
Privacy Preserving Business Process Matching

Dilian Gurov
KTH Royal Institute of Technology

E-mail: dilian@kth.se

Peeter Laud
Cybernetica

E-mail: peeter.laud@cyber.ee

Roberto Guanciale
KTH Royal Institute of Technology

E-mail: robertog@kth.se

Abstract—Business process matching is the activity of check-
ing whether a given business process can interoperate with
another one in a correct manner. In case the check fails, it is
desirable to obtain information about how the first process can
be corrected with as few modifications as possible to achieve
interoperability. In case the two business processes belong to
two separate enterprises that want to build a virtual enterprise,
business process matching based on revealing the business pro-
cesses poses a clear threat to privacy, as it may expose sensitive
information about the inner operation of the enterprises. In this
paper we propose a solution to this problem for business processes
described by means of service automata. We propose a measure
for similarity between service automata and use this measure to
devise an algorithm that constructs the most similar automaton
to the first one that can interoperate with the second one. To
achieve privacy, we implement this algorithm in the programming
language SECREC, executing on the SHAREMIND platform for
secure multiparty computation. As a result, only the correction
information is leaked to the first enterprise and no more.

I. INTRODUCTION

Enterprises engage increasingly in distributed and loosely
coupled collaborations. For instance, possibly competitive
businesses can share their skills to form temporary alliances,
usually called virtual enterprises, in order to catch new busi-
ness opportunities. An effective management of such collabo-
rations requires techniques to engineer the inter-organizational
business processes.

In this context, a non-trivial process engineering task is to
ensure soundness (i.e., interoperability) of these collaborations:
can the interactions between the partners lead to a deadlock;
are the involved parties guaranteed to terminate properly; can
the collaboration lead to documents that are never collected
by the recipient? Several formal modeling languages such
as Petri Nets [8], [26], Service Automata [15] and process
algebra [9] have been proposed, allowing to formally state
soundness properties such as weak termination [16] and dead-
lock freedom [15], and to formulate algorithms to check these
properties.

The value of business processes is steadily increasing, and
enterprises may even use the patent mechanism to protect the
investment required to optimize their work flows and to obtain
the needed domain-specific knowledge. Thus, forming virtual
enterprises typically raises privacy issues. For instance, the
structure of a process and the dependencies between its activ-
ities can reflect the internal structure of the enterprise and can
reveal certain weaknesses in handling business opportunities.
However, the need for ensuring soundness of interorganiza-
tional processes goes across the increasing concerns about
privacy.

(a) B (b) A1 (c) A2

Fig. 1. A registration office and two customer processes

Whenever applicable, top-down development approaches
such as [24], [9] can be used to ensure soundness of the
interorganizational processes, while meeting the privacy re-
quirements. Such approaches typically consist of three phases:
(i) the participants agree upon a global (and publicly known)
process that is subject to global soundness analyses, (ii) from
the global process, local interfaces (one for each participant)
are automatically synthesized, and (iii) each partner locally
implements a private process and checks that it conforms to its
public interface. This scheme allows to transfer the soundness
properties of the global process to the composition of the
private processes without publishing the latter.

If the agreement phase is not desirable, and the correspond-
ing definition of a shared business process is not possible, a
bottom-up approach must be taken instead. Each participant
owns then an already existing private process, and the process
engineering task becomes the one of guaranteeing that their
composition is sound. Such a bottom-up approach must face
two problems: (i) the global process and the public interfaces
are not available, thus the soundness of the composition of
“secret” processes must be checked without revealing infor-
mation about the constituents, and (ii) if the soundness check
fails, a Boolean result is of little use, since the participants
have no information about the global process and thus can not
investigate what is wrong. This prevents the participants from
adapting their local procedures to form a sound collaboration.

In this paper we present a bottom-up approach to checking
soundness of interorganizational business processes that ad-
dresses both these problems. We demonstrate a scenario based
on an example from [24], assuming two parties pA and pB that
own private business processes represented as service automata
A and B. Figure 1a depicts the service automaton of a regis-
tration office. According with a customer request, this office
can prepare passports and ID cards. In both cases, the office
informs the customer about the cost and, if needed, stores
the customer’s fingerprints. Finally, it delivers the requested

document to the customer. Two customers (Figures 1b and 1c)
check whether they can collaborate with this office. Assuming
soundness means deadlock freedom, the soundness check will
succeed for customer A1 and fail for customer A2. In fact,
the second customer requests an ID card without providing
the necessary fingerprints, thus leading the collaboration to a
deadlock, and it never collects the delivered invoice.

To address problem (ii) above, we introduce a measure
for behavioral similarity between two automata. We use this
measure to check whether the composition of A and B is
sound, and in case it is not, to allow pA to discover, among
all automata that can be soundly composed with B, the one
that is most similar to A. This enables a correction loop, where
one of the two participants can refine its own process (possibly
accepting the suggested correction) and repeat the soundness
check. This goal is achieved under strong privacy constraints:
nothing more is leaked to the participants or any third party
than what can be deduced from the result.

Our approach is based on the combination of three tech-
niques: (i) we lift the check of the soundness of the automata
composition to matching one of the automata against the
operating guideline of the other (i.e., a representation of all
service automata that can soundly collaborate with it, see [15]),
(ii) we introduce the notion of weighted matching as a measure
for matching degree, and show how to compute this measure
and in the same time extract the behaviourally most similar
service that can soundly collaborate with the other party, and
(iii) we implement an algorithm to compute weighted match-
ing while preserving privacy by means of Secure Multiparty
Computation (SMC) techniques.

