) s | s; s control statement

T ::= Int |Msg type

Fig. 3. Syntax of the implementation language

The expression newatom picks a new atomic cryptographic message (usable
as a nonce, key, etc.) from a countable set A. The expression F (e1, . . . , en)
constructs a new cryptographic message by applying the constructor F to the
messages e1, . . . , en. The argument ei may also be an integer; in this case, it will
automatically be boxed as a message. For the opposite conversion, there is an
explicit operation unbox (returns 0 if the argument is not a boxed integer). Again
we assume the existence of a reasonable type system that avoids the mixing up of
values of type Int and Msg. Besides these two types, our implementation language
may reasonably include values of other types, and our translation procedure
given in the next section will indeed need more types. These types do not affect
the translatability of our implementation language into the applied pi calculus.

Finally, the spawn-statement is used to spawn new tasks. It adds a new task at
the same object where the spawn-statement was executed. This task will execute
the body of the method m. Note that spawn is a statement, not an expression.
Hence it does not return anything.

4.2 Operational semantics

In the implementation language, object and future names are replaced by cryp-
tographic messages. In particular, each object is represented by its public key
and each task is identified by an atom. The set of values c is now generated by
the grammar

c ::= i | a | null | F (c, . . . , c) .

Here null has the type Msg. We may also denote a value by E if we want to stress
that it is a cryptographic message. We can also use the notation E(x1, . . . , xl)



which denotes a message containing the variables x1, . . . , xl; such message be-
comes a value if these variables are substituted with values.

The semantics of a program Pr in the implementation language is again a
LTS, albeit with a different set of labels. Its runtime configurations are given by
the grammar

P ::= k+[C, σ] |
〈
k+, σ, s

〉
| g(a) | p(x\E) | P ‖ P .

Here k+[C, σ] is an object of class C with the public key k+ and values of fields
σ. A task 〈k+, σ, s〉 of this object k+ does not have a name, but it has the
values of local variables σ and the yet-to-be-executed statement s. The runtime
configuration g(a) records that an atomic message a has been generated. The
configuration p(x\E) records that the environment has learned the message E
built from atomic messages (and integers) using the constructors in Σ, and this
message is available to the environment through the variable x, picked from a
countable set X . The components p(x\E) are similar to the frame of a process
in the applied pi calculus. The transitions ensure that the environment of the
program can only perform operations that are consistent with the model of
symbolic cryptography.

Let NV(P ) denote the set of all names and variables defined in the config-
uration. If u ∈ A ∪ X then u ∈ NV(P ) iff u+[. . .], g(u), or p(u\E) belongs to
P .

The transitions of the LTS [[Pr ]] are given in Fig. 4. Similarly to the presen-
tation of the semantics of the source language in Fig. 2, we use the convention
that if a task 〈K, . . .〉 is mentioned in the configuration, then the object K[. . .]
is also a part of that configuration, even if it has been omitted from the rule.

The rule (send1) describes the transmission of messages from one object in
the configuration to another one. The first argument of send is the identity (the
public key) of the receiver. If it equals null then anyone (including the adversary)
may receive that message. Importantly, the sender will not proceed before the
receiver has received the message. This is similar to the method call in the
source language where, after making the call, the caller knows that the callee
has received it. The adversary sees the identity of the sender, the identity of the
receiver, and the message. All these are bound to new variables k1, k2, x ∈ X that
the adversary may use afterwards. The rule (send2) describes the transmission
of a message where the sender is in the configuration, but the receiver is not.
The adversary gets exactly the same information. If the receiver of the message
is specified as null then both rules are applicable.

The rule (send3) describes the reception of a message sent by the adversary. It
is an example of how the adversary can use the messages it has received. Namely,
the adversary specifies a message with variables x1, . . . , xl ∈ X that are bound to
values c1, . . . , cl in the configuration. These values will be substituted in place of
the variables in the received message. This construction allows the adversary to
specify precisely those messages that it can construct from the received messages
according to the rules of symbolic cryptography.

