
Privacy-preserving Frequent Itemset Mining
for Sparse and Dense Data

Peeter Laud1 and Alisa Pankova1,2

1 Cybernetica AS
2 Software Technologies and Applications Competence Centre (STACC)

{peeter.laud|alisa.pankova}@cyber.ee

Abstract. Frequent itemset mining is a data mining task that can in
turn be used for other purposes such as associative rule mining. The
data may be sensitive. There exist multiple privacy-preserving solutions
for frequent itemset mining, which should consider the tradeoff between
efficiency and privacy. Leaking some less sensitive information such as
density of the datatable may improve the efficiency. In this paper, we
consider secure multiparty computation setting, where the final output
(the frequent itemsets) is public, and no other information should be in-
ferred by the adversary that corrupts some of the computing parties. We
devise privacy-preserving algorithms that have advantage when applied
to very sparse and very dense matrices. We compare them to related
work that has similar security requirements, estimating the efficiency of
our new solution on a similar secure multiparty computation platform.

Keywords: Secure multiparty computation, frequent itemset mining

1 Introduction

Frequent itemset mining (FIM) is a standard data mining task. Given a collection
of sets, the goal is to find the subsets that are contained in sufficiently many of
these sets. After finding out which elements are more likely to occur together, one
may search for the reason for that co-occurrence, and whether the existence of
one item implies the existence of the other one, extracting some more interesting
knowledge such as association rules. Not only the task itself, but also its privacy-
preserving variants have been well studied in related work.

In this paper, we consider the security model where the final output is public,
and the adversary, corrupting some of the parties, should be unable to infer any
other information in addition to these public outputs. Our goal is to see if we
can gain more efficiency given some additional assumptions about the matrix
density. This allows us to make use of FIM algorithms whose efficiency depends
on data density, that would not give advantage in privacy-preserving settings
otherwise. Since the standard algorithms for FIM are iterative, even if data has
not been sparse on the first iteration, it may become very sparse or very dense on
later iterations. We propose algorithms that allow to combine dense and sparse
columns in the same computation.

2 Preliminaries

Let the sets be called transactions, and their elements items. These names come
from one possible use case of FIM, where the items are goods sold in the super-
market, and each transaction corresponds to contents of a shopping cart. The
task of FIM is to find out which subsets of items occur together in sufficiently
many transactions. In general, the shopping carts are nothing more than just
sets T over some universal set U (e.g. all the goods sold in the shop), and the
task is to find the subsets of items I ⊆ U that are encountered in sufficiently
many sets T . A subset I is considered frequent iff |{T | I ⊆ T}| ≥ t, where t ≥ 1
is some threshold that is given as a parameter.

2.1 Secure Multiparty Computation

In this paper, we solve FIM using secure multiparty computation. We adjust
our algorithms to a specific platform Sharemind [3], which is based on secret
sharing. The main security domain of Sharemind supports 3 computing parties
(P1, P2, P3), tolerating at most one passively corrupted party. The number of
input parties who provide the inputs by secret-sharing them among computing
parties is unbounded. No party should learn any private data besides the final
output that we consider public. There is some less sensitive information that we
agree to leak, such as the total number of items and transactions.

Sharemind uses mainly additive and bitwise secret sharing. The costs of their
standard operations are different. In the additive sharing, the value is shared as
a = a1 + a2 + a3 over some ring (in Sharemind Z2m), where ai is the share
that belongs to the party Pi, and linear combinations can be computed without
communication. In the bitwise sharing, the value is shared bitwise as a = a1 ⊕
a2 ⊕ a3, and bitwise linear combinations of bitvectors can be computed without
communication. Also, bitwise sharing is more efficient for comparison operations.

This paper builds algorithms from standard operations of Sharemind that it
uses as black boxes. The algorithms would work for any platform in which these
basic operations are universally composable. However, the particular costs that
we get in this paper are very related to particular Sharemind protocols. On some
other platform, the new methods could give even more advantage, but they also
could be too inefficient to make sparse representation reasonable.

2.2 Notation

Throughout this paper, we use the following quantities:

– capital letters X denote sets, and calligraphic font X denotes a set of sets;
– σ(I) is the support of I, i.e. the set of transactions that contain itemset I;
– ∆(I1, I2) := σ(I1) \ σ(I2) is the difference of supports of I1 and I2;
– secret shared value (either additive or bitwise sharing) 〈[a]〉;
– additively shared value [[a]]; a = a1 + · · ·+ an;
– bitwise shared value 〈〈a〉〉; a = a1 ⊕ · · · ⊕ an;

– i-th element of a vector a: a[i];
– element of a matrix A in the i-th row and j-th column: A[i, j];
– i-th row and j-th column of a matrix A: A[i, :], A[:, j];
– vector concatenation: x‖y;

Protocol cost. We measure the number of rounds as well as the total number
of bits communicated through the network. Formally, we define a type Cost =
N × N, where the first component is the number of communicated bits, and
the second component is the number of rounds. We define the operations ⊗ :
Cost × Cost → Cost (parallel composition) and ⊕ : Cost × Cost → Cost
(sequential composition) as follows:

– (a, b)⊗ (c, d) = (a+ c,max (b, d));
– (a, b)⊕ (c, d) = (a+ c, b+ d).

We will use the shorthand (a, b)⊗n to denote (a, b)⊗ · · ·⊗ (a, b), and (a, b)⊕n

to denote (a, b) ⊕ · · · ⊕ (a, b), where (a, b) occurs n times. Let the operation ⊗
have higher priority than ⊕.

