
Secure Multiparty Sorting Protocols with
Covert Privacy

Peeter Laud and Martin Pettai

Cybernetica AS, Estonia
{peeter.laud|martin.pettai}@cyber.ee

Abstract. We introduce the notion of covert privacy for secret-sharing-
based secure multiparty computation (SMC) protocols. We show how
covertly or actively private SMC protocols, together with recently in-
troduced verifiable protocols allow the construction of SMC protocols
secure against active adversaries. For certain computational problems,
the relative overhead of our protocols, when compared to protocols se-
cure against passive adversaries only, approaches zero as the problem
size increases.

We analyse the existing adaptations of sorting algorithms to SMC proto-
cols and find that unless they are already using actively secure primitive
protocols, none of them are covertly private or verifiable. We propose a
covertly private sorting protocol based on radix sort, the relative over-
head of which again approaches zero, when compared to the passively
secure protocol. Our results reduce the computational effort needed to
counteract active adversaries for a significant range of SMC applications,
where sorting is used as a subroutine.

1 Introduction

Secure multiparty computation (SMC) [16] allows a set of mutually distrustful
parties to jointly perform computations on the data they have, without anyone of
them learning anything beyond the result of the computation. While starting out
as a mere theoretical curiosity [17, 31, 10], both the protocols and the computing
infrastructure have improved over the last two decades, such that significant
real-world problems may be solved with them [8, 2, 3]. In these applications, the
inputs may come from, and outputs may be learned by many different parties,
but the protocols for actual computations are executed by just a small set of
computing parties (typically two or three), upon which the other parties have
to place their trust. The trust has a threshold nature: the parties believe that
at most a certain fraction of computing parties have been corrupted. E.g. the
Sharemind SMC platform [6], which is the basis of the work reported here, has
three computing parties, one of which may be passively corrupted.

A passive adversary learns the internal states, the inputs and outputs of
corrupted parties, but these parties still follow the prescribed protocol. More de-
sirable is security against an active adversary, which may additionally instruct

the parties to change the messages they send out. Security against active adver-
saries requires significantly more computational effort and/or communication to
be used, either during the protocol execution or at some other time (pre- or
post-computation) [13].

For certain computations, the verification of the correctness of the result
is simpler than actually performing the computation. For privately performing
such computations, we could use a passively secure SMC protocol for computing
the result and the proof of its correctness and an actively secure protocol for the
verification. An existing implementation of this idea for linear programming [14]
ensures that the result of the computation is correct and the verification phase
does not leak anything to an active adversary. In order to not leak anything at all
to an active adversary, the computation protocol has to be actively private [4].
This property is stronger than passive security, but weaker than active secu-
rity which also implies correctness of results. Sharemind’s protocols for simple
operations are actively private [29] and this property composes [4].

In this paper we study protocols for oblivious sorting, i.e. protocols that
transform a vector of private values into another vector of private values that
is sorted and is equal to the input vector as multisets. It is easier to verify the
sortedness of a vector than it is to sort it. The proof of correctness of sorting is a
private permutation [27] that transforms the input vector to the output vector;
the verification of such proof means applying the permutation and checking the
equality of two vectors. Sorting is an important primitive in SMC protocols, used
extensively in data analysis and as a “substitute” for operations that cannot be
naturally converted into SMC protocols [3, 23].

Existing passively secure oblivious sorting protocols either do not naturally
produce proofs of correctness, or are not actively private, nor do they seem to
be amenable to simple changes which would give active privacy without unduly
hampering the performance. To obtain more efficient protocols, but still retain
protection against adversaries that deviate from the protocol, intermediate ad-
versarial models have been considered. A covert adversary is willing to deviate,
but only if it is not caught in the process [1]. One can argue that for many, if not
most practical applications of SMC, the protection against a covert adversary
is as good as the protection against an active adversary, if detected deviations
from the protocol can be brought in front of a court and appropriate punishments
levied. Techniques of verifiable computation [15] may be used to turn passively
secure SMC protocols into covertly secure protocols [25, 26]. These techniques
introduce a post-execution verification phase to the protocols, where the parties
check each other on whether they followed the protocol correctly.

In this paper we define covert privacy. A protocol is covertly private if an
active adversary may affect its correctness, but if it learns something about
the inputs of others, the honest parties will likely be notified of a potential
information leak. A covertly private sorting protocol (also producing the proof
permutation) together with a verification mechanism is sufficient for dealing with
active adversaries only during verification. But it turns out that sorting protocols
based on shuffling and data-dependent sorting algorithms are not even covertly

private. As the main result of this paper, we propose a sorting protocol based on
radix sort, which is covertly private and has complexity similar to the passively
secure protocol.

2 Related work

Let us give an overview of SMC protocols for sorting. Sorting networks were the
first tool to be adapted to SMC [30, 20]. Shuffling protocols for secret sharing
based SMC protocol sets were first proposed in [27] and applied for sorting in [32].
There exist well-engineered SMC sorting protocols based on quicksort [19] and
on radix sort [18]. The performance of different sorting protocols in a uniform
setting has been evaluated in [5].

This paper also proposes an improved method for certain privacy-preserving
computations in a manner that provides security against active adversaries. The
current best-performing SMC protocol sets with such security are based on secret
sharing over finite fields, making use of message authentication codes to detect
misbehaviour [12, 22]. Such protocols make use of precomputed shared tuples
of values that assist in performing non-linear operations (in particular, multi-
plication of shared values). This precomputation used to be several orders of
magnitude more expensive than the actual execution of the protocol, but recent
advances have brought down the cost [21]. An alternative, which we are following
in this paper, is to verify the computation parties after the execution [25, 26] to
make sure that they did not deviate from the protocol.

