
Domain-Polymorphic Language for Privacy-Preserving
Applications∗

Dan Bogdanov
Cybernetica AS

dan.bogdanov@cyber.ee

Peeter Laud
Cybernetica AS

peeter.laud@cyber.ee

Jaak Randmets
Cybernetica AS

University of Tartu, Institute of
Computer Science

jaak.randmets@cyber.ee

ABSTRACT
We present SecreC, a programming language for specifying
privacy-preserving applications using a mix of techniques for
secure multiparty computation. Building on the concept of
protection domain as an abstraction of resources used to en-
sure the privacy of data, the SecreC language allows the
specification of protection domains for different pieces of
data, and the specification of the computation in domain-
polymorphic manner. We have implemented the compiler
for the language, integrated it with the existing SMC frame-
work Sharemind, and are currently using it for new privacy-
preserving applications.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—
Cryptographic controls; D.3.3 [Programming Languages]:
Language Constructs and Features—Polymorphism

Keywords
Secure Multiparty Computation; Software Engineering

1. INTRODUCTION
Many different secure multiparty computation (SMC) tech-

niques exist, based on garbled circuits [14, 11, 10] or deci-
sion diagrams [8], secret sharing [13, 2, 5, 3], homomorphic
encryption [4, 7]. When developing an application making
use of SMC techniques, we may want to use more than one
technique simultaneously, and/or we may want to defer the
choice of particular SMC techniques to a later stage of devel-
opment. The main reason for this is efficiency — different
operations may be fastest using different techniques, even

∗This research was, in part, funded by the U.S. Government.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the U.S. Government. Distribution Statement A (Approved
for Public Release, Distribution Unlimited).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
PETShop’13, November 4, 2013, Berlin, Germany.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2489-2/13/11 ...$15.00.
http://dx.doi.org/10.1145/2517872.2517875.

when considering the costs of translating between data rep-
resentations [9]. Confidentiality policies may compound this
issue, stating that different pieces of data must be treated
with techniques providing protection against different kinds
of adversaries (passive vs. active; the size of coalitions it’s
able to form). In this case, we may use faster techniques for
data needing less protection. Also, in our quest for speed, we
may want to try out and profile different SMC techniques;
this should be possible without rewriting the application.

Sharemind’s [2] secure computation runtime responds to
this wish through modular and the ease of integration of
new techniques. The application programmer, in order to
make full use of the capabilities of the runtime, needs a lan-
guage to express the functionality of the application and the
possible choices of SMC techniques, without being forced to
commit to particular techniques too early. In this paper we
present SecreC, a language that supports such development
methods. The design of the language has been somewhat
inspired by Jif [12]. Several design choices have also been
affected by our unique practical experience in developing
SMC applications.

2. PROTECTION DOMAINS
A protection domain kind (PDK) is a set of data repre-

sentations, algorithms and protocols for storing and com-
puting on protected data. A protection domain (PD) is a
set of data that is protected with the same resources and for
which there is a well-defined set of algorithms and protocols
for computing on that data while keeping the protection.

Each PD belongs to a certain PDK and each PDK can
have several PDs. Protection domains are a fundamental
concept in SecreC, partitioning the techniques and security
resources available to the program.

A typical example of a PDK is secret sharing, with imple-
mentations for sharing, reconstruction, and arithmetic op-
erations on shared values. A PD in this PDK would specify
the actual parties doing the secret sharing, and the number
of cooperating parties for reconstruction. Another exam-
ple of a PDK is a fully homomorphic encryption [6] scheme
with operations for encryption, decryption, as well as for
addition and multiplication of encrypted values. Here dif-
ferent keys correspond to different PD-s. Non-cryptographic
methods for implementing PDK-s may involve trusted hard-
ware or virtualization. Public is also a PDK, containing a
single PD. In general, a PDK has to provide a list of data
types it operates with, and functions that operate on them.
The cryptographic implementations of these functions are
beyond the scope of the application programmer. These

functions are made available by the Sharemind engine to
applications, written in SecreC, through system calls. The
available functions may be different for different PDKs and
data types. It is possible that certain functionality that is
provided through a dedicated system call in one PDK is
implemented as a SecreC program for another PDK.

3. THE PROGRAMMING LANGUAGE
The execution of a privacy-preserving application consists

of invoking the system calls in the correct order, correctly
passing data between them. The task of a SecreC-program
is to specify this order and the flow of data.

SecreC is an imperative, strongly and statically typed
language, with the concrete syntax strongly influenced by
C++. All variables and values in the program are typed. A
type consists of the data type, and the PD. One can write
PD-polymorphic code, possibly with restrictions to specific
PDKs. In this paper we only show the abstract syntax while
the concrete sytax of the language is significantly richer.