For a protocol Prot, we write Protnk to denote the cost of application of Prot
to a vector of length n of k-bit values. The number n is omitted if the protocol
is applied to a single input, and Protn1,...,nm

k denotes applying the protocol to
several inputs of different lengths.

2.3 General FIM Algorithms

There exist several variations of the standard (not privacy-preserving) FIM al-
gorithms. We give some examples in this section. A similar property of these
algorithms is that, on each iteration, all they compute a frequent itemset of
size k, based on the frequent itemsets of size k − 1 found so far. The basis of
finding a k-set from k − 1 subsets is set intersection, or set difference. We will
turn special attention to these set operations when we use these algorithms in a
privacy-preserving setting.

Apriori. This algorithm sequentially constructs all the frequent itemsets of size 1,
then of size 2, until all the frequent sets are obtained in this way. Any infrequent
itemsets are immediately discarded. The frequent sets of size k are constructed
only for those sets whose all subsets of size k − 1 have been frequent. The way
in which these subsets are constructed depends on the particular algorithm in-
stance. One possible implementation of this method is given in Alg. 1.

Eclat. Similarly to Apriori, this algorithm constructs a set of size k from sets
of size k − 1. The main difference from Apriori is that Eclat uses depth-first
search, considering on one step not all the possible subsets of size k, but rather
constrains one step to the sets of size k with a common prefix P of length k− 1
(sets of the form P ∪ {x} for x /∈ P). Let σ(P) be the support of P . For each
item x, all possible frequent sets with prefix P ′ := P ∪{x} can be constructed as
σ(P ∪ {x})∩ σ(P ∪ {y}) from the sets P ∪ {y} such that y 6= x. The new prefix
is then processed recursively. The description of this method is given in Alg. 2.

Algorithm 1: Apriori

Data:M: frequent itemsets of size k − 1 found so far
Result: Frequent itemsets of size at least k

1 F ← ∅ ;
2 foreach Xi ∈M do
3 foreach Xj ∈M, j > i do
4 R← Xi ∪Xj ;
5 if |σ(R)| ≥ t then
6 F ← F ∪ {R} ;

7 if F 6= ∅ then
8 F ′ ← Apriori(F) ;

9 return F ∪ F ′ ;

Algorithm 2: Eclat

Data: P all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P

1 foreach Xi ∈ P do
2 Fi ← ∅ ;
3 foreach Xj ∈ P, j > i do
4 R← Xi ∪Xj ;
5 σ(R)← σ(Xi) ∩ σ(Xj) ;
6 if |σ(R)| ≥ t then
7 Fi ← Fi ∪ {R} ;

8 if Fi 6= ∅ then
9 F ′i ← Eclat(Fi) ;

10 return
⋃

i F
′
i ;

Diffset. If the matrix columns are very dense, then instead of keeping transac-
tions that contain the given dataset, one could try to keep transactions that do
not contain the given dataset. Actually, even something more interesting can
be done. Another FIM algorithm Diffset [14] is similar to Eclat, but instead of
keeping the set of transactions in each itemset, it keeps the sizes of supports of
sets of size k − 1, and the differences between a set of size k and its subsets of
size k − 1. In this way, even if the initial matrix is not dense, the set differences
that this algorithm keeps may become very small on later iterations.

Let the itemsets P ∪{x} and P ∪{y} be frequent. We want to know whether
the itemset P ∪ {x} ∪ {y} is frequent. Let ∆(P, P ∪ {x}) be the difference
in supports of the itemsets P and P ∪ {x}. We can compute the support as
σ(P ∪ {x}) = σ(P)\∆(P, P ∪ {x}), and the difference as ∆(P, P ∪ {x} ∪ {y}) =
∆(P, P ∪ {x})\∆(P, P ∪ {y}). The description of this method is given in Alg. 3.

Algorithm 3: Diffset

Data: P all the frequent sets of size k − 1 with a prefix P
Result: Frequent itemsets of size at least k with a prefix P

1 foreach Xi ∈ P do
2 Fi ← ∅ ;
3 foreach Xj ∈ P, j > i do
4 R← Xi ∪Xj ;
5 ∆(P,R)← ∆(P,Xj) \∆(P,Xi) ;
6 |σ(R)| ← |σ(P)| − |∆(P,R)| ;
7 if |σ(R)| ≥ t then
8 Fi ← Fi ∪ {R} ;

9 if Fi 6= ∅ then
10 F ′i ← Diffset(Fi) ;

11 return
⋃

i F
′
i ;

3 Privacy-preserving FIM

Since FIM can in turn be used for various purposes such as associative rule
mining, preserving privacy may be very important. For example, several shops
may want to make some statistics of the contents of shopping carts without
revealing what exactly has been sold. Privacy is especially important in cases
where the shopping cart is associated with the customer.

Privacy-preserving versions of Apriori and Eclat have been implemented and
optimized in [1, 5, 11]. There are also some solutions designed for specific initial
data sharing, such as vertical or horizontal partitioning [9]. Implementing an
algorithm such as FP-tree is not suitable for our security model since its structure
leaks more information than the frequent itemsets themselves. In [11], the FP-
tree is constructed after the frequent itemsets have been found (using Apriori-
based algorithm), and the goal is to introduce noise into the public output.

Besides making the computation secure, it may be also important to consider
how much the public output leaks by itself. Differential privacy guarantees that
the adversary will not learn too much from the public output, providing statisti-
cal privacy for each individual record in the dataset. There exist systems such as
PINQ [12], PDDP [4], RAPPOR [6], that allow to make statistical computations
that achieve this property. In the context of FIM, differential privacy has been
considered in [5,11,15]. Similar distortion-based approach is also used in [13]. In
this work, we do not consider differential privacy. To achieve it, we could add
noise to the initial data, so that the final output (that is, all the frequent itemsets
up to certain size) would provide privacy for each individual record. We would
need to define what exactly an individual record is (a column or a row), while
in this paper the initial distribution of the records is not important.