Our verifiable sorting protocol has similarities to the verifiable SMC protocols
for linear programming [14]. Similarly to them, we use passively secure proto-
cols to perform the actual computation and to find the proof of correctness, and
higher-security protocols to verify the proof, thereby detecting incorrect results.
Differently from them, we also require covert privacy from the actual computa-
tion, hence detecting any privacy leaks there may be.

3 Preliminaries

3.1 Universal Composability and Secure Multiparty Computation

We use SMC protocols to build large privacy-preserving applications, for which
the security claims can reasonably only be made in compositional manner. Hence
we present all our constructions in the universal composability (UC) frame-
work [9], which allows us to state that a certain protocol is at least as secure as
(or simulates) a certain ideal functionality.

Let F be an ideal functionality for n parties, i.e. it is a probabilistic inter-
active Turing machine with interfaces to communicate with n users, and with
an adversary. Let π be an n-party protocol, i.e. it consists of n probabilistic
interactive Turing machines M1, . . . ,Mn, each communicating with a user (also
called the environment), with an adversary and possibly also with some ideal
functionalities (which are also part of π).

Definition 1. An n-party protocol π black-box simulates the ideal functionality
F , if there exists a machine Sim, such that for all users H = (P1, . . . , Pn) and
adversaries A, viewH‖π‖A(H) ≈ viewH‖F‖(Sim‖A)(H).

Here the view of H encompasses all messages it exchanges with either π or
F , and with A. The probability distribution over such sequences of messages
is denoted by viewC(H), where C is the system that contains H. We use “≈”
to denote the similarity of views; this similarity may mean either equality, or
statistical or computational indistinguishability.

An adversary may corrupt some machine Mi by sending it a corrupt-message;
the machine forwards it to the i-th user (the party Pi). Afterwards, Mi will
send to the adversary everything it has seen or will see. Also, the adversary
determines which subsequent messages Mi sends to other machines and the user.
An adversary is passive if it instructs Mi to always send the same messages it
would have sent without being corrupted.

Denote [n] = {1, . . . , n}. Let f be a one-shot n-party functionality, i.e. it is
used to compute (y1, . . . , yn) = f(x1, . . . , xn), possibly in randomized manner.
The ideal functionality for f is an interactive randomized Turing machine Ffsec
that communicates with n parties and the adversary. It performs by first receiv-
ing the set of corrupted parties C ⊆ [n] from the adversary and sending corrupt
to each party Pi, where i ∈ C. The machine then receives xi from each Pi. If
i ∈ C, then Ffsec forwards xi to the adversary. For each i ∈ C, the adversary
sends x′i to Ffsec. For each i ∈ [n]\C, define x′i = xi. The machine Ffsec computes
(y′1, . . . , y

′
n) = f(x′1, . . . , x

′
n) and sends y′i to the adversary for i ∈ C. The adver-

sary responds either with (stop, j) for some j ∈ C, or with the values yi for all
i ∈ C. In the first case, Ffsec sends (stop, j) to all parties and stops. In the latter
case, define yi = y′i for all i ∈ [n]\C. The machine Ffsec sends yi to Pi for all
i ∈ [n] and stops. An adversary for the functionality Ffsec is passive if it always
defines x′i = xi and yi = y′i for i ∈ C.

There are a couple of different ways to specify the ideal functionality for
SMC. One example of such idealization is the arithmetic black box [24], which
is convenient to use when constructing higher-level SMC protocols from more
basic ones (like addition or multiplication), obtaining the security proof (in sense
of Def. 1) of the higher-level protocol almost for free. In this paper, our focus is
different, we are discussing different security properties of certain kinds of SMC
protocols.

We are interested in SMC protocols based on secret sharing. These protocols
are built up from basic protocols for certain operations that turn the sharings
of the inputs of that operation into sharing of outputs. If x is a value then we
let JxK = (JxK1, . . . , JxKn) denote an arbitrary sharing of x, where JxKi is the
i-th share held by the i-th party. A one-shot functionality f⊗ for an operation
⊗ receives as inputs the sharings of the arguments of ⊗. It reconstructs the
arguments, applies ⊗ to obtain the result and returns an arbitrary sharing of it.

In our modeling, there is a particular functionality that we want to securely
compute, we consider it as a composition f1; f2; · · · ; fk of one-shot functional-
ities (each fi may also have an arbitrary number of arguments that it simply

passes through). The ideal functionality Ff1;··· ;fksec is the sequential composition
of Ff1sec; · · · ;Ffksec. Here only Ff1sec receives its inputs from H and only Ffksec sends
its outputs back to it. Otherwise, the inputs are received from previous func-
tionality and passed on to the next one. If Ffisec is securely implemented by
the protocol πi, then the sequential composition of these protocols securely im-
plements Ff1sec; · · · ;Ffksec, as implied by the universal composability theorem [9]
(which is actually more general than that).

3.2 Privacy vs. Security

Privacy is a security property that for many protocols, including SMC proto-
cols based on secret sharing may be easier to achieve than “full security”. For a
given one-shot functionality f , privacy is defined as simulating a different ideal
functionality Ffpriv. The machine Ffpriv works identically to Ffsec until comput-

ing resulting values (y1, . . . , yn) = f(x′1, . . . , x
′
n). Afterwards the machine Ffpriv

stops, i.e. no other machine actually receives the computed values. A protocol π
is a private realization of f if it black-box simulates Ffpriv (Def. 1).