The rule (crypt) handles the application of cryptographic constructors and
the rule (unbox) the unboxing of integers. The function unbox returns i if its



〈K,σ, s[x]〉 τ−→ 〈K,σ, s[σ(x)]〉
(rv′)

〈K,σ, x := c〉 τ−→ 〈K,σ[x 7→ c], skip〉
(wv′)

K[C, σ] ‖ 〈K,σ′, s[f ]〉 τ−→ K[C, σ] ‖ 〈K,σ′, s[σ(f)]〉
(rf′)

K[C, σ] ‖ 〈K,σ′, f := c〉 τ−→ K[C, σ[f 7→ c]] ‖ 〈K,σ′, skip〉
(wf′)

〈K,σ, s[c1 ⊕ c2]〉 τ−→ 〈K,σ, s[[[⊕]](c1, c2)]〉
(arith′)

〈K,σ, skip; s〉 τ−→ 〈K,σ, s〉
(skip′)

〈K,σ, s1〉
τ−→ 〈K,σ, s′1〉

〈K,σ, s1; s2〉
τ−→ 〈K,σ, s′1; s2〉

(seq′)

c 6= 0

〈K,σ, if (c) s1 else s2〉
τ−→ 〈K,σ, s1〉

(if′1)
〈K,σ, if (0) s1 else s2〉

τ−→ 〈K,σ, s2〉
(if′2)

c 6= 0

〈K,σ,while (c) s〉 τ−→ 〈K,σ, s;while (c) s〉
(while′1)

〈K,σ,while (0) s〉 τ−→ 〈K,σ, skip〉
(while′2)

K′2 = K2 ∨K′2 = null

〈K1, σ, send(K′2, c); s〉 ‖ 〈K2, σ
′, s′[recv]〉 k1→k2:x−−−−−−→

〈K1, σ, s〉 ‖ 〈K2, σ
′, s′[c]〉 ‖ p(x\c) ‖ p(k1\K1) ‖ p(k2\K2)

(send1)

K2 6= K1

〈K1, σ, send(K2, c); s〉
k1→k2:x−−−−−−→ 〈K1, σ, s〉 ‖ p(x\c) ‖ p(k1\K1) ‖ p(k2\K2)

(send2)

K2 6= K1 ∀xi : θ(xi) = ci

〈K2, σ
′, s′[recv]〉 ‖ p(k2\K2) ‖ p(x1\c1) ‖ · · · ‖ p(xl\cl)

→k2:E(x1,...,xl)−−−−−−−−−−−→
〈K2, σ

′, s′[Eθ]〉 ‖ p(k2\K2) ‖ p(x1\c1) ‖ · · · ‖ p(xl\cl)

(send3)

c = F (c1, . . . , ck)

〈K,σ, s[F (c1, . . . , ck)]〉 τ−→ 〈K,σ, s[c]〉
(crypt)

unbox (c) = i

〈K,σ, s[unbox(c)]〉 τ−→ 〈K,σ, s[i]〉
(unbox)

a 6= K

〈K,σ, s[newatom]〉 τ−→ 〈K,σ, s[a]〉 ‖ g(a)
(newa)

�
νx−→ p(x\a) ‖ g(a)

(newn)

body(m) = s stask = s[c/params(m)]

〈K,σ, spawn m(c); s〉 τ−→ 〈K,σ, s〉 ‖ 〈K,σinit , stask〉
(spawn)

body(C.run) = sinit K 6= k ∈ A σ′(kpub) = k+ σ′(kpriv) = k−

〈K,σ, s[new C]〉 τ−→ 〈K,σ, s[k+]〉 ‖ k+[C, σ′] ‖ 〈k+, σ′′, sinit〉 ‖ g(k)
(newc)

4 ∈ {=, 6=} E(E1, . . . , El) 4 E′(E1, . . . , El)

p(x1\E1) ‖ · · · ‖ p(xl\El)
E(x1,...,xl)4E′(x1,...,xl)−−−−−−−−−−−−−−−−→ p(x1\E1) ‖ · · · ‖ p(xl\El)

(eq)

P
α−→ P ′ NV(P ′′) ∩ NV(P ′) = ∅

P ‖ P ′′ α−→ P ′ ‖ P ′′
(frame)

Fig. 4. Operational semantics of the target language



argument was a boxed integer i, and 0 otherwise. The rules (newa) and (newn)
describe the generation of new atoms (in A) by the program or by the adversary.
In both cases, the newly generated atom is recorded in the configuration. The
rule (spawn) describes the spawning of new tasks. The new task belongs to the
same object K as the task from where it was spawned. The rule (newc) describes
the creation of a new object. As we see, the main method of the newly created
object is immediately started.