In this work, we mainly extend the results of [1], where Eclat and Apriori
algorithms (but not Diffset), as well as hybrid solutions, have been implemented.
The algorithms of [1] are based on bit matrix representation. Their efficiency

does not depend on matrix sparsity, and they could not use the advantages of
Diffset. We give a solution that works better with sparse matrices. Our algorithms
use some blackbox operations that in general depend on the underlying secure
multiparty computation platform, and whose implementation is not the part
of FIM algorithms. The cost estimations for our algorithms are based on the
blackbox operation costs of Sharemind [3].

Bit Matrix Representation. First, we describe the existing implementations of [1]
based on representing the data table as a secret shared bit matrix. Initially, the n
items and m transactions are assigned unique indices {1, . . . , n} and {1, . . . ,m}
respectively. A matrix B is defined, such that B[i, j] = 1 iff the i-th transaction
contains the j-th item. On further iterations of FIM algorithms, the columns
correspond not to single items, but to itemsets.

Although all matrix elements are bits, in order to determine whether an
itemset is frequent, at some moment the sum of column elements has to be
computed. Therefore, at least before the addition, the bits should be converted
to at least (logm)-bit values to avoid addition overflow, since the maximal value
that the sum may take is m. In [1], the matrix elements are permanently stored
as logm-bit values to avoid conversion overheads. For very sparse sets, such an
encoding may consume excessive space due to large amount of zeroes that will
not be needed anyway. In Sec. 3.2, we discuss whether it is better to keep the
bits in logm format, or to convert 1-bit values to logm-bit values on demand.

Finding an intersection of two itemsets i and j and checking its cardinality
is implemented as follows:

1. multiply pointwise two logm-bit vectors of length m;
2. sum the obtained m products up;
3. compare the obtained logm-bit number with a logm-bit threshold t.

Sparse Set Representation. In this paper, we propose another way to represent
transactions that contain the given itemset. This representation makes sense for
sparse matrices, i.e. when each column of the matrix contains at most m′ entries
for m′ � m. We will now use an m′ × n matrix for data table representation.
Each column will now contain not the characteristic bit vector, but the indices
of transactions. The order of indices in a column does not matter. Encoding a
number from {1, . . . ,m} requires logm bits. If the table contains at most nm′

nonzero entries, then nm′ ·logm bits are sufficient to encode it. If the size of some
column is mj < m′, then some m′ −mj of its entries are set to 0. Since 0 now
has special meaning, we start indexation with 1. Alternatively, we could leave
exactly mj elements in the column, but that would leak too much additional
information about the data.

3.1 Algorithms for Privacy Preserving FIM

Existing Building Blocks. We describe the building block algorithms that we
use for our constructions. Some very basic operations that do not require addi-
tional description are given in Tab. 1. We now describe some more complicated
algorithms. The summary of the costs of used building blocks is given in Tab. 2.

Operation Call Returned Value

Sum(〈[x]〉) 〈[
∑m

j=1 x[j]]〉
Mult(〈[x]〉, 〈[y]〉) 〈[x · y]〉

OuterProd(〈[x]〉, 〈[y]〉) 〈[Z]〉, where Z[i, j] = x[i] · y[j]

ShareConv(〈[x]〉, k) 〈[y]〉, where x ∈ Z2, y ∈ Z2k , x = y

Shuffle(〈[x]〉) 〈[y]〉, where y is a random reordering of x

UnShuffle(〈[y]〉) 〈[x]〉, where x is a restored previously shuffled vector

Equal(〈[x]〉, 〈[y]〉) 〈[x == y]〉 ∈ Z2

LessThan(〈[x]〉, 〈[y]〉) 〈[x ≤ y]〉 ∈ Z2

Declassify(〈[x]〉) x
Table 1. Basic blackbox operations

Protocol Call Returned Value Cost

Csort(〈[x]〉, 〈[b]〉) 〈[x]〉 sorted by 〈[b]〉 ShareConvn
k ⊕Multnk ⊕ Shufflen2k ⊕ Declassifyn

k

Rsort(〈〈x〉〉) sorted x (ShareConvn
k ⊕Multnk ⊕ Shufflen2k ⊕ Declassifyn

k)⊕k

Qsort(〈[x]〉) sorted x Shufflenk ⊕ (LessThann
k ⊕ Declassifyn

1)⊕ logn

PQsort(〈[x]〉) sorted x (LessThann
k ⊕ Declassifyn

1)⊕ logn

Table 2. Building block operations (k-bit elements, |x| = |b| = n)

Radix Sort (Rsort) and counting sort (Csort) . We use the algorithms from [2,
Alg.3]. Let k be the number of bits needed to encode each value. The sorting
protocol runs in k iterations. On each iteration, the elements are sorted according
to one bit using counting sort (we denote it by Csort), starting from the least
significant bit. In our algorithms, we will use CSort when we need to sort values
just by one bit. Using numbers of [2], the cost of a single counting sort, applied to
a vector of length n of k-bit values, is Csortnk = ShareConvnk ⊕Multnk ⊕Shufflen2k⊕
Declassifynk (the description of used subprotocols is given in Tab. 1). The cost of
the entire radix sort is Rsortnk = (Csortnk)⊕k.