Our notion of weighed matching is inspired by the work
of Lohmann [14] on service correction. That work uses
similarity measures inspired by edit distances, with the aim
of finding the minimal number of structural changes needed
to obtain isomorphism between the input automaton and an
automaton that matches the input operating guideline. We
argue that, since service automata model process behavior
(rather than structure), the similarity measure should focus
on similar behavior rather that on similar structure. For this
reason, our notion of weighted matching extracts from an
operating guideline the strategy that is most similar to the
input automaton in accordance with an established behavioral
similarity measure [22].

The paper is organized as follows. In Section II we
recall standard definitions and results on service automata,
operating guidelines and behavioural similarity. In Section III
we formalize “service matching with correction” and give an
overview of our approach. In Section IV we introduce the
notion of weighted matching and an algorithm to extract from
an operating guideline the strategy most similar to an input
automaton. In Section V we describe an implementation of
service matching that uses Secure Multiparty Computation to
satisfy the confidentiality requirements. Finally, in Sections VI
and VII we present related work and concluding remarks.

II. BACKGROUND

Business processes are usually expressed in high-level
modeling languages such as BPMN [25] and EPC [21], to
describe the inter-dependencies among activities and the events

inside an enterprise. A number of formal languages have been
proposed to provide unambiguous formalization of processes,
the majority of which are inspired by Petri Nets [8] and
Process Algebra [18]. There is also extensive literature (e.g.
Global Calculus [9] and Open Nets [26], [24]) on top-down
approaches to manage interorganizational processes. Here,
we use service automata to represent processes, as they are
expressive enough to handle common work flow patterns.
Moreover, techniques exist to map high-level models (e.g.
BPMN) to service automata [24]. In this section we recall
some standard definitions and results on which our work rests.
We largely follow the definitions and notation from [23].

A. Service Automata

We assume a finite set C of message channels over which
services communicate asynchronously.

Definition 1 (Service Automaton): A (nondeterministic)
service automaton is a quintuple A = (Q, I, δ, q0,Ω), where:

(i) Q is a finite set of states;

(ii) I = Iin ∪ Iout is an interface consisting of input and
output channels so that Iin, Iout ⊆ C and Iin ∩ Iout = ∅;

(iii) δ ⊆ Q × LA × Q is a labelled transition relation over
the set of labels of A, LA

def
= {?x | x ∈ Iin} ∪ {!x | x ∈

Iout} ∪ {τ};
(iv) q0 ∈ Q is the initial state;

(v) Ω ⊆ Q is a set of final states such that q ∈ Ω and
(q, l, q′) ∈ δ imply l ∈ Iin.

A service automaton is deterministic if it has no τ -transitions
and for every state at most one outgoing transition for any
given label. Most of the works in the literature (as e.g. [17])
consider acyclic service automata only.

We use q1
l→ q2 to denote (q1, l, q2) ∈ δ. If q2 is unique,

we shall sometimes denote it as δ(q1, l). For a state q ∈ Q,
the set en(q)

def
= {l ∈ LA | ∃q′ ∈ Q. q

l→ q′} is the set of
enabled labels at state q.

Two service automata are composable if the input chan-
nels of the first automaton are the output channels of the
second one, and vice versa. Service automata use asynchronous
communications; the composition of two composable service
automata is a service automaton, the states of which are triples
consisting of a state of the first automaton, a state of the second
one, and an internal message bag representing the messages
that have been sent by one automaton but not yet been received
by the other.

In the literature, various criteria have been used to define
soundness of such compositions. For example, in [15] a state
of the composition is called a deadlock if no transition is
enabled from this state, and either some of the composed
automata is not in a final state or the message bag is not
empty. A composition is then considered sound if it contains
no deadlocks. In [15] the authors use the alternative soundness
notion of weak termination [16], which captures the idea that
the each partner should correctly terminate.

A service automaton A is called a strategy for service
automaton B if their composition is sound w.r.t. a chosen

2

soundness notion. The set of strategies for automaton B is
denoted by Strat(B). Note that A ∈ Strat(B) exactly when
B ∈ Strat(A).

B. Operating Guidelines

The operating guideline for a service automaton C is a
finite structure characterizing all service automata that can
soundly cooperate with C. That is, the operating guideline is
a finite representation of Strat(C). The test for this is phrased
in terms of service matching, i.e., service automaton A can
cooperate correctly with C if and only if A can be matched
with the operating guideline of C.

Given service automaton A = (QA, I, δA, q0A,ΩA), let
AtomsA

def
= LA∪{final} be the set of atomic propositions of A,

and let 2AtomsA be the set of truth assignments over AtomsA.
Let FormsA be the set of negation-free Boolean formulas over
AtomsA. For ϕ ∈ FormsA, let SatA(ϕ) ⊆ 2AtomsA denote
the set of all truth assignments for which ϕ is true.

Definition 2 (Annotated Service Automaton): An
annotated service automaton is a pair (B,Φ), where
B = (Q, I, δ, q0, ∅) is a deterministic service automaton
without final states, and Φ is an annotation on states such that
Φ(q) ∈ FormsB for every q ∈ Q.

Definition 3 (Intrinsic Truth Assignment): Let qA ∈ QA.
The intrinsic truth assignment of qA is defined as:

βqA
def
=

{
en(qA) if qA 6∈ ΩA
en(qA) ∪ {final} otherwise.

Then, a state qA ∈ QA is termed to satisfy a Boolean
formula ϕ, denoted qA |= ϕ, if βqA ∈ SatA(ϕ).

The notion of service matching is first defined for service
automata, and then adapted to matching a service automaton
against an operating guideline.

Definition 4 (Complete Matching): Let
A = (QA, I, δA, q0A,ΩA) and B = (QB , I, δB , q0B ,ΩB) be
service automata over the same interface. A complete matching
between A and B is a binary relation R ⊆ QA × QB such
that (q0A, q0B) ∈ R, and for every (qA, qB) ∈ R we have:

(i) qA
τ→ q′A implies (q′A, qB) ∈ R;

(ii) qA
a→ q′A (for a 6= τ) implies qB

a→ q′B and (q′A, q
′
B) ∈ R

for some q′B ∈ QB .