The rule (eq) allows the adversary to compare messages it has received. These
comparisons are the only means for the information to flow from the messages
the adversary has received to the state of the adversary. In terms of applied pi
calculus, if two states are such that all comparisons the adversary can perform
give the same result, then these two states are statically equivalent [2, Sec. 4.2].

Finally, we again have the (frame)-rule that allows a transition to happen in
a larger context. Similarly to the source language, the context may not interfere
with the transition.

We denote the set of all labels occurring in Fig. 4 by Act imp.

5 Translation

For our proposed translation, we need some standard cryptographic operations
in our implementation language — symmetric encryption, public-key encryption
and signatures. Hence we require the signature Σ to contain the binary opera-
tions senc, sdec, penc, pdec, sig and vfy. These are related to each other and to
the operations ·+ and ·− by the following cancellation rules:

pdec(x−, penc(x+,m)) = m

sdec(x, senc(x,m)) = m

vfy(x+, sig(x−,m)) = m,

these equalities hold for all messages x and m. Additionally, we need the pairing
operation (·, ·) and the projections π1, π2 with the cancellation rules πi((x1, x2)) =
xi. Longer tuples can be modeled as the results of repeated applications of pair-
ing. We again stress that we are working in the symbolic (Dolev-Yao, perfect)
model of cryptography.

It is possible to check whether a message m is a pair: in this case, m is equal to
(π1(m), π2(m)). We need similar checks also for encryption and signatures. Hence
we require Σ to contain unary operations is penc?, is senc? and is sig?. These
are related to the previous operations by cancellation rules isX?(X(. . .)) = true,
where true ∈ Σ is a nullary operation.

We need more complex data types with associated operations for our transla-
tion. These types could be simulated by just using the Msg type, and building up
the structure using the pairing operations. It may be hard to ensure the atomicity
of operations using just the constructs of the implementation language, though.
As mutual exclusion is easy to model in π-calculus, we believe that the addition



of these data types does not change the straightforwardness of translation from
our implementation language to applied pi-calculus.

We let Set be a type that has sets of messages as possible values. We let Map
be a type that has finite maps from messages to messages as possible values.
We have the operations ∅ : Set, {·} : Msg → Set, ∈: Msg × Set → Bool, ∪,∩, \ :
Set×Set→ Set for sets. We also have the operations for finite maps: empty : Map,
·[· 7→ ·], ·[· 7→ ·]w : Map ×Msg2 → Map, ·(·) : Map ×Msg → Msg, dom : Map →
Set. Here ϕ[E 7→ E′]w is the weak update operation — the value of ϕ(E) is
changed only if it was undefined before. If ϕ(E) is undefined then the application
ϕ(E) returns null.

We show how to map each program Pr in the source language to the cor-
responding program {{Pr}} in the target language. The translation is largely
syntax-directed: to translate a program, one has to translate its classes, classes
are translated by translating its methods, a method is translated by translating
its body, and control statements in the source language have equivalents in the
target language. In the following we present the translation of these parts that
are not straightforward.

Object fields In addition to the fields declared in the source program, each object
in the implementation language has an additional field ϕ of type Map. It is
initialized to empty and used to store the return values from methods (analogous
to futures).

The representation of object and task names is elaborated more in the next
paragraphs. Shortly, however: an object is referred to by its public key k+. Each
task is associated with a separate symmetric key K. A reference to a task is
stored as a pair (k+,K) of the keys of the object owning this task, and of this
task itself.

The value of the field ϕ is a finite map that maps pairs of the form (k+,K)
to messages representing the value returned by the task identified by (k+,K). If
ϕ((k+,K)) is undefined then the current object has not yet learned the identity
of the task (k+,K). If ϕ((k+,K)) = null then the identity has been learned but
the message containing the return value has not been parsed.

Types The types in source and target language are different. We put {{Int}} = Int
and {{C}} = {{Fut(T )}} = Msg.