Quicksort (Qsort) . We use the algorithm from [8, Protocol 1] to sort n elements
of k bits each. First of all, the array is shuffled, and then ordinary quicksort
algorithm is run, declassifying only the outcomes of comparisons to decide where
the element should be placed. As far as all elements are distinct, this does not
cause any privacy breach. A Sharemind version of this algorithm is described
in [2], and its average complexity is Shufflenk ⊕ (LessThann

k ⊕ Declassifyn1)⊕ logn.
Because of the random shuffle, the worst case comes with negligible probability,
and we may indeed expect the average cost in practice.

In some cases, we apply quicksort to arrays that have already been shuffled.
In this case, we denote the sorting itself by PQsort (plain quicksort), and its cost
is PQsortnk = (LessThann

k ⊕ Declassifyn1)⊕ logn. A good property of this sort is,
that the sorting permutation is public.

Algorithm 4: Pointwise product of two sparse vectors

Data: Shared sparse vectors 〈[u]〉, 〈[v]〉
Data: n — the number of non-zero elements in a vector
Result: The vector 〈[d]〉 such that d[i] = u[i] · v[i]
〈[w]〉 ← 〈[u]〉‖〈[v]〉 ;
〈[w]〉 ← Shuffle(〈[w]〉) ;
〈[w]〉 ← PQsort(〈[w]〉, 〈[w]〉.idx) ;
Let σ be the public sorting permutation of PQsort ;
foreach i ∈ {1, . . . , 2n− 1} do
〈[b[i]]〉 ← ShareConv(Equal(〈[w[i].idx]〉, 〈[w[i+ 1].idx]〉), k)
〈[d[i]]〉 ← Mult(〈[b[i]]〉,Mult(〈[w[i].val]〉, 〈[w[i+ 1].val]〉))

[[d]]← σ−1([[d]])
[[d]]← UnShuffle([[d]])
return 〈[d[1]]〉, . . . , 〈[d[n]]〉

Set Intersection and Difference. We describe the algorithms that we use for
set intersection and set difference. The sets are represented as arrays of elements.
We do not want to leak the precise set cardinality, and we assume that there is
a known upper bound n on the number of elements. If the set has less than n
elements, then the entries that represent missing elements are set to 0.

Let two sparse vectors be represented as sequences of index-value pairs, where
the indices are encoded by ` bits, and values are encoded by k bits. We give an
algorithm for a bit more general task, that allows to compute a pointwise product
of values these vectors, matching their entries by indices. We then show how to
instantiate it to set intersection and set difference.

Let u be a vector of length n. For each u[i], let u[i].idx and u[i].val denote
the index and value component respectively. The pointwise product algorithm is
given in Alg. 4. It concatenates the vectors u and v, obtaining a vector w. It then
sorts the obtained vector w by indices, so that similar indices are now consequent.
It then computes the products w[i].val ·w[i+ 1].val and leaves only those w[i]
for which w[i].idx = w[i+ 1].idx holds. In other words, it leaves exactly the
products v[i].val ·u[j].val such that v[i].idx = u[j].idx. In the end, the algorithm
sorts the entries back to their initial positions (applying the sorting permutation
inverse σ−1 and UnShuffle), so that the second half of the resulting vector (the
entries that are 0 anyway) can be discarded. Counting the number of all used
subprotocols of this algorithm, we get the cost

Shuffle2n`+k ⊕ PQsort2n` ⊕ (Equal` ⊕ ShareConvk ⊕Mult2k)⊗2n−1 ⊕ UnShuffle2nk .

This algorithm can be easily adjusted to set intersection and set difference.
The summary of costs of these set operations is given in Tab. 3. Let the set
elements be the indices of u and v. We show how to assign the values.

Set intersection. For the set intersection task, we set u[i].val = u[i].idx and
v[i].val = 1 for all i ∈ {1, . . . , n}. As the result, Alg. 4 returns exactly those
indices of 〈[u]〉 that are present in 〈[v]〉.

Protocol Call Returned Value Cost

Set∩(〈[a]〉, 〈[b]〉) 〈[c]〉 = 〈[a ∩ b]〉 Shuffle2n2k ⊕ PQsort2nk
Set\(〈[a]〉, 〈[b]〉) 〈[c]〉 = 〈[a \ b]〉 ⊕(Equalk ⊕ ShareConvk ⊕Mult2k)⊗2n−1 ⊕ UnShuffle2nk

Table 3. Set operations (k-bit elements, |a| = |b| = n)

Sharing Operation Rounds Communication

additive Sumn
k 0 0

Multk 1 6k
OuterProdn,m

k 1 3(n+m)k
ShareConvk 2 5k + 4

bitwise LessThank log k 30k
Equalk log k 12k − 9

both Shufflenk , UnShufflenk 3 6nk
Declassifyk 1 6k

Table 4. Basic operation costs of Sharemind

Set difference. To compute the difference between two sets, we need to keep
exactly those elements of 〈[u]〉 that are not present in 〈[v]〉. If we flip the bit
〈[b[i]]〉 = Equal(〈[w[i].idx]〉, 〈[w[i+ 1].idx]〉) and keep only those elements 〈[w[i].idx]〉
for which 〈[b[i]]〉 = 0, we will also get elements of 〈[v]〉 that are not present in 〈[u]〉,
and we do not need them. To get rid of these elements, for all i ∈ {1, . . . , n},
we may initially set u[i].val = u[i].idx and v[i].val = 0, and take 〈[d[i]]〉 ←
Mult(1 − 〈[b[i]]〉, 〈[w[i].val]〉)) as the final result. Only those entries 〈[d[i]]〉 that
correspond to u can now be nonzero.