Complete matching is thus a weak simulation relation when
B is deterministic (as will be the case below).

An operating guideline for a service is a description that
characterizes all services that can soundly cooperate with it.

Definition 5 (Operating Guideline): Let
A = (QA, I, δA, q0A,ΩA) be a service automaton. The anno-
tated service automaton (B,Φ) with B = (QB , I, δB , q0B , ∅)
is an operating guideline for A iff for every strategy C of A
there is a complete matching R between C and B such that
qC |= Φ(qB) whenever (qC , qB) ∈ R. In the latter case we say
that the service automaton C matches the operating guideline
(B,Φ).

Since τ ∈ AtomsB , the operating guideline allows through
Φ the matching of both deterministic and non-deterministic
service automata C. Note also that since Φ(qB) in effect
specifies en(qA) to be among certain subsets of en(qB), the
matching relation R is reminiscent of a bisimulation. This will
be exploited in section IV.

Depending on the chosen definition of soundness there are
different algorithms to extract the proper operating guideline
from a given service automaton. If soundness is chosen as
deadlock-freedom, it has been shown in [15] that every finite-
state service automaton A that has at least one strategy, has an
operating guideline (B,Φ) that can be constructed efficiently.
The underlying service automaton B is itself a strategy for A,
and is called its most permissive strategy.

C. Bisimulation Degree

Our notion of behavioural similarity between services is
defined as a bisimulation degree between service automata,
closely following the notion as developed by Sokolsky et
al [22].

For service automata A and B we assume given a discount
parameter p ∈ [0, 1] to promote immediate similarity against
delayed similarity, and a (symmetric) label similarity function
λA,B : LA ×LB → [0, 1] to account for the relative matching
of labels. To account for the relative matching of final states,
we define two state similarity functions:

θL(qA, qB)
def
=

{
1 if qA ∈ ΩA implies qB ∈ ΩB
pfin otherwise.

θR(qA, qB)
def
=

{
1 if qB ∈ ΩB implies qA ∈ ΩA
pfin otherwise.

where pfin ∈ [0, 1] is a discount parameter for final states. Our
results below assume further that 0 < p < 1 and pfin < 1, and
that λA,B(a, b) = 1 if and only if a = b.

Definition 6 (Bisimulation Degree): Let A =
(QA, I, δA, q0A,ΩA) and B = (QB , I, δB , q0B ,ΩB) be
service automata over the same interface. Bisimulation degree
is a function ξ : QA ×QB → [0, 1] defined as follows:

ξ(qA, qB)
def
= min(ξL(qA, qB), ξR(qB , qB))

ξL(qA, qB)
def
=


θL(qA, qB) if qA 6

a→ for all a ∈ LA

(1− p) · θL(qA, qB) + p · χL(qA, qB)
otherwise

ξR(qA, qB)
def
=


θR(qA, qB) if qB 6

b→ for all b ∈ LB

(1− p) · θR(qA, qB) + p · χR(qA, qB)
otherwise

χL(qA, qB)
def
= avg

qA
a→q′A

max
qB

b→q′B

λA,B(a, b) · ξ(q′A, q′B)

χR(qA, qB)
def
= avg

qB
b→q′B

max
qA

a→q′A
λA,B(a, b) · ξ(q′A, q′B)

where max , min and avg denote the maximum, minimum and
average functions over [0, 1], respectively (with the convention
that the maximum of the empty set is 0). The bisimulation
degree between A and B is defined as ξ(A,B)

def
= ξ(q0A, q0B).

3

(a) A (b) B1 (c) Bn

Fig. 2. The set {ξ(A,Bi) | i ≥ 1} does not have a maximum

Well-definedness of bisimulation degree follows from the
same arguments used to establish well-definedness of the
Sokolsky’s bisimulation [22]. The notion of bisimulation de-
gree is strongly connected to the standard notion of strong
bisimulation for labeled transition systems [20]. In fact, it
is easy to show that ξ(A,B) = 1 if and only if A and B
are strongly bisimilar. Moreover, since several soundness
properties are preserved by strong bisimulation (e.g. weak
termination and deadlock freedom), if ξ(A,B) = 1 then A
and B have the same set of strategies. Thus the intuition
is that bisimulation degree is a good candidate to measure
the behavioral similarity between two automata and their
corresponding sets of strategies.

III. SERVICE MATCHING WITH CORRECTION

In this section we give an overview of our approach to
service matching with correction. We shall henceforth assume
two enterprises, pA and pB , which own two private business
processes, represented by the service automata A and B,
respectively. If their composition is unsound, we are interested
in correcting A by returning to pA some other service automa-
ton A′ that can be composed soundly with B. However, there
can potentially be a huge number of such automata. It is natural
to require A′ to be as close as possible to the original service
automaton A, for two reasons: this solution would require
fewer changes on A in order to achieve its transformation
into A′, and more importantly, it would keep most of the initial
intention of the service modeled through A. Thus, the goal of
service matching with correction is to allow participant pA to
discover, among all strategies for B, the service automaton
most similar to A.

In this work we shall measure similarity behaviourally,
by means of bisimulation degree ξ, and shall denote with
Mξ(A,B) the strategy for B that is most similar to A.
The latter notion, however, is not always well-defined: For
some infinite sets of non-deterministic automata, bisimulation
degree ξ does not have a maximum. This is exemplified by the
automata in Figure 2, where ξ(A,Bn) = (1− p) + pn+λ(a,b)

n+1 .
We therefore aim to define Mξ(A,B) as the automaton A if
A ∈ Strat(B), i.e., if A and B can be composed soundly,
and otherwise as some automaton A′ such that ξ(A,A′′) ≤
ξ(A,A′) for any deterministic A′′ such that A′′ ∈ Strat(B).
In fact, it is easy to show that for every (possibly infinite)
set of deterministic automata, the bisimulation degree ξ with
respect to an input automata has a maximum.