A SecreC program P consists of a sequence of declarations
followed by the body of the main function. Every declaration
is either a protection domain kind declaration, protection
domain declaration (stating the PDK into which it belongs),
or a function declaration. The names of the PDKs and PDs
are made visible in the compiled code. During deployment,
the Sharemind engine checks that it supports the necessary
PDKs. At the same time, the PDs of the compiled program
are matched with the actual resources of the runtime.

P ::= (pdk k; | pd d : k; | F)∗ B

A function definition F states the name of the function f ,
its return type (consisting of the PD d0 and the data type
t0), the names and types of its arguments, and its body
B. The function may be polymorphic, and the PDs can be
type variables that are universally quantified either over all
PDs, or over PDs of a certain PDK. Different arguments of
the function may have different PDs; in particular, this is
the case for (de-/re-)classification functions that conver the
values from one PD to another. The type of a system call is
defined similarly; but instead of its body, only its name in
PDK implementations is mentioned.

F ::= [Q] f(x1 : d1 t1, . . . ,xn : dn tn) : d0 t0 (B | S)
Q ::= ∀ α1, . . . ,αn. α ::= d | d : k
S ::= syscall(f) B ::= {(xi : di ti;)∗ s}

Importantly, SecreC supports function overloading, where
several different functions with the same name, but different
type may coexist in the same program. These are foremost
used to express“the same”operations in different PDKs (e.g.
arithmetic and boolean operations). These are also used
to provide PDK-specific implementations for some generic
functionality, where the PDK supports an efficient protocol
for this functionality. At a call site, the compiler selects the
called function according to its type, preferring functions
with more precise domain types. If several functions with
types of incomparable precision are available, the compiler
either makes a reasonable default choice, or raises an error.
The compiler also raises an error if the called polymorphic
function attempts to use a function that does not exist in a
concrete PDK (in C++ terms type errors may arise during
template instantiation).

Data types, denoted with t, are not fixed, but definitely
include integers int, booleans bool, and vectors of inte-

gers int[] and booleans bool[]. The statements s and
expressions e in SecreC, shown below, are the usual WHILE-
language constructs, complemented with operations to ma-
nipulate arrays.

s ::= skip | s1 ; s2 | x = e | x[e1] = e2
| if e then s1 else s2 | while e do s | return e

e ::= x | ct | e :: d | f(e1, . . . ,en)
| e1[e2] | mkarr(e1,e2) | length(e)

The expressions include function calls. The expressions and
statements are typed; in an assignment x := e, the types
of x and e are the same (as syntactic sugar, the compiler
can automatically insert a call to classification function if
the PD of e is public, and the PD of x is something else).
In places where the compiler cannot infer the protection do-
main of some expression, it is possible to state it explicitly.
Importantly, one does not attempt to hide the control flow
of the program. Hence all branching decisions must be made
based on public data.

Example.
Consider the task of sorting a vector of integers in privacy-

preserving manner. The sorting method is polymorphic over
the PD — the only restriction is that the given PDK sup-
ports basic arithmetic and comparison. The generic sort-
ing function operates by constructing a sorting network and
obliviously performing compare-and-swap on pairs in the or-
der defined by the network.

∀ D. sort(src : D int[]) : D int[] {

i : public int;

a, b, c : D int;

alength : public int = length(src);

sn : public int[] = makeSortingNetwork(alength);

for (i=0; i < length(sn)-1; i = i + 2) {

a = src[sn[i+0]]; b = src[sn[i+1]];

c = isLessThan(a, b); // from PDK implementation

src[sn[i+0]] = c*a + (1 - c)*b;

src[sn[i+1]] = c*b + (1 - c)*a;

}

return src;

}

Listing 1: Generic sort

However, we can do better if we have more information
about the given PDK. In particular, if a PDK K provides a
fast method to shuffle vectors, an efficient method for sort-
ing can be implemented. Comparison results of shuffled vec-
tor can be declassified and control flow of the program can
depend on the declassified results [15]. Sorting can be over-
loaded for this special case and when sorting a vector the
overload resolution mechanism selects the appropriate im-
plementation.

∀ D:K. sort(src : D int[]) : D int[] {

dest : D int[] = shuffle(src);

// Sort dest vector using public comparisons:

// declassify(isLessThan(dest[i], dest[j]))

return dest;

}

Listing 2: Specialized sort

Other features.
The SecreC language also contains a multitude of other

necessary features which make the programs easier to write.
Among these are the module system, multi-dimensional ar-
rays, arithmetic operators and overload resolution. The im-
plementation of these is orthogonal to the semantics of pro-
tection domains and not described here.