Algorithm Costs on Sharemind. We assume that the algorithms are run on
secure multiparty computation system Sharemind [3]. In Tab. 4 we present the
costs of basic operations that are used in our algorithms. The numbers are taken
mainly from [3,10]. We take the cost of set intersection (and set difference) from
Tab. 3, and substitute the costs of basic operations with values from Tab. 4. The
summary of protocol costs on Sharemind platform is presented in Tab. 5.

Counting sort: The sorting assumes that the secret-shared input bits, according
to which the sorting is done, are already given. The cost of counting sort is
ShareConvnk ⊕ Multnk ⊕ Shufflen2k ⊕ Declassifynk . The total communication is n ·
(5k + 4) + n · 6k + 6n · 2k + n · 6k = n(29k + 4) ≈ 30nk bits. The total number
of rounds is 2 + 1 + 3 + 1 = 7.

Quicksort: The cost of PQsort is (LessThann
k ⊕Declassifyn1)⊕ logn. Since LessThan

is more efficient using bitwise sharing, the entire PQsort is also more efficient
using bitwise sharing. For PQsort, the total number of rounds is (log k+1) · log n,
and the total communication is log n · (30nk + 6n) bits.

Sharing Protocol Rounds Communication

bitwise PQsortnk logn(log k + 1) logn(30nk + 6n)
Set∩

n
k , Set\

n
k

9 + (log 2n+ 1)(log k + 1) 60nk logn+ 154nk

both Csortnk 7 30nk

Table 5. Auxiliary algorithm costs of Sharemind

Set intersection and difference: let us assume that the values are bitwise shared,
since the comparisons and the quicksort are faster in this case. The number of
bits for a single instance of intersection is 6 ·2n ·2k+ (30k+ 6)2n log 2n+ (12k−
9 + 5k+ 4 + 12k) · (2n− 1) + 6 · 2n · k = 24nk+ (60nk+ 12n)(log n+ 1) + (29k−
5)(2n− 1) + 12nk = 154nk+ 60nk log n+ 12n log n+ 2n− 29k+ 5 bits, which is
ca 60nk log n+ 154nk. The number of rounds is 3 + log 2n(log k + 1) + (log k +
2 + 2) + 3 = 9 + (log 2n+ 1)(log k + 1).

3.2 Comparing Bit Matrix and Set Based Approaches

We will now compare the bit representation and the sparse representation for
FIM task. As mentioned in Sec. 3, for the bit representation, the intersections
are found by multiplying two bit vectors pointwise, and the set difference can
be computing analogously, by taking the negation of the bit vector that is being
subtracted. For the sparse representation, the set operations can be found by
using the algorithms defined in Sec. 3.1. The size of the sparse sets is m′, and
the set elements are encoded with logm bits. The numbers m′ and n are defined
as in the beginning of Sec. 3.

Cost of intersection for bit representation. First of all, we estimate the
rounds and communication of the bit matrix intersections, based on the operation
costs of Tab. 4.

According to the multiplication protocol [10] of Sharemind, this is 6m logm
for multiplying pointwise two logm bit vectors of length m. Another possibility
to do the same thing is to keep all the bits in Z2, doing the share conversion after
the multiplication. Now the multiplication of m bit pairs has cost Multm1 = 6m,
and the share conversion ShareConvmlogm = m · (5 logm + 4), which is in total
5m logm+ 10m. This approach is more efficient for m ≥ 210.

Note that, if we need to compute Mult(〈[ai]〉, 〈[bj]〉) for all i ∈ {1, . . . , na}, j ∈
{1, . . . , nb}, then we could apply OuterProd(〈[a1]〉| . . . ‖〈[ana]〉, 〈[b1]〉‖ . . . ‖〈[bnb

]〉)
instead, which has the same operation cost as Multna+nb

1 . However, the share con-
version would still have to be applied to all products, having cost ShareConvna·nb

logm ,
and it does not scale well with na and nb. Hence, we use only the first approach
in this paper. The number of rounds in the first approach is 1, compared to the
3 rounds of the second approach.

Cost of intersection for sparse representation. Now we estimate the
rounds and communication of the sparse intersections, based on the operation
costs of Tab. 4. We compare them to the analogous cost metrics of bit matrix
approach.

In the sparse representation, we have m′ elements in the sets, each encoded
using logm bits. Suppose that we are going to find the intersections of some na
sets with some nb sets.

Round advantage: An intersection takes 9+(log 2m′+1)(log logm+1) rounds
instead of 1 round of bit representation. This is an obvious disadvantage, but we
hope to win in memory consumption and communication.

Communication: One set intersection requires 60m′ logm logm′+154m′ logm
bits of communication, compared to 6m logm of the bit based approach. Hence,
for a single intersection, the advantage is non-negative iffm ≥ 10m′ logm′+26m′.
However, while the total cost of all intersections is (na +nb) ·6m logm for the bit
approach, it is na ·nb · (60m′ logm logm′+ 154m′ logm), so the sparse approach
scales badly. The advantage of set intersection is non-negative iff

m ≥ na · nb
na + nb

(10m′ logm′ + 26m′) .

Comparisons of the bit and the set representations is given in Tab. 6.

Caveats of Sparse Representation. The best choice of m′ depends on the
values of na and nb, which in turn depends on particular input data and the
parameters, and these values are in general not known beforehand. In general,
we would like to fix m′ already in the beginning, since making m′ dependent
on data may leak more about it. On the other hand, we can make some further
intersections worse if we underestimate the values of na and nb.