We shall henceforth assume that soundness is defined as
deadlock freedom. We illustrate our approach on the example
from Figure 1. Service matching between A1 and B yields to
participant pA the original automaton A1, indicating that the
composition of the two automata is sound.

(a) A′2 (b) B1

Fig. 3. Confidential matching with correction

On the other hand, A2 cannot be soundly composed
with B, since A2 (i) requests an ID card without providing
the necessary fingerprints, thus leading the collaboration to a
deadlock, and (ii) never collects the delivered invoice. Assum-
ing that for a 6= b it holds that p = pfin = λA,B(a, b) = 0.5,
service matching yields the automaton A′2 shown in Figure 3a.
Intuitively, (i) the transition “noFingerprint” is replaced with
“fingerprint” and (ii) an additional step is added to the process:
the collection of the invoice. This process can be directly
accepted by pA and be used as the new enterprise work flow.
Otherwise, it can be the input to a refinement loop, where pA
uses A′2 as a blueprint to correct its own process, and reiterates
service matching.

In addition to the above, we want to compute Mξ(A,B)
without compromising the privacy of the participants. That is,
nothing more than what can be deduced from Mξ(A,B) is to
be leaked to the participants or any third party. For instance,
the participant pA should not be able to distinguish between the
participant pB owning the automaton of Figure 1a and the one
in Figure 3b. In fact, in both cases the most similar automaton
to A2 that can be soundly composed with the automaton of pB
is A′2.

To implement service matching with correction (i.e., com-
pute Mξ(A,B)) and preserve participant’s privacy, we use the
following strategy:

1) we assume that an algorithm extracts an operating guide-
line (C,Φ) that represents Strat(B),

2) we introduce a new measure, the weighted matching
µ(A,C,Φ) that measures “how much” an automaton A
matches an operating guideline (C,Φ),

3) we define an algorithm that computes µ and extracts a
correction automaton A′ for which we demonstrate that:

a) A′ matches the operating guideline (C,Φ) and is thus
a strategy for B,

b) ξ(A,A′) = µ(A,C,Φ), and that
c) no deterministic automaton matching the operating

guideline is more similar to A than A′, and
4) we develop an implementation of the algorithm for com-

puting A′ by means of SMC techniques.

IV. WEIGHTED SERVICE MATCHING

This section develops the notion of weighted matching,
which estimates the degree of matching of service automata
against operating guidelines. The intuition is that weighted
matching can be used to measure the similarity between an

4

automaton and the set of strategies for a partner. This is indeed
justified by Theorem 2, which demonstrates that the weighted
matching is exactly the maximum bisimulation degree between
the automaton and any deterministic strategy for the partner.

Let A be a service automaton and (B,Φ) be an oper-
ating guideline. Our formalization follows closely the one
from Section II-C. However, in the present case we have a
deterministic service automaton B without finals states, while
τ -transitions and acceptance are implicitly prescribed by Φ.
We shall therefore relativize similarity on truth assignments.

We shall again assume a discount parameter p, a label
similarity function λA,B and a final state discount pfin. For
a state qA ∈ QA, state qB ∈ QB and truth assignment
β ∈ SatA(Φ(qB)), we define the state similarity functions
as follows:

θ′L(qA, qB , β)
def
=

{
1 if qA ∈ ΩA implies final ∈ β
pfin otherwise.

θ′R(qA, qB , β)
def
=

{
1 if final ∈ β implies qA ∈ ΩA
pfin otherwise.

Notice that for the intrinsic truth assignment of qA from
Definition 3 we have θ′L(qA, qB , βqA) = θ′R(qA, qB , βqA) = 1.

Definition 7 (Weighted Matching): Let
A = (QA, I, δA, q0A,ΩA) be a service automaton and (B,Φ)
with B = (QB , I, δB , q0B , ∅) be an annotated service automa-
ton over the same interface. Weighted matching is a function
µ : QA ×QB → [0, 1] defined as follows:

µ(qA, qB)
def
= max
β∈SatA(Φ(qB))

min(µL(qA, qB , β), µR(qB , qB , β))

µL(qA, qB , β)
def
=


θ′L(qA, qB , β) if qA 6

a→ for all a ∈ LA

(1− p) · θ′L(qA, qB , β) + p · νL(qA, qB , β)
otherwise

µR(qA, qB , β)
def
=


θ′R(qA, qB , β) if τ 6∈ β and qB 6

b→ for all
b ∈ β \ {final}

(1− p) · θ′R(qA, qB , β) + p · νR(qA, qB , β)
otherwise

νL(qA, qB , β)
def
= avg
qA

a→q′A

max
b∈β\{final}

λA,B(a, b) · µ(q′A, q
′
B)

νR(qA, qB , β)
def
= avg
b∈β\{final}

max
qA

a→q′A
λA,B(a, b) · µ(q′A, q

′
B)

where in the last two clauses q′B is the state defined as:

q′B
def
=

{
qB if b = τ
δB(qB , b) otherwise.

As in [22], well-definedness of µ is established by showing
that weighted matching is the unique greatest fixed point of the
monotone transformer induced by the defining equations1. We
lift µ to service automata and operating guidelines by defining
µ(A,B,Φ)

def
= µ(q0A, q0B).

Theorem 1: A matches (B,Φ) iff µ(A,B,Φ) = 1.

We want to use the computation of the weighted matching
between an automaton A and an operating guideline (B,Φ)

1The proofs of the theorems are omitted here for space reasons, but are
available in http://www.csc.kth.se/∼robertog/pst2015.pdf.

to generate a correction automaton; this should be the most
bisimilar service automaton to A among all service automata
matching (B,Φ). To achieve this we need the notion of
synchronization automaton (or graph), adapted from [14].