Method invocation An asynchronous call to an object must be replaced with an
explicit message. For simplicity, we assume that a call e!m(e) does not occur as
a subexpression in some larger expression. The statement v := e0!m(e1, . . . , en)
is translated as follows:

x0 := e0; · · · ;xn := en;K := newatom; v := (x0,K);ϕ := ϕ[v 7→ null];

send(x0, penc(x0, (K,m, x1, . . . , xn))) (1)

Here K,x, x0, . . . , xn are temporary variables that are not used elsewhere. After
computing the values of the expressions e0, . . . , en, we generate a new atom that



we store in K, and intend to use as a symmetric key. This is the key that is
going to identify the task that is created as the result of the method invocation.
Note the following interesting aspect — the new task is spawned at the object
identified by x0, but the key identifying it is generated at the calling object. This
ensures that the key identifying the new task does not have to be communicated
back and the “protocol” for invoking a new method consists of a single message
only. In this way the translation from the source to the target language is greatly
simplified.

After creating the key K, we define the variable v, set the point in the
mapping ϕ storing the values received from other tasks, and send a message
to the object identified by x0. The message lists the invoked method m, its
arguments x1, . . . , xn, and the identity of the task K.

Method declaration Compared to the source language, each method of the im-
plementation language receives one additional argument — the symmetric key
associated with the task executing that method. The declaration T m(T x) is
translated into {{T}} m(MsgK, {{T}}x).

Returning a value A value returned by a task may be read by anyone knowing
the key associated with that task. The reader must be sure of the identity of the
object returning the value. The return of the value of the variable v at the end
of a method is translated as

while(true)
{
x := newatom; send(null, (k+, sig(k−, senc(K, (k+, v, x)))))

}
(2)

Here k+ and k− are the fields of the object owning this task, containing this
object’s public and private keys. The variable K contains the symmetric key
associated with this task. We see that the finished task sends out an unbounded
number of messages, all different, containing the return value. These messages
are receivable by any object.

Getting a returned value {{v := e.get}} is defined as

x := e;ϕ := ϕ[x 7→ null]w;while(ϕ(x) = null){skip}; v := ϕ(x)

(for simplicity we assume that e.get does not occur as a subexpression).

The main method of an object Whenever a new object is created, its main
method is executed. In our translation, this method is responsible for receiving
the messages and acting on them. This method is the same for all classes, only
the list of methods it has to consider is different. The method has a local variable
ψ of type Set (initially ∅) that contains the messages that may contain returned
values that this object is as of yet incapable of decrypting. It also has a local
variable K of type Set (initially ∅) that contains the symmetric keys associated
with the tasks of this object.

The main method executes an infinite loop that performs the following op-
erations.



– Receive a message from the network, store it in the variable r.
– Let mc := pdec(k−, r). If the second component m of mc is equal to the name

of some method of class C, and the first component K is not contained in
K, then let v1, . . . , vn be the 3rd, 4th, etc. component of mc. Add K to K
and execute spawn m(K, v1, . . . , vn).

– Otherwise we handle r as a returned value. Let s := π1(r) and vm :=
vfy(s, π2(r)). If the pair (s, vm) is not yet an element of ψ, then add it
there.

– For each element (s, vm) of ψ and each (k+,K) in the domain of ϕ, such
that ϕ((k+,K)) = null and s = k+: let dm = sdec(K, vm). If π1(dm) = k+,
then set ϕ to ϕ[(k+,K) 7→ π2(dm)] and remove (s, vm) from ψ. (this step
also requires iterators over Set and Map)

6 Equivalence

The semantics of programs in both source and implementation language are given
as labeled transition systems, albeit with different set of labels. An adversary
is any other LTS running in parallel and synchronizing on (a subset of) these
labels. As the labels are different, the possible adversaries are also different and
we cannot compare the LTS-s [[Pr ]] and [[{{Pr}}]] directly. Still, we show that for
each program Pr in the source language, [[Pr ]] can be translated to one equivalent

to [[{{Pr}}]] by running a suitable LTS
−→
L in parallel with it. Vice versa, [[{{Pr}}]]

can be translated to one equivalent to [[Pr ]] with the help of some LTS
←−
L .

