Dependency-graph-based protocol analysis

Peeter Laud

peeter.laud@ut.ee

http://www.ut.ee/~peeter_l

Tartu University & Cybernetica AS (joint work with Ilja Tšahhirov)

Dependency graphs

Directed graph, nodes are labeled with operations.

- The label of a node determines its in-degree.
- Incoming edges are (usually) ordered.
- Nodes of a DG compute values, purely functionally.
- Edges describe where the values are used for further computations.
- Special nodes are used to bring inputs to the system.
 - ...and transmit the outputs.

A protocol

- \blacksquare A wants to send the secret M to B.
- \blacksquare S is a trusted server.

$$A \longrightarrow B: A, B, \{N_A\}_{K_{AS}}$$
$$B \longrightarrow S: A, B, \{N_A\}_{K_{AS}}, \{N_B\}_{K_{BS}}$$
$$S \longrightarrow A: \{K_{AB}, N_A\}_{K_{AS}}$$
$$S \longrightarrow B: \{K_{AB}, N_B\}_{K_{BS}}$$
$$A \longrightarrow B: \{M\}_{K_{AB}}$$

Generate keys K_{AS} and K_{BS}

A protocol

Mobility, Ubiquity, Security, Dagstuhl, 26.02-02.03.2007 - p. 4/24

Good sides

- The structure of definitions and uses of values is explicit.
 - No copying of values.
 - No variable names at all...
- We immediately see what is used where.
 - ... which greatly simplifies finding out whether some cryptographic reduction is allowed.
 - ... and also helps doing other simplifications.

Some obvious simplifications

Some obvious simplifications

We can do dead code elimination afterwards.

Some obvious simplifications

Simplifying encryption

- If the symmetric encryption is IND-CCA and INT-CTXT secure then we can replace the encryptions and decryptions as follows:
 - Encryptions replace the plaintext with some constant 0.
 - Decryptions replace them by
 - comparing the ciphertext with the results of all encryptions (with the same key);
 - if there is a match then take the corresponding (original) plaintext as the result;
 - if there is no match then fail.
- Image: provided that the key is used <u>only</u> for encrypting and decrypting.

Which keys are OK?

Semantics

- ▶ Let $\{0,1\}^*_{\perp} = \{\bot\} \cup \{0,1\}^*$ where \bot is the smallest value and everything else is incomparable.
- Let $\mathbb{B} = \{ false, true \}$ with false $\leq true$.
- Let V_D [resp. V_B] be the set of nodes returning bit-strings [booleans].
- The adversary may set the values of input nodes (but only moving upwards).
- The environment sets the randomness sources.
- The values of other nodes are monotonically computed from their inputs.

Semantic functions

- All yellow nodes are strict.
- Green nodes are monotone boolean operations.
- The value of blue nodes is not \(\triangle only if the incoming control dependency edge carries true.
- The MUX works as follows:
 - If the control dependency is false, or all guards are false, then the result is \perp .
 - Otherwise, if exactly one guard is true, then the result is the corresponding incoming value.
 - Otherwise, the result is \top .

Semantics

The valuation of the entire graph has the type

$$((V_D \longrightarrow \{0,1\}^*_{\perp}) \times (V_B \longrightarrow \mathbb{B}))^{\top}$$

- The semantic functions of nodes define a monotone function on graph valuations.
- Its least fixed point is the semantics of the graph.

A good thing — the order of the execution of nodes is not fixed.

Computation \leftrightarrow **MUX**

Application...

Application...

Representing infinite graphs

- Nodes in different planes, but in the same position are represented by a single node.
 - Such nodes are one-dimensional.
- There may be replication inside replication.
 - The corresponding nodes in the representation have more than one dimension.
- In the representation, the edges are equipped with coordinate mappings.
- In the representation, the edges generally cannot go from a higher-dimensional node to lower-dimensional node.
 - Exceptions: target node is an *infinite or* or MUX.
 - Then we record which dimensions are contracted.

Arguing about control

- In our experience, the hardest part of the analyser has been the simplification of control dependencies.
 - Meaning: to derive that some node is always false.
- Some simplifications can be done locally.
 - Constant propagation, copy propagation, flattening, etc.
- More interesting ones require the analysis of the whole graph.

\Rightarrow

- When does $v_1 = \text{true imply } v_2 = \text{true}$?
 - If $v_1 = \dots \& v_2 \& \dots$
 - If $v_2 = \ldots \lor v_1 \lor \ldots$
 - If $v_1 \Rightarrow v_3$ and $v_3 \Rightarrow v_2$.
 - If $v_2 = w_1 \& \cdots \& w_t$ and $v_1 \Rightarrow w_i$ for all i.

• If
$$v_1 = w_1 \lor \cdots \lor w_t$$
 and $w_i \Rightarrow v_2$ for all i .

On the representation, we have to record coordinate equalities, too.

• If
$$v_1[c_1, \ldots, c_k] = \bigvee_{j \in \mathbb{N}} v_2[c_1, \ldots, c_k, j]$$
 then also

$$v_1[c_1,\ldots,c_k] \Rightarrow \operatorname{OneOf}(v_2[c_1,\ldots,c_k,*])$$

Using \Rightarrow

- Simplification of control dependencies.
- If the control dependency of some node u computing $X(\ldots, v, \ldots)$ implies that the node " $v \stackrel{?}{=} w$ " is true then replace u with $X(\ldots, \operatorname{Merge}(v, w), \ldots)$.
 - In this way we record the equality of values in the graph.
- If the control dependency of some MUX implies the guard of some of its choices, then replace that MUX by that choice.

Independence and randomness

- Consider the ancestors of some node.
 - Move backwards in the dependency graph.
 - Also move from "receive"-s to "send"-s.
 - But not towards the future. (use \Rightarrow)
- If two nodes have non-overlapping sets of ancestors then they are *independent*.
- If at least one of them is random, then they are unequal.
- Typical application:
 - A nonce is generated but never sent out.
 - It is compared with some of the contents of some message received from the network.
 - Then the result must be false.

Our dependency graph...

NAND

- For certain two boolean nodes we can say that at most of them can be true at any moment.
- This can be propagated downwards:
 - If $v_1 \overline{\&} v_2$ and $v_3 = \dots \& v_2 \& \dots$ then $v_1 \overline{\&} v_3$.
 - If $v_2 = w_1 \lor \cdots \lor w_t$ and $v_1 \overline{\&} w_i$ for all i then $v_1 \overline{\&} v_2$.
- Also store coordinate equalities and exceptions to them.
- If we derive $v \overline{\&} v$ then v is false.

Integrity (correspondence) properties

- Begin- and End-nodes.
 - Have a control dependency and an incoming data edge.
 - Produce no output.
- Non-injective agreement Whenever End(x) is executed, Begin(x) must have been executed as well.
 - ...earlier or at the same time.
 - Use " \Rightarrow " to show it.
- Injective agreement each execution of End(x) has a different execution of Begin(x) not later than it.
 - Often End(x) can happen at most once for each x.
 - Use "NAND" to show it.

In closing...

- For tracking data dependencies, our representation seems to be ideal.
- Control dependencies are also handled seemingly reasonably.
 - One can consider more or less stringent control flow structures, but the current choice looks like optimal.
- A persistent representation has to be found for data collected for \Rightarrow and NAND.