Definition 8 (Synchronization Automaton): Let
A = (QA, I, δA, q0A,ΩA) be a service automaton and (B,Φ)
with B = (QB , I, δB , q0B , ∅) an annotated service automa-
ton over the same interface. The synchronization automaton
of A and (B,Φ) is the automaton A � (B,Φ) = (QA ×
QB , I

2, δ, (q0A, q0B)), where δ is defined so that (qA, qB)
(a,b)→

(q′A, q
′
B) if and only if qA

a→ q′A, and either b = τ and τ ∈ β
for some β ∈ SatA(Φ(qB)) and q′B = qB , or else qB

b→ q′B .

This automaton is essentially the playfield for the computa-
tion of µ(A,B,Φ), and serves as the starting point for the
extraction of a most bisimilar to A service automaton.

Definition 9 (Extracted Automaton): The automaton C ex-
tracted from the computation of µ(A,B,Φ) is constructed as
follows. For each pair of states (qA, qB) for which µ(qA, qB)
has been computed from the equations of Definition 7, record
a maximizing truth assignment βqA,qB ∈ SatA(Φ(qB)). Then,
starting from the synchronization automaton A� (B,Φ):

(i) complete the automaton by adding transitions

(qA, qB)
(τ,b)→ (qA, q

′
B) for every qA, qB and b such that

qA 6→ and qB
b→ q′B ;

(ii) replace all edge labels (a, b) by their respective second
component b ∈ LB ;

(iii) for every node (qA, qB), remove all outgoing edges la-
belled with a label not in βqA,qB \ {final}; and

(iv) equip the resulting automaton with a set of final states
defined as ΩC

def
= {(qA, qB) | final ∈ βqA,qB}.

We thus obtain a service automaton C
def
= (QA ×

QB , I, δC , (q0A, q0B),ΩC).

Theorem 2: Let A be a service automaton, (B,Φ) be an
operating guideline and C be the service automaton extracted
from the computation of µ(A,B,Φ) as defined in Definition 9.
Let qA, qB and qC be states of A, B and C, respectively. Then:

2.1 C matches (B,Φ)

2.2 qC = (qA, qB) implies ξ(qA, qC) ≥ µ(qA, qB)

2.3 qC = (q′A, qB) implies ξ(qA, qC) ≤ µ(qA, qB).

Moreover, if D is a deterministic service automaton that
matches (B,Φ) and qD is a state of D, then:

2.4 ξ(qA, qD) ≤ µ(qA, qB)

2.5 ξ(A,D) ≤ ξ(A,C)

Notice that together, 2.2 and 2.3 imply ξ(qA, (qA, qB)) =
µ(qA, qB). The next result is a direct consequence of The-
orem 2.

Corollary 1: Let A = (QA, I, δA, q0A,ΩA) be a service
automaton and (B,Φ) with B = (QB , I, δB , q0B , ∅) be an
annotated service automaton over the same interface. Then:

µ(A,B,Φ) ≥ maxD: D deterministic and matches (B,Φ) ξ(A,D)

5

V. PRIVACY PRESERVING SERVICE MATCHING

In this section we describe an implementation of weighted
service matching and correction (extraction of most similar
service automaton) on top of the SHAREMIND SMC plat-
form [1]. The platform implements the Arithmetic Black Box
(ABB) functionality [5] in the outsourced secure computation
style — any number of input parties can provide data to
a computation by secret-sharing it among three computing
parties. The computing parties execute protocols to perform
(certain) operations on secret-shared data, obtaining secret
sharings of results. The shares of the results are sent to the
parties that are supposed to learn the result of the computation.
The protocols of SHAREMIND [2] provide security against one
honest-but-curious party.

In our setting, one input party owns the automaton A,
while another owns the operating guideline (B,Φ). To com-
pute µ and the extracted automaton C, they secret-share the
descriptions of A and (B,Φ) among the computing parties in
a manner that facilitates the computations. After performing
the computations, the computing parties send the shares of the
description of C back to the first input party. In the following,
we let JvK denote that a value v is secret-shared among the
computing parties. The write-up JuK ⊗ JvK, where ⊗ is some
(arithmetic) operation, denotes the invocation of a protocol that
computes secret-shared u⊗ v from the shares of u and v.

Generally, SMC protocols do not attempt to hide the size
of the inputs. We also make no attempt to hide them, hence
we assume that |QA|, |QB |, |δA|, |δB | and |Φ| are public.
In principle, their size could be somewhat hidden by padding
them to some maximum size. We represent Φ as a mapping
from QB to subsets of 2AtomsB and leak

∑
qB∈QB

|Φ(qB)|,
as well as

∑
qB∈QB

∑
β∈Φ(qB) |β|.

To start the computation, first party secret-shares δA among
the parties, obtaining JδAK. Here we consider δA to be a
sequence of triples (qA, a, q

′
A) with qA, q

′
A ∈ QA and a ∈ I .

We identify QA with the set {0, . . . , |QA| − 1} and I with
the set {0, . . . , |I| − 1}. First party also secret-shares the
characteristic vector of ΩA.

The second party secret-shares the sequences δB , γ and γ′.
Here γ is a sequence of triples (qB , β, n), where qB ∈ QB ,
β ∈ Sat(Φ(qB)) (represented as a bit-vector of length |I|+ 1)
and n = |{(qB

b→ q′B | b ∈ β}|; and γ′ is a sequence of
quadruples (qB , β, b, q

′
B), where qB

b→ q′B , β ∈ Sat(Φ(qB)),
and b ∈ β. The sequences γ and γ′ have to be in the same
order wrt. their first two components.