The values computed by Ffpriv are still used when sequentially composing

such functionalities. In the composition Ff1priv; · · · ;Ffkpriv, each Ffipriv passes the

result values to Ffi+1

priv to be used as inputs. The outputs from Ffkpriv still go

nowhere. In addition to that, the inputs received by Ff2priv, . . . ,F
fk
priv are not sent

to the adversary, nor can the adversary adjust them. Hence privacy means only
that the adversary’s view during the protocol, but not necessary after it, can be
simulated from just the inputs to the adversarially controlled parties.

Sequential composition of private protocols is again private [4]. In [4], this
result is technically shown only for passive adversaries, but nowhere does the
proof make use of the passiveness.

3.3 Protocols for Oblivious Sorting

Suppose we are given a vector of secret-shared values JxK = (Jx1K, . . . , JxkK).
SMC frameworks, e.g. Sharemind, contain protocols for comparing, adding and
multiplying shared values (the results are again shared). These can be com-
bined to an oblivious compare-exchange node that computes Jmin{y, z}K and
Jmax{y, z}K from JyK and JzK. Such nodes can be used to construct sorting net-
works for secret-shared data.

Common sorting algorithms are harder to adapt for SMC, because there is no
simple means to access an element of a vector by a secret-shared index. Declas-
sifying the accessed indices would leak information about the initial ordering of
the vector elements. This can be overcome by first performing a random shuffle
of the elements of the vector. The shuffling protocol [27], adapted for Sharemind,
works as follows. Let the elements of the vector JxK of length k be additively
shared (over ZN for some integer N) among three parties, two of which are hon-
est and third may be passively corrupted. A permutation σ ∈ Sk is shared as

Data: shared vector JxK, private permutation JJσKK = (σ1, σ2, σ3)
Result: vector JxK permuted according to σ

1 for i = 1 to 3 do

2 Pi randomly generates r ∈ Zk
N

3 Pi sends r to Pi−1 and y := JxKi − r to Pi+1

4 Pi−1, Pi, Pi+1 update
(JxKi−1, JxKi, JxKi+1) := (JxKi−1 + r, (0, 0, . . . , 0), JxKi+1 + y)

5 Pi−1 and Pi+1 reorder JxKi−1 and JxKi+1 by σi

6 ∀i : Pi randomly generates ri ∈ Zk
N and sends it to Pi+1

7 ∀i : Pi updates JxKi := JxKi + ri − ri−1

Algorithm 1: Shuffling protocol of [27]

three random permutations JJσKK = (σ1, σ2, σ3) ∈ S3
k, satisfying σ3 ◦ σ2 ◦ σ1 = σ,

such that party Pi knows the permutations σi−1 and σi+1 (the indices are mod-
ulo 3). The shuffling protocol is given in Alg. 1. Its main component is for each
pair of parties, to turn the additive sharing among three parties into additive
sharing among this pair and apply one of the permutations σi. The protocol
ends with a resharing step, after which all shares are random again. A variation
of this protocol works for values shared with Shamir’s 2-out-of-3 sharing.

After shuffling the vector, the results of comparing its elements may be made
public, as long as all elements are different. They can be made different by adding
an extra field to the comparison keys, which has the least significance in compar-
isons and is different for all elements. All pairs of elements may be compared in
parallel [32], which has excellent round complexity, but requires O(k2) of work.
Alternatively, comparisons may be made according to some sorting algorithm,
e.g. the quicksort [19], moving around the elements of JxK as indicated by the
comparison results. The private shuffle JJσKK together with the public permuta-
tion (that latter can be composed with the last component of JJσKK, giving a
single private shuffle JJσ′KK) applied during the sorting of shuffled JxK provides
the proof that the vectors before and after sorting had the same elements. In
the rest of the paper, we will assume that all elements of x are different.

Counting sort can also be adapted to SMC, as shown in Alg. 2. Here private
data in y is reordered according to the keys in x. The sorting algorithm computes
where each element of x and y would go if the key were equal to 0 (stored in c)
or 1 (stored in c; offset by the number of 0-s in x, which is equal to ck + 1). The
actual position is computed in line 4, performing an oblivious choice over JxiK,
selecting either JciK or (JciK+ JckK+1). Note that while xi ∈ {0, 1}, the elements
of JxK have to be shared over a larger ring (at least Zk) to make sure that the
computations do not overflow; this may require the use of the share conversion
protocol [7, Alg. 5]. The positions are randomly shuffled together with JxK and
JyK. The declassification returns a random permutation of {1, . . . , k}, leaking
nothing about JxK. The composition of JJσKK and o is the proof of sameness of
vectors. Counting sort can be extended to radix sort for multi-bit keys as in [5]
and the sameness proofs can be composed as in Alg. 3.

Data: keys JxK, data JyK, where x ∈ Zk
2 , y ∈ Zk

N

Result: JxK, JyK stably sorted according to x
1 foreach i ∈ {1, . . . , k} do JxiK := 1− JxiK
2 JcK := prefixsum(JxK)
3 JcK := prefixsum(JxK)
4 foreach i ∈ {1, . . . , k} do JoiK := 1 + JciK + JxiK · (JciK− JciK + JckK + 1)
5 Generate a random private permutation JJσKK ∈ Sk

6 Shuffle JxK, JyK and JoK according to JJσKK
7 o := declassify(JoK)
8 foreach i ∈ {1, . . . , k} do JxiK := JxoiK; JyiK := JyoiK

Algorithm 2: Counting sort as a SMC protocol

Data: Private permutations JJσ(1)KK, . . . , JJσ(m)KK ∈ Sk

Result: Private permutation JJσKK satisfying σ = σ(m) ◦ · · · ◦ σ(1)

1 JoK := (1, 2, . . . , k)
2 for i = 0 to m− 1 do

3 Shuffle JoK according to JJσ(m−i)KK−1 (reverse the loop in Alg. 1)
4 Generate a random private permutation JJσ′KK ∈ Sk

5 Shuffle JoK according to JJσ′KK
6 o := declassify(JoK)
7 return the composition of JJσ′KK and o

Algorithm 3: Composing oblivious shuffles

3.4 Covert Security

Covertly secure protocols are secure against adversaries that may deviate from
the protocol, but do not want to get caught [1].