Another problem is that, even if the data is sparse, they may be some single
columns that have too many elements to make sparse approach applicable. We
cannot just remove excessive transactions since we would have to decide which
transactions exactly should be removed, and that choice may affect the final
result significantly. On the other hand, finding an intersection between a dense
column and a set of sparse columns is even worse than if sparse columns were
treated as bit columns, regardless of the advantage that intersections of sparse
columns give themselves.

If we agree to leak whether the number of nonzero entries has become at most
m′ after finding the intersection of two dense columns, then we may turn the
resulting column into sparse. We convert bit columns of some branch of Diffset
and Eclat to set columns only after all columns of that branch become sparse,
and only if conversion still makes sense for the number of intersections that is
going to be done on the next step.

Converting a bit matrix column to a set matrix column. The protocol
Bits2Set transforms a column of a bit matrix to m′ bitwise shared row identifiers,
where m′ is a known upper bound on the number of nonzero entries of a sparse

Algorithm 5: Bit vector to a set Bits2Set

Data: A bit vector [[b]] of length m with at most m′ nonzero entries
Result: A bitwise shared set representation 〈〈c〉〉 of 〈〈b〉〉

1 〈〈b〉〉 = [[b]] mod 2 ;
2 foreach i ∈ {1, . . . ,m} do
3 〈〈c[i]〉〉 = 〈〈b[i]〉〉 · i ;

4 〈〈d〉〉 = CSort(〈〈c〉〉, 〈〈b〉〉) ;
5 return 〈〈d[1]〉〉, . . . , 〈〈d[m′]〉〉 ;

Type Bit Communication Cost

bit representation (na + nb) · 6m logm

set representation (na · nb) · 6m′ logm · (10 logm′ + 26)

Table 6. Multiple set algorithm costs of Sharemind

column. This protocol is given in Alg. 5. Assuming that m is a power of 2, even
though the input bit vector is additively shared in Zm, it is easy to convert it
to a bit vector shared in Z2 by locally truncating each entry up to the least
significant bit. In practice, at least using Sharemind system, the entries should
be shared over Z2dlog me anyway.

Computing the multiplications is a local operation since we are multiplying
by a public value j. The bit b[i] ∈ {0, 1} should be multiplied (in Z2) with each
bit of j, and this is a local operation. The cost of Csort is 7 rounds and 30mk
communication. For fixed m and m′, the total cost of the protocol is denoted
Bits2Setm,m′ , which is 7 rounds and 30m′ logm communication.

3.3 Combining Dense and Sparse Representations

We still assume that we are using the standard Eclat and Diffset algorithms with-
out modifying them in general. The algorithms should now additionally decide,
which columns should be represented as sets, and which columns as bit vectors.
As an example, we describe the new privacy preserving Eclat algorithm, and
Diffset would be analogous, just using set difference instead of set intersection.
Let m′ be the bound for which set based approach is applicable. Each iteration
of privacy preserving Eclat (depicted in Alg. 6) works as follows.

The itemsets that are are found to be frequent are public: similarly to [1],
they will be declassified in the end anyway and hence do not leak any additional
information. Let the itemsets of the current iteration of Eclat be represented by
P, as in Alg. 2. The invariant is that, the secret shared supports of the item-
sets P are either all in bit representation, or are all in set representation. It is
not possible that some supports of the same prefix are bit columns, while oth-
ers are set columns, since computing intersections between columns of different
representations would be too inefficient.

The representation determines the algorithm used to compute the supports of
the next iteration, which are the intersections of current supports. The resulting
bit columns that have at most m′ elements are converted to set columns using
Bits2Set protocol. To keep the invariant, this is being done only if all columns
of the current prefix have at most m′ elements. It is important that, even if a
column is sparse enough, it make sense to convert bit columns to set columns
only if it indeed gives advantage on the next step. This is done by estimating
the cost of both approaches and comparing them.

Let n′ be the current number of columns for the given prefix. The cost of one

conversion is Bits2Setn
′

m,m′ . In addition, set representation makes counting ones

a bit harder, requiring more comparisons of cost Equalm
′n′

logm. This overhead should

be added to the cost of sparse intersections (Set∩
m′

logm)(n
′2−n′)/2. The resulting

cost costset is compared to the cost that we would have without converting

bit columns to sparse columns, which is costbit = (OuterProdn′,n′

logm)m. The bit
columns are converted to set columns iff costset ≤ costbit.

We note that comparison with m′ can be done only if all other conditions
are satisfied, and it is not needed for the bit representation. Hence, the cost

LessThann′

logm ⊕ Declassifyn
′

1 of the comparison itself can be added to costset as
well, but its contribution is very small.

4 Benchmarks

We have implemented our algorithms in Sharemind and tested them on some
public datasets that are available e.g. in [7]. We tested Diffset on the denser
dataset Chess (3196 rows, 75 columns, 49,3% density), the medium density
dataset Mushroom (8124 rows, 119 columns, 19,3% density), and we tested Eclat
on the sparse dataset Retail (88162 rows, 16470 columns, 0.06% density). Since
Retail is a very large set, and we had to take a very small threshold t to get use
of sparse columns, we have taken only the first 5500 of its rows for our tests. We
ran the FIM task them with different thresholds t and different upper bounds
m′ on sparse column size. If m′ = 0, then only the bit representation was con-
sidered. The results are given in Tab. 7. In addition to time, we measured the
memory usage and the bit communication. For these two metrics, we have three
columns “sparse”, “dense” and “total”, denoting how much overhead was coming
from the set operations of sparse columns, the dense columns, and in total. The
communication cost of converting a bit column to a set column is treated as the
cost of sparse representation.