Thus, the LTS-s [[Pr ]] and [[{{Pr}}]] satisfy exactly the same security prop-
erties. Indeed, if there were an adversary A demonstrating the violation of the
property P of the translated program {{Pr}} (i.e. the parallel composition of
[[{{Pr}}]] and A does not have the property P) then the property P is also vi-

olated for the source program Pr and the parallel composition of
←−
L and A is

the adversary demonstrating this. Similarly, any adversary violating a security
property for Pr can be transformed to an adversary violating the same property
for {{Pr}}. The satisfaction of exactly the same security properties means that
if we have succeeded to prove that Pr satisfies some security property, then the
equivalence result of this section allows us to deduce that {{Pr}} also satisfies
this property.

The formalization of the claims above requires more definitions. Let L =
(S,A,→, s0) be a LTS. A symmetric relation R on S is a branching bisimulation

if for all s, s′, t ∈ S and α ∈ A, s
α−→ s′ and s R t implies either α = τ and

s′ R t, or the existence of t1, t2, t
′ ∈ S, such that s

τ−→
∗
t1

α−→ t2
τ−→
∗
t′, s R t1,

s′ R t2, and s′ R t′ [30]. Two states of an LTS are (branching) bisimilar if they
are related by a branching bisimulation. Two LTS-s L1 and L2 are bisimilar
(denoted L1 ≈ L2) if in their disjoint union, their starting states are bisimilar.

Let L = (S,A,→, s0) and L′ = (S′, A′,→′, s′0) be two LTS-s. Let B ⊆ (A ∪
A′)\{τ}. The parallel composition of L and L′ synchronized on B is a LTS

L ×B L′ = (S × S′, (A ∪ A′)\B,⇒, (s0, s′0)) where a transition (s, s′)
α⇒ (t, t′)

exists iff one of the following holds:



– α ∈ A, s
α−→ t and s′ = t′;

– α ∈ A′, s′ α−→′ t′ and s = t;

– α = τ and exists β ∈ B, such that s
β−→ t and s′

β−→′ t′.

We can now state the correctness result for our translation. Informally, it
states that no behavior of a program Pr is lost, and no new behavior introduced
during the translation, as long as these behaviors can be described through
branching bisimulation. Hence, if we consider Pr to have some desirable prop-
erties, then {{Pr}} has the same properties.

Theorem 1. For every program Pr in the source language there exist LTS-s
−→
L

and
←−
L , such that

[[Pr ]]×Act src

−→
L ≈ [[{{Pr}}]]

[[{{Pr}}]]×Act imp

←−
L ≈ [[Pr ]] .

As an immediate corollary we get an equivalence result similar to [3].

Corollary 1. Let Pr1 and Pr2 be two programs in the source language. Then
[[Pr1]] ≈ [[Pr2]] iff [[{{Pr1}}]] ≈ [[{{Pr2}}]].

Proof. Let [[Pr1]] ≈ [[Pr2]]. Then [[{{Pr1}}]] ≈ [[Pr1]]×Act src

−→
L ≈ [[Pr2]]×Act src

−→
L ≈

[[{{Pr2}}]]. The other direction is analogous. ut

The rest of this section is devoted to proving Theorem 1.

6.1 The LTS
−→
L

The LTS
−→
L must “translate” the actions of a program Pr in the source language

to the actions in Act imp. Also, the environment-initiated actions (belonging to
Act imp) must be translated back to the actions in Act src that the program Pr
understands.

One may want to specify
−→
L in some programming language. The semantics

of this language would then give us an LTS. But only the actual LTS matters
for the purposes of the proof, hence we specify it without the detour thorough a

programming language. At the same time, we may still think of
−→
L as a machine,

executing a program, and having memory. All possible contents of the memory

would then be mapped to different states of the LTS. In particular, the LTS
−→
L

keeps the following records in the memory:

– A table T that matches the object and task names in source language seman-
tics with the keys in target language semantics. Each entry in this table has
the fields msg (a cryptographic message denoting the identity of an object or
a task, similarly to our translation into the implementation language), name
(a name in N for that object/task in the source language), type (a boolean
showing whether this entry is for an object or a task name), and local (a



boolean showing whether this object/task is in the runtime configuration of
Pr). If the entry is an object then there is also the field sk for the secret
key of that object (in the implementation language). Recall that an object
is identified by its public key and a task by a pair of its object’s public key
and its own symmetric key.