Consider an ideal functionality F for n parties and a real protocol imple-
menting it. A machine Mi may give a special output accuseJ to the party Pi,
indicating that it suspects the parties in J ⊆ [n] of deviating. We require the
protocol π to be detection accurate, meaning that if for any honest Pi, the ma-
chine Mi outputs accuseJ , then J ⊆ C, i.e. only corrupt parties can be caught
cheating. We say that a run of π catches a cheater (denoted π⇓) if all honest Mi

output accuseJi to Pi, and the intersection of all the sets Ji is not empty.

Definition 2. Let ε ∈ [0, 1]. A detection accurate protocol π black-box simulates
the ideal functionality F in the presence of covert adversaries with ε-deterrent [1]
if there exists a machine Sim, such that for all users H and adversaries A,

ε ·∆(viewH‖π‖A(H), viewH‖F‖(Sim‖A)(H)) ≤ Pr[π⇓] .

Here [0, 1] is the set of real numbers between 0 and 1, and ∆ is the statistical
distance between probability distributions: ∆(µ, µ′) = 1

2

∑
x∈X |µ(x) − µ′(x)|,

where µ, µ′ : X → [0, 1] are two probability distributions over the set X. This
form of simulatability with covert adversaries is preserved by sequential compo-
sition (taking the minimum of ε-s), as shown by a simple hybrid argument [1].

4 Covertly Private SMC

Covert privacy. The definitions of privacy and covert security can easily be
combined. In covert privacy, we let the machines Mi output accuse to the party
Pi. Note that we do not specify the set of accused parties here. We define π⇓ if
all honest parties output accuse. We also relax the notion of detection accuracy,
only requiring that an honest party does not output accuse if C = ∅.

Definition 3. Let ε ∈ [0, 1]. A detection-accurate protocol π is a covertly pri-
vate SMC protocol with ε-deterrent for a functionality f , if there exists a ma-
chine Sim, such that for all users H, adversaries A,

ε ·∆(viewH‖π‖A(H), viewH‖Ff
priv‖(Sim‖A)(H)) ≤ Pr[π⇓] .

We see that the covert privacy of a SMC protocol means the following. An
active adversary may change the outcome of the protocol without the honest
parties noticing it. An active adversary may also learn something about the
inputs of honest parties, but if it does so, the honest parties will be notified with
significant probability.

Covert privacy composes in the same manner as active or passive privacy.
The proof in [4] carries over without modifications.

From covert privacy to covert security. Consider a covertly private SMC protocol
π for a functionality f . Also let π compute for each party Pi a verification value
vi; we think of this verification value as not an output to the party Pi, but
as input to subsequent protocols. There exist transformations [25, 26] that turn
passively secure SMC protocols into covertly secure protocols (with 1-deterrent).
The transformations perform the following steps:

– binding the parties to the messages they’ve sent using signatures;
– adding a verification protocol that uses the signed incoming and outgoing

messages as verification values.

Given a protocol π, we let s[π] denote the protocol where all outgoing messages
are signed. This protocol also outputs the signed messages as verification values.
We let v[π] denote the verification protocol for s[π] constructed as in [25] or [26].
The protocol v[π] outputs a set Ji ⊆ [n] of parties to be accused to each honest
party Pi. If Ji = ∅ then no deviations were detected and the result output by
π may be used. Note that the execution of v[π] is much more expensive (by
two or more orders of magnitude) than the execution of π.

Covertly secure sorting. Let π0 be the protocol for checking the correctness of
sorting, it is given in Alg. 4. It performs some simple checks, verifying that the
original and the sorted vector are the same, and that the sorted vector actually is
sorted. Let π1 be a covertly private sorting protocol that also outputs the proof
of sameness of vectors. The following is one of the main results of this paper.

Theorem 1. The protocol in Alg. 5 is a covertly secure sorting protocol.

Data: shared vectors JxK, JyK of length k; private permutation JJσKK ∈ Sk

Result: yes/no, stating whether JJσKK proves that JyK is the sorted version of JxK
1 Shuffle JxK according to JJσKK
2 foreach i ∈ {1, . . . , k} do JbiK := (JxiK = JyiK)?
3 foreach i ∈ {1, . . . , k − 1} do Jb′iK := (JyiK ≤ Jyi+1K)?
4 return declassify(

∧k
i=1JbiK ∧

∧k−1
i=1 Jb′iK)

Algorithm 4: Protocol π0: checking the correctness of sorting

Data: shared vector JxK
Data: Covertly private SMC sorting protocol π1 (with sameness proof)
Result: sorted JxK; or accusations against misbehaving parties

1 (Jx′K, JJσKK, accuse,v)← s[π1](JxK)
2 if accuse = true then go to 8
3 (b,v′)← s[π0](JxK, Jx′K, JJσKK)
4 (J1, . . . , Jn)← v[π0](x,x′, JJσKK, b,v′)
5 each party Pi does the following
6 if Ji 6= ∅ then return accuseJi

7 if b = true then return Jx′K
8 (J1, . . . , Jn)← v[π1](x,x′, JJσKK, accuse,v) // ∀i ∈ [n]\C : Ji 6= ∅
9 each party Pi returns accuseJi

Algorithm 5: Covertly secure SMC protocol for sorting

Proof. Let Sim0, Sim1 be simulators for (s[π0], v[π0]) and (s[π1], v[π1]), respec-
tively. The simulator Sim for the protocol in Alg. 5 will receive the shares of JxK
for corrupted parties and invoke Sim1 with them. At some point, Sim1 computes
the corrupted parties’ shares of Jx′K and JJσKK, as well as the accusation bit. At
this point Sim invokes Sim0 with the shares it has computed. It does not return
to continue with Sim1.