Actually, both input parties secret-share more data about A
and (B,Φ). This additional data can in principle be computed
from the secret-shared sequences described above. But as it can
be computed from a single party’s data, it is more efficient if
that party computes it itself. We will elaborate below.

The label similarity function λA,B (represented as a se-
quence of length |I|2), and the discount parameters p and pfin

have also been secret-shared — these should be known by
both input parties, but the computing parties should not learn
them. The computing parties now initialize a |QA| · |QB |-
sized sequence JµK and iterate the transformer induced by
the equations in Def. 7. The number of iterations affects the

1) JΞ(qA, qB , a, b)K← Jλ(a, b)K · Jµ(qA, qB)K
2) Jν×R (qA, b, q

′
B)K← max

(qA,a,q
′
A
)∈JδaK

JΞK(q′A, q′B , a, b)

3) Jν#R (qA, qB
b→ q′B , β)K← Jν×R (qA, b, q

′
B)K

4) JνR(qA, qB , β)K← avg(b,q′
B
)Jν

#
R (qA, qB

b→ q′B , β)K
5) JνL(qA, qB , β)K← avg(a,q′

A
) max
(qB ,b,q

′
B
,β)∈Jγ′K

JΞK(q′A, q′B , a, b)

6) Compute JµX(qA, qB , β)K from JνX(. . .)K and Jθ′X(. . .)K
7) Jµ′(qA, qB , β)K← min(JµL(qA, qB , β)K, JµR(qA, qB , β)K)
8) Jµ(qA, qB)K← maxβJµ(qA, qB , β)K

Fig. 4. One iteration of computing JµK

running time and is thus public. In our implementation, it is
yet another parameter given to the computing parties; in this
sense our solution is similar to [22, Sec. 5.2]. Fig. 4 gives a
high-level overview of one iteration.

In Step 1, we multiply λ(a, b) and µ(qA, qB) for all
qA, qB , a, b. SHAREMIND’s protocol set allows us to compute
JΞK with O(|λ| + |µ|) workload, not with O(|λ| · |µ|). All
multiplications can be done in parallel.

In Step 2, we compute Jν×R K, where each element is a
maximum of several elements of JΞK. The computation is done
in parallel for all q′B and b; let us fix them while discussing
step 2. To compute Jν×R (qA)K in parallel for all qA ∈ QA, the
first party prepares an arithmetic circuit CA with (binary) max-
gates and (unary) identity gates. The circuit has |QA|·|I| inputs
and |QA| outputs; if the inputs are initialized with Ξ(q′A, a),
then the outputs will be ν×R (qA). The circuit must be oblivious
in the following sense: all wires connect gates on adjacent
layers only, and the depth of the circuit, and the number of
max- and identity-gates in each layer must depend only on
public values |QA|, |I| and |δA|. Only the connections between
each pair of adjacent layers may depend on δA. The first party
secret-shares their description (represented as vectors) among
the computing parties. In Step 2, this circuit is obliviously
evaluated by the computing parties. It is straightforward to
compute the maxima, if the inputs to each max-gate are
known. To transfer the outputs of one layer to inputs of the next
layer, the computing parties use the oblivious parallel reading
protocol described in [11]. For reading x values according to
private indices from an array of size y, this protocol has a
setup cost of O((x+y) log(x+y)) for the given indices, after
which each read requires O(x+y) communication in constant
number of rounds.

In Step 3, consider ν×R as a matrix with |QA| rows and
|QB | · |I| columns. We turn it to a matrix ν#

R with |QA| rows
and |γ′| columns, where each column of ν#

R is a copy of some
column of ν×R (but it is private, which one). We can again use
the oblivious parallel reading protocol [11] to obliviously read
the columns of Jν×R K; the indices are given in Jγ′K.

In Step 4, all |QA| rows of ν#
R are processed in parallel.

We have to compute the averages of the segments of a row
of length |γ′|. The lengths of these segments are given as
the third components of JγK. First we compute the sums of
these segments; this computation is described in Fig. 5, where
JvK is initialized with the third components of JγK, and JzK is
initialized with a row of Jν#

R K. The prefix sum and its inverse
involve only local operations at computing parties, hence they

6

Given: Vectors JvK and JzK of lengths m and
∑m
i=1 vi

Result: Vector JxK, where xi =
∑wi−1
j=wi−1

zi and wi =
∑i
j=1 vi

(i) JwK← prefixsum(JvK)
(ii) Jz′K← prefixsum(JzK)

(iii) Jx′K← obliviousRead(Jz′K; Jw1K, . . . , JwmK)
(iv) JxK← prefixsum−1(Jx′K)

Fig. 5. Oblivious computation of partial sums

do not figure into our cost analysis. The oblivious parallel
read selects the elements in positions w1, . . . , wm from Jz′K.
To obtain the averages, we pointwise divide [2, Alg. 9] the
elements of the vector JxK with the third components of JγK.

In Step 5, which is an analogue to Steps 2–4, we compute
JνLK, also using an oblivious maximum-finding circuit shared
by second party and a vector of length |QA| containing the
out-degrees of all nodes of A shared by the first party.

Step 6 is computed according to Def. 7. The values
of Jθ′L(qA, qB , β)K and Jθ′R(qA, qB , β)K have been computed
before the iterations from JΩK and JγK. Step 7 is straightfor-
ward. Step 8 consists of the application of another oblivious
maximum-finding circuit secret-shared by the second party.

The running time of a single iteration is asymptotically
dominated by the execution of oblivious maximum-finding
circuits, the size of which is linearithmic in the sizes of A
and (B,Φ), while their execution time is linear in their size
(with linearithmic preprocessing before starting the iterations).
A reasonable number of iterations can be computed from the
discount parameter pdetermining the speed of convergence.

Most of the values occurring in the computation are frac-
tions in [0, 1]. We represent them as fix-point numbers [3], as
SHAREMIND natively computes with integers only.