– A (finite) map P from variables to cryptographic messages, having the same
role as the p(x\E) components in the runtime configurations of the imple-
mentation language.

– A set Ret of pairs (o, n) of object and task names. A pair belongs to this
set if the object o in the configuration of the source language has received
the return value of the task n that does not belong in that configuration.

With these records, the translation between the source program and the envi-
ronment for programs in the implementation language is straightforward. If Pr
performs a transition labeled with o → o′, then find the keys k and k′ corre-
sponding to o and o′ from the table T (if they’re not there then generate new
name1 k / k′ and add new rows to T ), let E = penc(k′, dummy), generate new
variables x1, x2, x3, add new bindings x1 7→ k, x2 7→ k′ and x3 7→ E to P, and
perform a transition with the label x1 → x2 : x3. If Pr performs a transition

labeled o → n′[o′.m(c)] then
−→
L similarly finds the keys k and k′ of o and o′. It

will also translate the names of any objects and futures mentioned in c to the
cryptographic messages denoting them, generating new names in the process as

necessary. As next,
−→
L generates a new name K that will be used as the sym-

metric key of the new task. It adds K and n′ into a new row of the table T .
Finally, it prepares a message E as in (1), generates new variables x1, x2, x3,
binds k, k′, E to them in P, and invokes the transition labeled x1 → x2 : x3.
If keys corresponding to new objects have to be created, then the public key is
stored in the field msg and the secret key in the field sk of a new row in the
table T .

If [[Pr ]] performs a transition labeled o′ ← o then
−→
L finds k and k′ denoting

these objects, finds the secret key k̃ of the object o from the table T , constructs
a message E = (k, sig(k̃, senc(dummy1, dummy2))), and indicates the message
send as before (performing the transition x1 → x2 : x3 with x1, x2, x3 bound to
k, k′, E). The translation of the n[c] ← o action by [[Pr ]] consists of finding the
messages k and K denoting the object and task from the table T , translating c
(if it is an object/task name), constructing a message E similarly to (2), non-
deterministically selecting the recipient k′ of the message among the non-local
objects in T , and transmitting E from k to k′.

If the environment performs an action → k : E(x1, . . . , xl) then
−→
L parses

the message P(E) (note that
−→
L has necessary secret keys for that). If it is an

invocation of method m (as in (1)) and no task with the same symmetric key

K for the object identified by k2 has been invoked before, then
−→
L performs the

action n = o!m(c) where c is obtained by parsing P(E) and translating with the
help of T . If some object/task names are missing in T , then these are generated

1 The generation of new names is an internal action of
−→
L



with actions νn and νo. Also,
−→
L adds a new row with n and K to T . Similar

checks and translations are performed if P(E) is the return value of some task
according to (2). In this case, the set Ret is additionally consulted and updated.

The LTS
−→
L always has the transitions E 4 E′ enabled. Here 4 is either

= or 6=, depending on whether P(E) = P(E′) or not. The transition νx is also

always enabled. When it is invoked,
−→
L creates a new name and updates P.

Whenever
−→
L “translates” an action in Act src to an action in Act imp or vice

versa, it first performs the transition with the label in Act imp (non-deterministically
guessing some parameters, if necessary), and afterwards the transition with the

label in Act src. This keeps the branching behaviors of [[Pr ]]×Act src

−→
L and [[{{Pr}}]]

the same.

6.2 The LTS
←−
L

The LTS
←−
L translates the actions of a program in the implementation language

to the actions in Act src. We do not have to consider all programs in the imple-
mentation language, but only those of the form {{Pr}}, where Pr is a program
in the source language.

Internally,
←−
L keeps the following records.

– The table T o relates the cryptographic messages with object names in N

(note that creating new names in N is under the control of
←−
L ). Each entry

in this table has the field name for storing the name o ∈ N. It also has the
field msg that contains the cryptographic expression (with variables) that
evaluates to the public key of that object if these variables are substituted
with the messages associated with them by the runtime configuration of
{{Pr}} (through the p(x\E)-parts).

– The table Tmyo relates the object identities and names for those objects that←−
L itself has caused to be created. It has the fields var and name with the
latter having the same meaning as in T o. The field var contains the variable
whose value is an atomic message, such that var+ is the public key and var−

the secret key of the object.
– The table T t relates the cryptographic messages with task names in N.