The simulator Sim shows that Alg. 5 black-box simulates the ideal sorting
functionality (which receives the shares of the elements of x and returns the
shares of the elements of the sorted vector) in the presence of covert adversaries.
Indeed, Sim can compute the corrupted parties’ shares of Jx′K and JJσKK indistin-
guishably from the real protocol due to Sim1 being a simulator for (s[π1], v[π1])
and these shares belonging to the view of the adversary. If the accusation bit is
true in the real protocol then some corrupt party will be accused by all honest
parties in line 8 by the security properties of v[π1]. Such accusations do not have
to be simulated by Sim according to Def. 2. If the accusation bit is false then Sim
will produce a good simulation of the real protocol due to Sim0 being a simula-
tor for (s[π0], v[π0]). If the bit b is false in line 7 and the real protocol continues
with the invocation of v[π1], then again some corrupted party will definitely be
accused in line 8 and this part of the protocol does not need simulating. ut

A conceptually simpler covertly secure sorting protocol would uncondition-
ally jump from line 2 to line 8. But the full protocol in Alg. 5 is more efficient
in executions where no party tries to deviate from the protocol; it is natural to
expect most executions to be like that. While the conceptually simpler protocol

would always execute v[π1], the protocol in Alg. 5 executes s[π0] and v[π0] in-
stead. We expect the protocol π0 which only checks for sortedness to be O(log k)
times cheaper than the sorting protocol π1. The verification is similarly cheaper.

5 Analysis of Oblivious Sorting Methods

We have discussed SMC protocols based on securely implementing sorting net-
works and argued that they are actively private. Unfortunately, the sequence
of swaps that they produce is not easily converted into a single private shuffle.
One can convert the comparison results of each layer of compare-exchange nodes
into an oblivious shuffle; these O(log2 k) oblivious shuffles (for input vectors of
length k) can be composed into a single oblivious shuffle with O(k log2 k) work
using Alg. 3. As we show below, at least parts of this algorithm are not covertly
private for the same reason as Alg. 2.

5.1 Methods Based on Shuffling and Comparison

We now show that sorting protocols that first shuffle the vector JxK and then
declassify the results of comparisons cannot be covertly private, at least for
additive secret sharing. For this purpose we present a pair (H,A), such that no
simulator Sim can make the sorting protocol π indistinguishable from F‖Sim,
where F is the ideal sorting functionality.

H and A first agree on a bit b, followed by A corrupting one of the parties,
and H submitting a vector JxK of length 2 to be sorted. The elements of x are
x1 = 0 and x2 = 1 + 2b; H additively shares them before submission. In the real
protocol, vector JxK is shuffled (i.e. perhaps the elements are swapped) and at
some moment, Jx1K and Jx2K are compared to each other. Before the comparison,
A tells the corrupted party to add 2 to its share of Jx2K. Due to additive sharing,
this means that x2 is increased by 2. The comparison result is declassified. In real
execution, the comparison result depends on the bit b. If b = 0, then x1 < x2,
because |x2 − x1| = 1 before the adversary’s interference and the increasing
of x2 was sufficient to make it larger than x1. If b = 1 then |x2 − x1| = 3
before the adversary’s interference. In this case the increase of x2 did not affect
the comparison result and either result is possible with 50% probability. The
simulator does not know b and hence does not know, from which probability
distribution the simulated result of the comparison should be sampled. Nor can
the honest parties in the real execution notice that something is wrong.

5.2 Counting sort

Most steps of the counting sort protocol (Alg. 2) are covertly, and even actively
private [29], except for the declassification step in line 7. The protocol can be seen
as consisting of two parts, the first of them computing the positions for reordering
the elements of JxK and JyK, and the second one (lines 5–8) actually performing
the reordering. We show that the second part is not covertly secure, if JoK is

Data: Private permutation JJσKK ∈ Sk+1, index x1 ∈ {1, . . . , k + 1}
Result: Private permutation JJσ′KK ∈ Sk, such that σ′ = σ↓x0

1 for i = 1 to 3 do
2 Pi−1 and Pi+1 send xi+1 = σi(xi) to Pi

3 if Pi receives different xi+1-s then Pi outputs accuse

4 foreach i ∈ {1, 2, 3} do Pi−1 and Pi+1 define σ′i := σi↓xi

Algorithm 6: Puncturing a private permutation (in Sharemind)

shared over Zk (in this case, 0 ≡ k). We analyse the lines 5–7, because the last
line only performs public operations. Note that exactly the same operations are
performed in Alg. 3, lines 4–6. The honest parties may try to detect adversarial
interference by noticing that the declassified o is not a permutation of 1, . . . , k.