After computing JµK, we determine the extracted automa-
ton C (Def. 9). The set QA×QB of its vertices is public, and
the set of its edges can be seen as a subset of δ#

C = δA × δB
(with some components removed). During Step 8 of the last
iteration of computing JµK, we will also record JβqA,qB K for
all qA, qB (note that JΩCK is a part of it). We form Jδ#

C K and
augment its with an extra component JβqA,qB K (using oblivious
parallel read). For each element of δ#

C we now decide whether
it is an element of δC . We replace the other elements of Jδ#

C K
with nonsense data, randomly shuffle Jδ#

C K [12], and send the
shares of the resulting sequence to the first party.

We performed some preliminary studies of the running time
of our implementation, to see whether our approach is feasible
at all. We have executed all three computing parties on the
same computer — a Lenovo Thinkpad X240 with an Inter
Core i5-4300U CPU running at 1.9 GHz (with four cores) and
8GB memory, running Ubuntu 14.04. The computing parties
communicated with each other over the loopback interface.
The traffic volume between two parties always remained below
1Gbit/s. The network latency should not make a significant
difference in execution times, because our protocols are highly
parallelized. Hence the running times reported in Table I would
be similar to those of three computing parties running in
different machines, connected with high-bandwidth (1 Gbit/s)
channels; this is a highly feasible configuration. These times
are for the larger examples from [13]. For the examples we’ve

service |I| |QSA| |δSA| |QOG| |δOG| |Φ| tprep titer
Online Shop 16 222 531 153 331 735 1m09s 2m29s
Internal Order 9 14 18 512 2304 19172 4m42s 2m33s
Purchase Order 10 137 437 168 548 2074 1m29s 4m14s

TABLE I. RUNNING TIMES OF PRIVACY-PRESERVING SERVICE
MATCHING

considered, we give its name (from [13]), its size, characterized
by the number of labels, the number of vertices and edges
of the SA and the OG, and also the total size of satisfying
assignments in all vertices of OG:

∑
qB∈QB

|Sat(Φ(qB))|. We
report the time it took to run a single iteration of the algorithm
in Fig. 4; the necessary number of iterations for each task has
to be determined from its parameters, as we discussed above.
We also report the time it took to set up the data used in
the iterations. This time includes the computations of Jθ′LK
and Jθ′RK, as well as performing the set-up for oblivious reads
during the iterations. The time for extracting the automaton
C from the resulting JµK would be much smaller and is not
measured We can definitely say that the obtained running times
show the feasibility of our approach, we should be able to
privacy-preserving match realistically sized service automata
in a few hours.

VI. RELATED WORK

The need of enforcing soundness of interorganizational
business processes lead to the introduction of choreogra-
phy languages (e.g. WS-CDL [10], BPEL4Chor [6]). These
contract-oriented approaches (and the corresponding formal
methods like [15], [9]) are all top-down and require the manual
definition and public disclosure of a global process; they
cannot be used when a manual agreement phase is not an
option. There are no existing bottom-up mechanisms that can
check soundness of process composition while preserving the
participant’s privacy and confidentiality.

On the other hand, certain bottom-up mechanisms exist
to engineer interorganizational processes while preserving the
participant’s privacy. For example, our earlier work [7] en-
ables competitive partners to discover the possible executions
(traces) of their collaboration without leaking the private work-
flows. However, this result cannot be used to check soundness
of the process composition, since the mechanism is built on top
of the notion of language equivalence, which does not preserve
the widely adopted definitions of soundness.

We argue that if the goal is to enable correct collabora-
tion by checking soundness of interorganizational processes,
and these processes are to be kept secret, then a bottom-up
approach can not limit its answers to Boolean results: If the
soundness check fails, the participants must be guided how
to fix their local procedures to form a sound collaboration.
This requires some notion of process similarity to be taken
into account to suggest corrections. In this paper we adapted
to service automata the behavioral similarity introduced by
Sokolsky et al [22]. Without taking privacy into account,
Lohmann [14] proposed a mechanism to correct automata
based on a different notion of weighted matching between
the automata and operating guidelines, namely a structural
similarity measure inspired by “edit distances”, with the aim
of finding the least number of structural changes required
to obtain isomorphism between the input automaton and the
corrected one.

7

VII. CONCLUDING REMARKS

We presented a bottom-up mechanism to match business
processes and to suggest suitable corrections. Existing ap-
proaches that take into account secrecy of the input processes
are top-down and require to disclose the complete set of
strategies of the participants (by either publishing a public in-
terface [24] or by disclosing the complete operating guideline).
We go beyond these results, by only leaking one of the possible
strategies for the partner’s process.

The enabling result is the notion of weighted service match-
ing introduced in Section IV. On top of this notion we devise
an algorithm that constructs, from an operating guideline, the
matching automaton that is behaviorally most similar to the
input automaton. Differently from [14], our approach measures
behavioral similarity rather edit distance. We present and prove
the correctness of the extraction algorithm. The extraction
enables one of the participants to receive a suitable correction
without forcing them to disclose their internal processes.

We defined our notion of bisimulation degree by adapting
the work of Sokolsky et al [22] to service automata. This
allows us to build our mechanism for business processes
matching on top of an existing and established behavioral
similarity. The latter has been used in several applications,
including malware detection [22], merging of statecharts [19]
and model integration [4]. However, the adoption of this sim-
ilarity measure limits the result of Theorem 1 to deterministic
automata, since for certain infinite sets of non-deterministic
automata, bisimulation degree does not have a maximum. This
limitation can be avoided by adopting a different behavioral
similarity, for example by substituting in the definition of χL
(and χR) the average avg

qB
b→q′B

with avgb∈en(qB).

