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Dependency graphs

Directed graph, nodes are labeled with operations.
The label of a node determines its in-degree.
Incoming edges are (usually) ordered.

Nodes of a DG compute values, purely functionally.

Edges describe where the values are used for further
computations.

Special nodes are used to bring inputs to the system.
. . . and transmit the outputs.
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A protocol

A wants to send the secret M to B.

S is a trusted server.

A−→B : A,B, {NA}KAS

B−→S : A,B, {NA}KAS
, {NB}KBS

S−→A : {KAB , NA}KAS

S−→B : {KAB , NB}KBS

A−→B : {M}KAB
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A protocol

K K

Generate keys KAS and KBS
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Good sides

The structure of definitions and uses of values is
explicit.

No copying of values.
No variable names at all. . .

We immediately see what is used where.
. . . which greatly simplifies finding out whether some
cryptographic reduction is allowed.
. . . and also helps doing other simplifications.
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Some obvious simplifications
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Some obvious simplifications
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We can do dead code elimination afterwards.
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Some obvious simplifications
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Simplifying encryption

If the symmetric encryption is IND-CCA and INT-CTXT
secure then we can replace the encryptions and
decryptions as follows:

Encryptions — replace the plaintext with some
constant 0.
Decryptions — replace them by

comparing the ciphertext with the results of all
encryptions (with the same key);
if there is a match then take the corresponding
(original) plaintext as the result;
if there is no match then fail.

. . . provided that the key is used only for encrypting and
decrypting.
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Which keys are OK?
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ReplaceKBS
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Semantics

Let {0, 1}∗
⊥

= {⊥} ∪ {0, 1}∗ where ⊥ is the smallest value
and everything else is incomparable.

Let B = {false, true} with false ≤ true.

Let VD [resp. VB] be the set of nodes returning
bit-strings [booleans].

The adversary may set the values of input nodes (but
only moving upwards).

The environment sets the randomness sources.

The values of other nodes are monotonically computed
from their inputs.

Mobility, Ubiquity, Security, Dagstuhl, 26.02-02.03.2007 – p. 10/24



Semantic functions

All yellow nodes are strict.

Green nodes are monotone boolean operations.

The value of blue nodes is not ⊥ only if the incoming
control dependency edge carries true.

The MUX works as follows:
If the control dependency is false, or all guards are
false, then the result is ⊥.
Otherwise, if exactly one guard is true, then the result
is the corresponding incoming value.
Otherwise, the result is ⊤.
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Semantics

The valuation of the entire graph has the type

(

(VD −→ {0, 1}∗⊥) × (VB −→ B)
)⊤

.

The semantic functions of nodes define a monotone
function on graph valuations.

Its least fixed point is the semantics of the graph.

A good thing — the order of the execution of nodes is
not fixed.
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Computation ↔ MUX
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Application. . .
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Replication
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Representing infinite graphs

Nodes in different planes, but in the same position are
represented by a single node.

Such nodes are one-dimensional.

There may be replication inside replication.
The corresponding nodes in the representation have
more than one dimension.

In the representation, the edges are equipped with
coordinate mappings.

In the representation, the edges generally cannot go
from a higher-dimensional node to lower-dimensional
node.

Exceptions: target node is an infinite or or MUX.
Then we record which dimensions are contracted.
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Arguing about control

In our experience, the hardest part of the analyser has
been the simplification of control dependencies.

Meaning: to derive that some node is always false.

Some simplifications can be done locally.
Constant propagation, copy propagation, flattening,
etc.

More interesting ones require the analysis of the whole
graph.
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⇒

When does v1 = true imply v2 = true?
If v1 = . . . & v2 & . . ..
If v2 = . . . ∨ v1 ∨ . . ..
If v1 ⇒ v3 and v3 ⇒ v2.
If v2 = w1 & · · · & wt and v1 ⇒ wi for all i.
If v1 = w1 ∨ · · · ∨ wt and wi ⇒ v2 for all i.

On the representation, we have to record coordinate
equalities, too.

If v1[c1, . . . , ck] =
∨

j∈N

v2[c1, . . . , ck, j] then also

v1[c1, . . . , ck] ⇒ OneOf(v2[c1, . . . , ck, ∗]) .
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Using⇒

Simplification of control dependencies.

If the control dependency of some node u computing

X(. . . , v, . . .) implies that the node “v ?
= w” is true then

replace u with X(. . . ,Merge(v, w), . . .).
In this way we record the equality of values in the
graph.

If the control dependency of some MUX implies the
guard of some of its choices, then replace that MUX by
that choice.
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Independence and randomness

Consider the ancestors of some node.
Move backwards in the dependency graph.
Also move from “receive”-s to “send”-s.

But not towards the future. (use ⇒)

If two nodes have non-overlapping sets of ancestors
then they are independent.

If at least one of them is random, then they are unequal.

Typical application:
A nonce is generated but never sent out.
It is compared with some of the contents of some
message received from the network.
Then the result must be false.
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Our dependency graph. . .
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NAND

For certain two boolean nodes we can say that at most
of them can be true at any moment.

This can be propagated downwards:

If v1 & v2 and v3 = . . . & v2 & . . . then v1 & v3.
If v2 = w1 ∨ · · · ∨ wt and v1 & wi for all i then v1 & v2.

Also store coordinate equalities and exceptions to them.

If we derive v & v then v is false.
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Integrity (correspondence) properties

Begin- and End-nodes.
Have a control dependency and an incoming data
edge.
Produce no output.

Non-injective agreement — Whenever End(x) is
executed, Begin(x) must have been executed as well.

. . . earlier or at the same time.
Use “⇒” to show it.

Injective agreement — each execution of End(x) has a
different execution of Begin(x) not later than it.

Often End(x) can happen at most once for each x.
Use “NAND” to show it.
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In closing. . .

For tracking data dependencies, our representation
seems to be ideal.

Control dependencies are also handled seemingly
reasonably.

One can consider more or less stringent control flow
structures, but the current choice looks like optimal.

A persistent representation has to be found for data
collected for ⇒ and NAND.
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