We again present (H,A) for which no simulator Sim exists. H and A first
agree on a bit, after which A corrupts a party and H shares an arbitrary x and y
of length k among the computing parties. It also shares the vector o = (b, b, . . . , b)
(of length k). Even though o should be a permutation in a “normal” execution
of the lines 5–7, this does not have to be the case if the previous steps of a larger
protocol have also been affected by the adversary. In the execution, A selects
a random permutation o′ ∈ Zkk. It lets the shuffling protocol (for JoK) execute
normally, except that during the resharing step (lines 6–7 in Alg. 1), it tells the
corrupted party to add o′ to its share. Hence the declassification in line 7 of
Alg. 2 produces a permutation and adversarial interference will not be detected.
The declassified permutation is equal to o′+(b, b, . . . , b). The simulator Sim does
not know b, thus cannot simulate this.

6 Covertly Private Reordering

A covertly private reordering protocol (replacing steps 5–7 in Alg. 2 and steps 4–
6 in Alg. 3) is all that is needed for a covertly private sorting algorithm that
can be used in Alg. 5. We start its presentation by an auxiliary algorithm for
puncturing a private permutation.

For i ∈ N, define the mappings insi, deli : N → N by insi(j) = deli(j) = j
if j < i and insi(j) = j + 1, deli(j) = j − 1 for j ≥ i. Let τ ∈ Sk+1 and
i ∈ {1, . . . , k+ 1}. Puncturing τ at i gives us the permutation τ↓i = delτ(i) ◦ τ ◦
insi ∈ Sk. A private permutation JJσKK ∈ Sk+1 can also be easily punctured while
leaking the value σ(i) in the process, as shown in Alg. 6. Clearly, nothing else is
leaked, because no other points of σi-s are made public. The protocol is covertly
private because everything a party receives, it receives from two other parties,
one of which has to be honest. Without the last line in Alg. 6, this protocol
covertly securely computes and makes public x4 = σ(x1).

The covertly private reordering protocol is given in Alg. 7. It introduces the
replicated secret sharing [11] JJyKK of a value y ∈ ZN . In our case of additive
secret sharing with Sharemind security model, JJyKK consists of three random
elements of ZN summing up to y, with each party knowing two of them. Random

Data: Shared vectors JxK, JoK of length k, where o is a permutation of
{1, . . . , k}

Result: JxK reordered according to JoK
1 Generate random JJy1KK, . . . , JJymKK
2 foreach i ∈ {1, . . . ,m} do Jok+iK := JyiK
3 Generate a random private permutation JJσKK ∈ Sk+m

4 Shuffle JoK according to JJσKK
5 o := declassify(JoK)
6 foreach i ∈ {1, . . . ,m} do
7 zi := σ(k + i) // Alg. 6 without last line

8 if ozi 6= declassify(JJyiKK) then output accuse

9 Delete positions z1, . . . , zm from o
10 if o is not a permutation of {1, . . . , k} then output accuse
11 Shuffle JxK according to JJσ↓k+m↓k+m−1 · · ·↓k+1KK
12 foreach i ∈ {1, . . . , k} do JxiK := JxoiK

Algorithm 7: Protocol for covertly private reordering

replicated shared values are generated in the same manner as random private
permutations. Conversion from JJyKK to JyK means just dropping one of the shares.
In declassifying JJyKK, each party sends to both other parties the share they do not
yet know. In this manner, each party will learn the missing share from both other
parties and the adversary cannot send a wrong share without being detected.

We see that in Alg. 7 we add extra elements to the index vector JoK in order
to catch the adversary manipulating many elements of it, the number of added
elements m functions as security parameter. After shuffling, we determine where
the added elements had to end up, and check that they were not changed by
the adversary. Finally, we drop the points k + 1, . . . , k + m from the private
permutation σ (this can be done locally after running Alg. 6 to find z1, . . . , zm)
and use the result to shuffle JxK as before.

Theorem 2. Let c = m/k. Alg. 7 is covertly private with ε-deterrent, where
ε = 1− (c+ 1)−c.

Proof. We need to construct Sim simulating the view of the corrupted party from
this party’s input shares. The simulator does not know the honest parties’ shares
of JxK and JoK, hence it does not know x and o. During the run, it receives all
messages the corrupted party sends to honest parties, and must generate honest
parties’ messages to the corrupt party, thereby learning all these messages. Hence
it can still follow Alg. 7 as follows.

In line 1, Sim will either generate or receive all three shares of JJy1KK, . . . , JJymKK,
hence it knows y1, . . . , ym. Similarly, in line 3 it learns all three shares of JJσKK
and therefore σ itself. In line 4, it simulates the invocation of a shuffle (Alg. 1),
which is actively private. In line 5, Sim must simulate the result of declassi-
fying shuffled o. In declassified o, the simulator puts y1, . . . , ym to positions
σ(k+ 1), . . . , σ(k+m) and a uniformly random permutation of {1, . . . , k} to the
remaining k positions.

The simulator has all information (shares of JJσKK and JJyKK) to simulate the
lines 6–8. The shuffle in line 11 is actively private and the operations in lines
9,10,12 do not involve communication between parties. We must now justify that
the simulation of the declassification in line 5 is sufficiently similar to the real
protocol to achieve the claimed deterrent. We make the following claims.
Claim 1. Consider a protocol where first a vector z ∈ ZkN is generated and
shared by an active adversary A (having corrupted a party), then a private
permutation JJσKK is generated and applied to JzK using the protocol in Alg. 1,
and finally z is declassified. Any such A can be emulated by an adversary that
selects z, z′ ∈ ZkN and learns σ′(z) + z′ for an unknown, uniform σ′ ∈ Sk.