We see that the advantage of sparse representation is very small. The reason
is that there are too few columns for which set representation was more efficient.
Sometimes, the results are even slightly worse than for pure bit representation.
One reason for that is the data types of Sharemind are of fixed size, and it is
not possible to encode value in k bits for an arbitrary k. Moreover, the set rep-
resentation increases the number of rounds, and even some local computations,
which still affect the efficiency, even though they are less significant than the
communication.

Algorithm 6: Privacy Preserving Eclat

Data: X is a set of n itemsets of size k − 1 with the same prefix
Data: 〈[M]〉 is the m× n matrix of supports of the itemsets
Data: threshold t
Result: Frequent itemsets of size at least k with the same prefix

1 if 〈[M]〉 has a bit representation then
2 〈[C]〉 ← OuterProd(〈[M]〉, 〈[M]〉) ;
3 〈[s]〉 ← Sum(〈[C]〉) ;

4 else
5 〈[C]〉 ← Set∩(〈[M]〉, 〈[M]〉) ;
6 〈[s]〉 ← Sum(1− Equal(〈[C]〉, 0)) ;

7 b← Declassify(〈[s]〉 ≥ t) ;
8 foreach i ∈ {1, . . . , n} do
9 Fi ← ∅; 〈[Mi]〉 ← [] ;

foreach j ∈ {i+ 1, . . . , n} do
10 R = Xi ∪Xj ;
11 if b[i · n+ j] ≥ t then
12 Fi = Fi ∪ {R} ;
13 〈[Mi]〉 = 〈[Mi]〉‖〈[C]〉[i · n+ j] ;

14 if Fi 6= ∅ then
15 n′ = |Fi| ; //number of all columns
16 n′′ = Sum(〈[s]〉 ≤ m′) ; //number of sparse columns

17 costbit = (OuterProductn
′,n′

logm)⊗m ;

18 costset = (Bits2Setm,m′ ⊕ Equalm
′

logm)⊗n′
⊕ Set∩

(n′2−n′)/2
logm ;

19 if (n′ 6= n′′) or (costbit < costset) then
20 F ′i = Eclat(Fi, 〈[Mi]〉, t) ;

21 else
22 F ′i = Eclat(Fi,Bits2Set(〈[Mi]〉,m), t) ;

23 return
⋃

i F
′
i ;

5 Conclusion

We have presented two basic FIM algorithm for sparse datasets, an Eclat/Apriori
based one, and a Diffset based one, where Diffset may be useful also for non-
sparse matrices. The algorithms turn out to be not as efficient as we wanted.
The main challenge is that the algorithms for sparse representation are not as
linearizable as the bit vector algorithms are. Nevertheless, since our protocols
can be easily integrated into the bit based approach, we may choose to apply
them only on those steps where they indeed give advantage. Also, while sparse
representation has not improved efficiency for the benchmarked tables, it allowed
to reduce the local memory usage, which may be important for large datasets.

References

1. D. Bogdanov, R. Jagomägis, and S. Laur. A universal toolkit for cryptograph-
ically secure privacy-preserving data mining. In Proceedings of the 2012 Pacific
Asia Conference on Intelligence and Security Informatics, PAISI’12, pages 112–
126. Springer-Verlag, 2012.

2. D. Bogdanov, S. Laur, and R. Talviste. A practical analysis of oblivious sorting
algorithms for secure multi-party computation. In Secure IT Systems - 19th Nordic
Conference, NordSec 2014, Tromsø, Norway, October 15-17, 2014, Proceedings,
volume 8788 of Lecture Notes in Computer Science, pages 59–74. Springer, 2014.

3. D. Bogdanov, M. Niitsoo, T. Toft, and J. Willemson. High-performance secure
multi-party computation for data mining applications. Int. J. Inf. Sec., 11(6):403–
418, 2012.

4. R. Chen, A. Reznichenko, P. Francis, and J. Gehrke. Towards statistical queries
over distributed private user data. In Proceedings of the 9th USENIX Symposium
on Networked Systems Design and Implementation, NSDI 2012, San Jose, CA,
USA, April 25-27, 2012, pages 169–182. USENIX Association, 2012.

5. X. Cheng, S. Su, S. Xu, and Z. Li. Dp-apriori: A differentially private frequent
itemset mining algorithm based on transaction splitting. Computers & Security,
50:74–90, 2015.

6. Ú. Erlingsson, V. Pihur, and A. Korolova. RAPPOR: randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, Scottsdale, AZ, USA,
November 3-7, 2014, pages 1054–1067. ACM, 2014.

7. Frequent itemset mining dataset repository. http://fimi.ua.ac.be/data/. Last
accessed 2017-09-16.

8. K. Hamada, R. Kikuchi, D. Ikarashi, K. Chida, and K. Takahashi. Practically
efficient multi-party sorting protocols from comparison sort algorithms. In ICISC,
volume 7839 of Lecture Notes in Computer Science, pages 202–216. Springer, 2012.

9. M. Kantarcioglu and C. Clifton. Privacy-preserving distributed mining of associ-
ation rules on horizontally partitioned data. IEEE Trans. on Knowl. and Data
Eng., 16(9):1026–1037, Sept. 2004.

10. L. Kerik, P. Laud, and J. Randmets. Optimizing MPC for robust and scalable
integer and floating-point arithmetic. In Proceedings of WAHC’16 - 4th Workshop
on Encrypted Computing and Applied Homomorphic Cryptography, 2016.

11. J. Lee and C. W. Clifton. Top-k frequent itemsets via differentially private fp-trees.
In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’14, pages 931–940. ACM, 2014.