Each entry in this table has the fields name, msgt and msgo. The two msg-
fields contain cryptographic expressions that resolve to the symmetric key
identifying the task, and public key of the owning object, respectively.

– The table Ret having the same role as in
−→
L .

The transitions of [[{{Pr}}]] and the environment (which makes transitions la-
beled with elements of Act src) are translated as follows. If {{Pr}} performs a

transition labeled with k1 → k2 : x then
←−
L finds the objects o1 and o2 corre-

sponding to the keys k1 and k2 by comparing ki with R.msg for all entries R in
T o. The comparison is performed with the help of [[{{Pr}}]], by attempting the
transitions labeled with ki 4 R.msg for 4 ∈ {=, 6=}. If T o does not contain k1
or k2 then a new entry is added to T o with a new name from N. If o2 is not



in Tmyo then this message is between two objects in the runtime configuration
of {{Pr}}. It will be translated either as o1 → o2 or o2 ← o1, depending on the
structure of the message pointed to by x.

If o2 is in Tmyo, then the message x is from an object in the runtime con-

figuration of {{Pr}} to an object outside it. If it is a method call then
←−
L can

decrypt the message x because it has the secret key corresponding to k2. It finds
the method m to be called, the symmetric key K identifying the task that the
object o2 is supposed to spawn, as well as the arguments c. The arguments can

be decoded with the help of the tables T o and T t. The LTS
←−
L will generate a

new task name n, add a new entry (n,K, k2) to the table T t and perform the
transition labeled with o1 → n[o2.m(cdecoded)]. Similarly, if x is the return of a
value then it can be decrypted because the symmetric key K of the task that
returned it can be found in T t (see below for handling method calls coming from
the environment). The task name n is found from the entry containing K and k1,
the returned value c is decoded and the transition n[cdecoded ]← o1 is performed.

If the environment performs a transition labeled with n = o!m(c) then
←−
L will

add a new entry to the table T t with n, the public key k of the object o (found
from T o) and a new symmetric key K, obtained by performing a transition
labeled with νx. It will then encode the arguments c with the help of the tables
T o and T t. If some of the arguments are missing from these tables then new
entries are added, obtaining the necessary keys through transitions labeled with

νx. The LTS
←−
L will then construct a new message E in the shape of (1) and

perform a transition labeled with → k : E.

If the environment performs a transition labeled with o← n[c] with o being
found in T o and n in T t, and the pair (n, o) not belonging to Ret (if some of these

conditions do not hold then
←−
L will have no such transition for the environment

to synchronize upon) then
←−
L finds from T t the symmetric key k+ of the object

having executed the task n. The object was running in the environment, thus its

secret key can be found from Tmyo. The LTS
←−
L will now construct a message

E according to (2) and perform a transition labeled with → ko : E, where ko is
the public key of o found from T o.

If the environment performs a transition labeled with νo then
←−
L will obtain

a new key k by performing a transition labeled with νx, add (k, o) to the table
Tmyo and (o, k+) to the table T o. If the environment performs a transition labeled

with νn then
←−
L will obtain new keys K and k by performing two transitions

labeled with νx. It will generate a new name o ∈ N, add the entry (k, o) to
Tmyo, the entry (o, k+) to T o and (n,K, k+) to T t. This is a valid translation for
names of tasks controlled and initiated by the environment because a program
Pr has no means to make sure whether two of such tasks are executed by the
same object or by different objects.

Similarly to
−→
L , whenever

←−
L “translates” an action in Act imp to an action in

Act src or vice versa, it first performs the transition with the label in Act src and
afterwards the transition with the label in Act imp.