To achieve privacy, we implemented the algorithm in the
programming language SECREC, executing on the SHARE-
MIND platform for secure multiparty computation. As a result,
only the correction information is leaked to the first enterprise
and no more. Moreover, the SMC algorithm presented in
Section V can be executed on top of different Arithmetic Black
Boxes.

ACKNOWLEDGMENT

The authors are indebted to Karsten Wolf for useful discus-
sions in the early stages of this work. This work has been sup-
ported by the European Union Seventh Framework Programme
(FP7/2007-2013) under grant agreement no. 284731 “Usable
and Efficient Secure Multiparty Computation (UaESMC)”.

REFERENCES

[1] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A frame-
work for fast privacy-preserving computations. In Proceedings of
ESORICS’08, pages 192–206, 2008.

[2] Dan Bogdanov, Margus Niitsoo, Tomas Toft, and Jan Willemson. High-
performance secure multi-party computation for data mining applica-
tions. Int. J. Inf. Sec., 11(6):403–418, 2012.

[3] Octavian Catrina and Amitabh Saxena. Secure computation with
fixed-point numbers. In Proceedings of the Conference on Financial
Cryptography and Data Security, FC’10, volume 6052 of LNCS, pages
35–50. Springer, 2010.

[4] Marsha Chechik, Shiva Nejati, and Mehrdad Sabetzadeh. A
relationship-based approach to model integration. Innovations in Sys-
tems and Software Engineering, 8(1):3–18, 2012.

[5] Ivan Damgård and Jesper Buus Nielsen. Universally composable effi-
cient multiparty computation from threshold homomorphic encryption.
In Proceedings of CRYPTO’03, pages 247–264, 2003.

[6] Gero Decker, Oliver Kopp, Frank Leymann, and Mathias Weske.
Bpel4chor: Extending bpel for modeling choreographies. In Web
Services, 2007. ICWS 2007. IEEE International Conference on, pages
296–303. IEEE, 2007.

[7] Roberto Guanciale, Dilian Gurov, and Peeter Laud. Private intersection
of regular languages. In Privacy, Security and Trust (PST), 2014 Twelfth
Annual International Conference on, pages 112–120. IEEE, 2014.

[8] Michel Hack. Petri net language. Technical report, 1976.
[9] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty

asynchronous session types. ACM SIGPLAN Notices, 43(1):273–284,
2008.

[10] Nickolas Kavantzas, David Burdett, Gregory Ritzinger, Tony Fletcher,
Yves Lafon, and Charlton Barreto. Web services choreography descrip-
tion language version 1.0. W3C candidate recommendation, 9, 2005.

[11] Peeter Laud. Privacy-Preserving Minimum Spanning Trees through
Oblivious Parallel RAM for Secure Multiparty Computation. Cryp-
tology ePrint Archive, Report 2014/630, 2014. http://eprint.iacr.org/.

[12] Sven Laur, Jan Willemson, and Bingsheng Zhang. Round-Efficient
Oblivious Database Manipulation. In Proceedings of the 14th Inter-
national Conference on Information Security. ISC’11, volume 7001 of
LNCS, pages 262–277. Springer, 2011.

[13] Niels Lohmann. Correcting deadlocking service choreographies using
a simulation-based graph edit distance. In Proceedings of BPM 2008,
volume 5240 of Lecture Notes in Computer Science, pages 132–
147, 2008. Case studies available from http://service-technology.org/
publications/lohmann 2008 bpm/.

[14] Niels Lohmann. Correctness of services and their composition. PhD
thesis, Zugl.: Rostock, Univ., Diss. und Eindhoven, Techn. Univ., Diss.,
2010, 2010.

[15] Niels Lohmann, Peter Massuthe, and Karsten Wolf. Operating guide-
lines for finite-state services. In Proceedings of ICATPN’07, volume
4546 of Lecture Notes in Computer Science, pages 321–341. Springer,
2007.

[16] Peter Massuthe and Karsten Schmidt. Operating guidelines-an
automata-theoretic foundation for the service-oriented architecture. In
Quality Software, 2005.(QSIC 2005). Fifth International Conference on,
pages 452–457. IEEE, 2005.

[17] Peter Massuthe and Karsten Wolf. An algorithm for matching non-
deterministic services with operating guidelines. In Proceedings of
Dagstuhl Seminar on The Role of Business Processes in Service
Oriented Architectures, 2006.

[18] Robin Milner. Communicating and mobile systems: the pi calculus.
Cambridge university press, 1999.

[19] Shiva Nejati, Mehrdad Sabetzadeh, Marsha Chechik, Steve Easterbrook,
and Pamela Zave. Matching and merging of statecharts specifications.
In Proceedings of the 29th international conference on Software Engi-
neering, pages 54–64. IEEE Computer Society, 2007.

[20] Davide Sangiorgi. A theory of bisimulation for the π-calculus. Acta
informatica, 33(1):69–97, 1996.

[21] August-Wilhelm Scheer and Markus Nüttgens. ARIS architecture and
reference models for business process management. Springer, 2000.

[22] Oleg Sokolsky, Sampath Kannan, and Insup Lee. Simulation-based
graph similarity. In Proceedings of TACAS’06, volume 3920 of Lecture
Notes in Computer Science, pages 426–440, 2006.

[23] Christian Stahl, Peter Massuthe, and Jan Bretschneider. Deciding
substitutability of services with operating guidelines. volume 5460 of
LNCS, pages 172–191. Springer, 2009.

[24] Wil MP van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl,
and Karsten Wolf. Multiparty contracts: Agreeing and implementing
interorganizational processes. The Computer Journal, 53(1):90–106,
2010.

[25] Stephen A White. Introduction to BPMN. IBM Cooperation, 2, 2004.
[26] Karsten Wolf. Does my service have partners? In Transactions on Petri

Nets and Other Models of Concurrency II, pages 152–171. Springer,
2009.

8