12. F. McSherry. Privacy integrated queries: an extensible platform for privacy-
preserving data analysis. Commun. ACM, 53(9):89–97, 2010.

13. C. Sun, Y. Fu, J. Zhou, and H. Gao. Personalized privacy-preserving frequent
itemset mining using randomized response. The Scientific World Journal, 2014.

14. M. J. Zaki and K. Gouda. Fast vertical mining using diffsets. In Proceedings of
the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, KDD ’03, pages 326–335. ACM, 2003.

15. C. Zeng, J. F. Naughton, and J.-Y. Cai. On differentially private frequent itemset
mining. Proc. VLDB Endow., 6(1):25–36, Nov. 2012.

dataset, t m′ memory communication time
FIM alg. sparse dense total sparse dense total (s)

chess, 3000 36 288 B 968 KB 968 KB 22 KB 16.5 MB 16.6 MB 2.0 s
Diffset 18 360 B 929 KB 930 KB 22.9 KB 16.4 MB 16.4 MB 2.5 s

9 72 B 968 KB 968 KB 15.2 KB 16.5 MB 16.6 MB 3.0 s
4 32 B 965 KB 965 KB 14 KB 16.5 MB 16.5 MB 2.5 s
0 0 991 KB 991 KB 0 16.5 MB 16.5 MB 2.6 s

2800 36 1.4 KB 8.5 MB 8.5 MB 154 KB 140 MB 141 MB 18 s
18 396 B 8.6 MB 8.6 MB 122 KB 140 MB 140 MB 19 s
9 144 B 8.6 MB 8.6 MB 115 KB 140 MB 140 MB 19 s
4 64 B 8.6 MB 8.6 MB 113 KB 140 MB 140 MB 19 s
0 0 8.6 MB 8.6 MB 0 140 MB 140 MB 18 s

2600 36 8 KB 38.6 MB 38.6 MB 710 KB 595 MB 596 MB 83 s
18 2.1 KB 38.9 MB 38.9 MB 528 KB 595 MB 595 MB 83 s
9 576 B 39.1 MB 39.1 MB 487 KB 595 MB 596 MB 80 s
4 208 B 39 MB 39 MB 476 KB 595 MB 594 MB 79 s
0 0 39 MB 39 MB 0 594 MB 594 MB 77 s

2400 36 220 KB 130 MB 130 MB 2.2 MB 2.0 GB 2.0 GB 265 s
18 857 B 130 MB 130 MB 1.8 MB 2.0 GB 2.0 GB 267 s
9 738 B 132 MB 132 MB 1.57 MB 2.0 GB 2.0 GB 255 s
4 328 B 131 MB 131 MB 1.55 MB 1.95 GB 1.95 GB 254 s
0 0 132 MB 132 MB 1.5 MB 1.95 GB 1.95 GB 253 s

mushroom, 2600 92 180 B 30.4 MB 30.4 MB 701 KB 516 MB 517 MB 83 s
Diffset 46 136 B 29.4 MB 29.4 MB 546 KB 510 MB 511 MB 81 s

23 7.64 KB 29 MB 29 MB 641 KB 507 MB 508 MB 80 s
11 3.43 KB 29.2 MB 29.2 MB 430 KB 506 MB 507 MB 80 s
0 0 31.7 MB 31.7 MB 0 512 MB 512 MB 64 s

2400 92 35 KB 45.5 MB 45.5 MB 1.29 MB 769 MB 769 MB 117 s
46 25.3 KB 43.9 MB 43.9 MB 958 KB 757 MB 758 MB 124 s
23 13.9 KB 43.5 MB 43.5 MB 952 KB 754 MB 755 MB 123 s
11 6.67 KB 43.4 MB 43.4 MB 556 KB 753 MB 753 MB 123 s
0 0 48.2 MB 48.2 MB 0 761 MB 761 MB 97 s

2200 92 53.5 KB 62.7 MB 62.7 MB 1.94 MB 1.10 GB 1.10 GB 183 s
46 38 KB 60.3 MB 60.4 MB 1.43 MB 1.08 GB 1.08 GB 172 s
23 36.5 KB 59.9 MB 59.9 MB 7.97 MB 1.07 GB 1.08 GB 180 s
11 18 KB 59.3 MB 59.4 MB 3.70 MB 1.07 GB 1.07 GB 179 s
0 0 66.9 MB 66.9 MB 0 1.08 GB 1.08 GB 151 s

2000 92 82 KB 101 MB 101 MB 3.00 MB 1.73 GB 1.73 GB 279 s
46 74 KB 94.8 MB 94.9 MB 2.59 MB 1.70 GB 1.70 GB 260 s
23 76.5 KB 92.2 MB 92.2 MB 16.8 MB 1.67 GB 1.69 GB 289 s
11 92.5 KB 88.4 MB 88.5 MB 28.4 MB 1.63 GB 1.66 GB 300 s
0 0 108 MB 108 MB 0 1.72 GB 1.72 GB 214 s

retail 15 62 744 B 25.0 MB 25.0 MB 22.9 MB 49.8 GB 49.8 GB 2660 s
(trimmed), 31 1.05 KB 24.9 MB 24.9 MB 22.9 MB 49.8 GB 49.8 GB 2640 s
Eclat 15 0 25.0 MB 25.0 MB 0 49.7 GB 49.7 GB 2690 s

7 0 25.0 MB 25.0 MB 0 49.6 GB 49.6 GB 2690 s
0 0 25.0 MB 25.0 MB 0 49.6 GB 49.6 GB 2620 s

Table 7. Benchmarks on Sharemind