Compilation.
The compiler first resolves the polymorphism, instanti-

ating polymorphic functions as necessary. Differently from
C++, we can argue about correctness of this step as we
have a well-defined semantics for our polymorphic language.
The result of this step is a monomorphic program where the
protection domains of all pieces of data are statically known.

At this stage, optimizations can be applied to the pro-
gram. Beside the usual compiler optimizations, there can
also be optimizations specific to the PDK used in a certain
place of the program, or optimizations involving the change
of used PDKs [9]. After optimizing, the program is further
compiled to Sharemind bytecode which is executed by the
engine.

SecreC is already in active use. The standard library of
Sharemind written in SecreC currently consisting of ca.
10000 lines of code, and correctness tests span ca. 25000
lines.

The semantics of SecreC is described in more detail in [1].

4. ACKNOWLEDGEMENTS
This work was supported by the European Social Fund

through the ICT Doctoral School programme, and by the
European Regional Development Fund through the Esto-
nian Center of Excellence in Computer Science, EXCS, and
through the Software Technologies and Applications Com-
petence Centre, STACC. It has also received support from
Estonian Research Council through project PUT2, and from
Defense Advanced Research Projects Agency (contract no.
HR0011-11-9-0002).

5. REFERENCES
[1] D. Bogdanov, P. Laud, and J. Randmets.

Domain-Polymorphic Programming of
Privacy-Preserving Applications. Cryptology ePrint
Archive, Report 2013/371, 2013.
http://eprint.iacr.org/.

[2] D. Bogdanov, S. Laur, and J. Willemson. Sharemind:
A Framework for Fast Privacy-Preserving
Computations. In S. Jajodia and J. Lopez, editors,
Proceedings of the 13th European Symposium on
Research in Computer Security, ESORICS ’08, volume
5283 of Lecture Notes in Computer Science, pages
192–206. Springer, 2008.

[3] M. Burkhart, M. Strasser, D. Many, and X. A.
Dimitropoulos. Sepia: Privacy-preserving aggregation
of multi-domain network events and statistics. In
USENIX Security Symposium, pages 223–240.
USENIX Association, 2010.

[4] I. Damg̊ard and J. B. Nielsen. Universally composable
efficient multiparty computation from threshold
homomorphic encryption. In D. Boneh, editor,
CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 247–264. Springer, 2003.

[5] M. Geisler. Cryptographic Protocols: Theory and
Implementation. PhD thesis, Aarhus University,
February 2010.

[6] C. Gentry. Fully homomorphic encryption using ideal
lattices. In M. Mitzenmacher, editor, STOC, pages
169–178. ACM, 2009.

[7] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider,
and I. Wehrenberg. TASTY: tool for automating
secure two-party computations. In E. Al-Shaer, A. D.
Keromytis, and V. Shmatikov, editors, Proceedings of
the 17th ACM Conference on Computer and
Communications Security. CCS’10, pages 451–462.
ACM, 2010.

[8] Y. Ishai and A. Paskin. Evaluating Branching
Programs on Encrypted Data. In S. P. Vadhan, editor,
TCC, volume 4392 of Lecture Notes in Computer
Science, pages 575–594. Springer, 2007.

[9] F. Kerschbaum, T. Schneider, and A. Schröpfer.
Automatic Protocol Selection in Secure Two-Party
Computations. In 20th Network and Distributed
System Security Symposium (NDSS), 2013.

[10] B. Kreuter, abhi shelat, and C.-H. Shen. Billion-gate
secure computation with malicious adversaries. In
Proceedings of the 21st USENIX conference on
Security, 2012.

[11] L. Malka. Vmcrypt: modular software architecture for
scalable secure computation. In Y. Chen, G. Danezis,
and V. Shmatikov, editors, ACM Conference on
Computer and Communications Security, pages
715–724. ACM, 2011.

[12] A. C. Myers. JFlow: Practical Mostly-Static
Information Flow Control. In A. W. Appel and
A. Aiken, editors, POPL, pages 228–241. ACM, 1999.

[13] A. Shamir. How to share a secret. Commun. ACM,
22(11):612–613, 1979.

[14] A. C.-C. Yao. Protocols for Secure Computations
(Extended Abstract). In 23rd Annual Symposium on
Foundations of Computer Science. FOCS’82, pages
160–164. IEEE, 1982.

[15] B. Zhang. Generic Constant-Round Oblivious Sorting
Algorithm for MPC. In X. Boyen and X. Chen,
editors, ProvSec, volume 6980 of Lecture Notes in
Computer Science, pages 240–256. Springer, 2011.