6.3 Bisimulations

The reachable states of the LTS [[Pr ]] ×Act src

−→
L satisfy invariants stating that

the runtime configuration C of [[Pr ]] and the data (T , P, Ret) kept by
−→
L are

consistent. Namely, T contains an entry about the object o or task n iff p(o) ∈ C
or p(n) ∈ C. The values of the fields local and type match with the type and
locality of the elements in C. A pair (o, n) is in Ret iff o.ϕ(n) is defined. The data

kept by
−→
L provides an easy translation between the states S of [[Pr ]]×Act src

−→
L and

the states C ′ of [[{{Pr}}]], giving us a bisimulation between these LTSs. Roughly,
the states S = (C, T,P,Ret) and C ′ are related iff there exists a permutation θ
of A, such that

– C and C ′ have the same objects with the same names (public keys), where
the translation between object names and public keys is given by T and θ.
For an object name o, if T contains an entry R with R.name = o, then
the object o[. . .] ∈ C corresponds to the object (T.msg)θ[. . .] ∈ C ′. Objects
o[. . .] ∈ C with names o not occurring in T correspond to objects k+[. . .] ∈
C ′ with k+(θ−1) not occurring in T in arbitrary one-to-one manner. Two
corresponding objects must have the same class and the same values for
their fields. For fields of type “object” or “task”, the translation is again
given through T and θ. The component ϕ of an object in C must match
with the union of the field ϕ of the corresponding object in C ′, and the local
variable ψ in this object’s task executing the main method.

– C and C ′ have the same tasks (except for the tasks executing the main
methods of objects in C ′). Again, the translation between task names and
symmetric keys is given by T and θ with tasks not present in T mapped
to each other. A task’s symmetric key is stored in its first input parameter.
The local variables of the corresponding tasks have the same values, and the
execution is at the same program point.

– The mapping P matches the elements p(x\E) in C ′: for some x ∈ X , P(x)
is defined iff p(x\E) ∈ C ′ for some E. Moreover, P(x)θ = E.

The use of the permutation θ is justified by the fact that actual atomic messages
in A are inaccessible to environments synchronizing over Act imp. This avoids
the problem that keys k ∈ A identifying objects are created at different times

in [[{{Pr}}]] and [[Pr ]] ×Act src

−→
L (time of creation vs. time of becoming public).

These identifiers are accessed through variables which are created at the same
time in both LTSs (time of becoming public).

The bisimulation between [[{{Pr}}]] ×Act imp

←−
L and [[Pr ]] is similar. Again,

the reachable states of [[{{Pr}}]] ×Act imp

←−
L satisfy consistency invariants: if C ′

is the runtime configuration of [[{{Pr}}]] and (T o, Tmyo, T t,Ret) is the internal

state of
←−
L , then an entry R in T o means that an object with the public key

R.msg is a component of C ′, unless R.msg also occurs in Tmyo. The states
S′ = (C ′, T o, Tmyo, T t,Ret) and C are related, if

– C ′ and C have the same objects, where the translation between object names
and public keys is given by T o. These objects must be equivalent — have



the same class and values of fields, including the component/field ϕ and the
local variable ψ of the main method of the object. The objects in C ′ whose
public keys are not present in T o are mapped to the objects o in C where
p(o) is not part of the configuration C.

– C and S′ know the same objects in the environment. For each row R in Tmyo

there is a component p(R.name) in C without the object R.name[. . .] itself
being a component of C. Similarly, if there exists an object name o, such
that p(o) is part of C, but o[. . .] is not, then there is a row R of Tmyo, such
that R.name = o.

– C ′ and C have the same tasks (except for the tasks executing the main
methods of objects in C ′), where the translation between task names and
symmetric keys is given through T t. Tasks in C with names not occurring
in T t are matched with tasks in C ′ with keys not occurring in T t. If there is
an entry (n,K, k+) in T t, but there is no task K of the object k+ running
in C ′, then there is also no task n〈. . .〉 in C, but p(n) is a component of C.

7 Conclusions

We have shown how to translate a distributed object-oriented language arising
in the programming language and formal verification community to (a dialect
of) applied pi calculus, such that the security properties of programs are pre-
served. Compared to other similar results, our source language does not so ex-
plicitly include communication between processes in different locations. Rather,
the communication happens when needed to execute the language constructs.
In this sense, the gap our translation has to cross is larger. On the other hand,
this may also simplify the translation because it somewhat restricts the possible
communication patterns. Still, the “channels” (object references and futures) can
be freely communicated and this requires some non-obvious tricks to securely
translate.

Besides the security, other aspects of implementing ABS are also worthy of
studying. In parallel to our work, the routing of messages (which is made highly
non-trivial by the fact that futures are first-class values and a finishing task does
not know where its result is needed), as well as the mobility of objects is being
studied by Dam and Palmskog [14].
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