The claim follows from the construction of Alg. 1. At each resharing and
updating of shares in lines 3–4 and 6–7 of Alg. 1, the adversary can add a known
vector to z. The adversary also knows all but one permutations used in line
5. The addition of vectors before the application of the unknown permutation
corresponds to selecting a different z in the beginning. The addition after this
application corresponds to z′. During declassification, the adversary can add yet
another vector to the current z.

Claim 1 explains how much an adversary can affect o in line 5 of Alg. 7. It can
choose some o (not necessarily a permutation of {1, . . . , k}) in the beginning and,
after it has been permuted, add a known d to it. Assuming that the addition did
not affect any elements of y (which would result in an immediate accusation),
the adversary hopes to obtain a non-uniformly chosen permutation of {1, . . . , k}.
Claim 2. Let |v| = k, with v having s different elements. If σ ∈ Sk is uniformly
chosen then Pr[σ(v) = v] ≤ (k − s+ 1)!/k!.

Indeed, if w1, . . . , ws are the elements occuring in v with ci being the count
of wi, then the number of permutations in Sk leaving v in place is c1! · · · cs! =∏s
i=1

∏ci−1
j=1 (1+j). This product has k−s factors, bounded by 2, 3, . . . , (k−s+1).

Hence it is at most (k − s+ 1)!. The set Sk has k! elements.
Claim 3. Let v,d,u ∈ ZkN with u being a permutation of {1, . . . , k}. Let t =
‖d‖0, denoting the number of non-zero elements (the Hamming weight) of d. If
σ ∈ Sk is uniformly chosen then Pr[σ(v) + d = u] ≤ (t+ 1)!/k!.

Indeed, if there is no σ0, such that σ0(v) + d = u, then the claim holds.
Otherwise, the probability is equal to Pr[(σ ◦ σ−10)(σ0(v)) = σ0(v)]. By claim 2,
this probability as at most (k − s + 1)!/k!, where s is the number of different
elements in σ0(v) = u − d. Vector u has k different elements, hence u − d has
at least k − t different elements.

In the following, let d ∈ Zk+mN be the difference in o that the adversary has
caused in line 5 of Alg. 7. Let E be the event that accuse does not occur in the
loop in lines 6–8 of the real execution of Alg. 7. Let t = ‖d‖0.

Claim 4. (trivial) Pr[E] ≤
(
k
t

)
/
(
k+m
t

)
.

Claim 5. If t ≤ c (i.e. m ≥ tk) then Pr[E] ≤ 1/(t+ 1)!.

Indeed, we have
(
k
t

)
/
(
k+m
t

)
=
∏t−1
i=0

k−i
k+m−i ≤ (k

k+m)t. Applying the inequal-
ity m ≥ tk gives

Pr[E] ≤
(

k

k +m

)t
≤
(

k

k + tk

)t
=

(
1

t+ 1

)t
=

1

(t+ 1)t
≤ 1

(t+ 1)!
.

Claim 6. If t ≥ c then Pr[E] ≤ (c+ 1)−c.

Similarly to previous claim, we get

Pr[E] ≤
(

k

k +m

)t
=

(
k

k + ck

)t
=

(
1

c+ 1

)t
≤
(

1

c+ 1

)c
=

1

(c+ 1)c
.

Claim 7. Let u ∈ ZkN be a permutation of {1, . . . , k}. If m ≥ tk then the
probability of o being equal to u in line 10 of the real execution of Alg. 7 is at
most 1/k!.

Indeed, to get to line 10, the event E must occur. If E occurred then all t
changes the adversary made to o must have happened to the positions not taken
by the elements of y. Hence, if E occurred then by Claim 3, the probability of
o = u in line 10 is at most (t+ 1)!/k!. This probability must be multiplied with
Pr[E] and the resulting product is at most 1/k!.

Claim 7 shows that if m is sufficiently large then no declassification result in
the real execution may occur with larger probability than in the simulated execu-
tion. This justifies Sim outputing a uniformly random permutation of {1, . . . , k}.
Claim 8. If t ≥ c then accuse is output in the real execution with probability
at least ε = 1− (c+ 1)−c.

Indeed, the probability of accuse being output is at least 1− Pr[E] ≥ ε.
The value of t is a random variable determined by the adversary. We have

now analysed both the cases t ≤ c and t ≥ c and shown that in both cases,
the adversary cannot get a large difference of views in real and ideal execution.
Indeed, if t ≤ c, then no particular value of o in line 10 can be obtained with
greater probability in the real execution than in the simulated execution. Any
difference in probabilities is due to accuse being output in the real execution.
Thus, if t ≤ c, we have 1-deterrent against adversaries trying to breach the
privacy.

If t ≥ c then accuse is output with probability at least ε. As the distance
between the views in the real and ideal execution cannot be larger than 1, we
have at least ε-deterrent here.

ut

7 Conclusions

We have presented a covertly private SMC reordering protocol that may be
used to build a covertly private SMC sorting protocol based on the radix sort
algorithm. The overhead of the sorting protocol, compared to a passively secure
protocol, is only about three times (i.e. m = 2k), already giving the probability
of ca. 90% for catching a misbehaving adversary. The resulting covertly secure
sorting protocol has only o(k) overhead (over the passively secure protocol) on
an input of size k.

It remains to be seen whether the presented reordering protocol is sufficient
to construct a covertly private sorting protocol based on the quicksort algorithm.

References

1. Yonatan Aumann and Yehuda Lindell. Security against covert adversaries: Efficient
protocols for realistic adversaries. J. Cryptology, 23(2):281–343, 2010.

2. Dan Bogdanov, Marko Jõemets, Sander Siim, and Meril Vaht. How the Estonian
tax and customs board evaluated a tax fraud detection system based on secure
multi-party computation. Financial Cryptography (FC) 2015, LNCS 8975:227–
234.

3. Dan Bogdanov, Liina Kamm, Baldur Kubo, Reimo Rebane, Ville Sokk, and Riivo
Talviste. Students and Taxes: a Privacy-Preserving Social Study Using Secure
Computation. Proceedings of Privacy Enhancing Technologies (PoPETS), 2016.

4. Dan Bogdanov, Peeter Laud, Sven Laur, and Pille Pullonen. From Input Private to
Universally Composable Secure Multi-party Computation Primitives. CSF 2014,
pp. 184–198.

5. Dan Bogdanov, Sven Laur, and Riivo Talviste. A practical analysis of oblivi-
ous sorting algorithms for secure multi-party computation. NordSec 2014, LNCS
8788:59–74.

6. Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast
privacy-preserving computations. ESORICS 2008, LNCS 5283:192–206.

7. Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applications. Int.
J. Inf. Sec., 11(6):403–418, 2012.

8. Peter Bogetoft, Dan Lund Christensen, Ivan Damg̊ard, Martin Geisler, Thomas P.
Jakobsen, Mikkel Krøigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt
Nielsen, Jakob Pagter, Michael I. Schwartzbach, and Tomas Toft. Secure multi-
party computation goes live. Financial Cryptography (FC) 2009, LNCS 5628:325–
343.

9. Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. FOCS 2001, pp. 136–145.

10. Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. STOC 2002, pp. 494–503.

11. Ronald Cramer, Ivan Damg̊ard, and Yuval Ishai. Share conversion, pseudorandom
secret-sharing and applications to secure computation. TCC 2005, LNCS 3378:342–
362.

12. Ivan Damg̊ard, Marcel Keller, Enrique Larraia, Valerio Pastro, Peter Scholl, and
Nigel P. Smart. Practical Covertly Secure MPC for Dishonest Majority - Or:
Breaking the SPDZ Limits. ESORICS 2013, LNCS 8134:1–18.

13. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty
computation from somewhat homomorphic encryption. CRYPTO 2012, LNCS
7417:643–662.

14. Sebastiaan de Hoogh, Berry Schoenmakers, and Meilof Veeningen. Certificate
validation in secure computation and its use in verifiable linear programming.
AFRICACRYPT 2016, LNCS 9646:265–284.

15. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. CRYPTO 2010, LNCS
6223:465–482.

16. Oded Goldreich. Foundations of Cryptography: Volume 2, Basic Applications.
Cambridge University Press, New York, NY, USA, 2004.

17. Oded Goldreich, Silvio Micali, and Avi Wigderson. How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority. STOC 1987, pp.
218–229.

18. Koki Hamada, Dai Ikarashi, Koji Chida, and Katsumi Takahashi. Oblivious radix
sort: An efficient sorting algorithm for practical secure multi-party computation.
Cryptology ePrint Archive, Report 2014/121, 2014.

19. Koki Hamada, Ryo Kikuchi, Dai Ikarashi, Koji Chida, and Katsumi Takahashi.
Practically efficient multi-party sorting protocols from comparison sort algorithms.
ICISC 2012, LNCS 7839:202–216.

20. Kristján Valur Jónsson, Gunnar Kreitz, and Misbah Uddin. Secure multi-party
sorting and applications. Cryptology ePrint Archive, Report 2011/122, 2011.

21. Marcel Keller, Emmanuela Orsini, and Peter Scholl. Mascot: Faster malicious
arithmetic secure computation with oblivious transfer. Cryptology ePrint Archive,
Report 2016/505, 2016.

22. Marcel Keller, Peter Scholl, and Nigel P. Smart. An architecture for practical
actively secure MPC with dishonest majority. CCS 2013, pp. 549–560.

23. Peeter Laud. Parallel Oblivious Array Access for Secure Multiparty Computa-
tion and Privacy-Preserving Minimum Spanning Trees. Proceedings of Privacy
Enhancing Technologies, 2015(2):188–205, 2015.

24. Peeter Laud. Stateful Abstractions of Secure Multiparty Computation. Applica-
tions of Secure Multiparty Computation, volume 13 of Cryptology and Information
Security, pp 26–42. IOS Press, 2015.

25. Peeter Laud and Alisa Pankova. Verifiable Computation in Multiparty Protocols
with Honest Majority. ProvSec 2014, LNCS 8782:146–161.

26. Peeter Laud and Alisa Pankova. Preprocessing-based verification of multiparty
protocols with honest majority. Cryptology ePrint Archive, Report 2015/674, 2015.

27. Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient Oblivious
Database Manipulation. ISC 2011, LNCS 7001:262–277.

28. Takashi Nishide and Kazuo Ohta. Multiparty computation for interval, equality,
and comparison without bit-decomposition protocol. PKC 2007, LNCS 4450:343–
360.

29. Martin Pettai and Peeter Laud. Automatic proofs of privacy of secure multi-party
computation protocols against active adversaries. CSF 2015, pp. 75–89.

30. Guan Wang, Tongbo Luo, Michael T. Goodrich, Wenliang Du, and Zutao Zhu.
Bureaucratic protocols for secure two-party sorting, selection, and permuting. ASI-
ACCS 2010, pp. 226–237.

31. Andrew C. Yao. Protocols for secure computations. FOCS 1982, pp. 160–164.
32. Bingsheng Zhang. Generic constant-round oblivious sorting algorithm for MPC.

ProvSec 2011, LNCS 6980:240–256.

