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SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ
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SplitKey deployment
• Client is implemented in a smartphone
• If u leaks, then the attacker still cannot brute-force PIN
• (a clone detection mechanism allows Server to reset the wrong PIN counter)

• Produces functionally interchangable RSA-PSS signatures
• The length of keys and signatures is double the usual
• Multi-primality of the modulus is not detected

• Smart-ID service based on SplitKey is running in Baltic states since 2016
• 6.1M population. 3.7M users. www.smart-id.com
• There are other, smaller deployments of SplitKey technology, too

The days of Splitkey are numbered
Must replace RSA with some postquantum-secure signature scheme

3 04.12.2025 Public
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Desiderata

• Two-party protocol
• “SplitKey-like properties”
• Not in today’s talk. Should not be too difficult

• Standardized
• At least interchangable with a standardized scheme

• Certifiable
• Can be meaningfully made to pass the tests created for single-party key

generation / signing

4 04.12.2025 Public



  

 

Dilithium / ML-DSA details
• q ∈ P, q = 223 − 213 + 1 = 213 · 3 · 11 · 31 + 1. Rq = Zq[XN + 1], N = 256
• Think of Zq as {−⌊q2⌋,−⌊

q
2⌋+ 1, . . . ,−1,0,1, . . . , ⌊q2⌋}

• I.e. each element of Zq has size between 0 and ⌊ q2⌋
• α = (q− 1)/44 or α = (q− 1)/16

• “Size” generalizes coefficient- and
component-wise to polynomials
and tuples. Denote ∥p∥∞, ∥p∥∞
• Sη := {p ∈ Rq | ∥p∥∞ ≤ η}
• Bτ ⊂ S1; elements of Bτ have
exactly τ non-zero coefficients

Let x′ = (x+ α
2 − 1) mod q

(i.e. x′ ∈ {0, . . . ,q− 1})

xH :=

{
⌊x′/α⌋, x′ ̸= q− 1
0, x′ = q− 1

xL := x− α · xH (mod± q)
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Simplified Dilithium / ML-DSA

Signing
• y←$ Sℓ

γ1−1
• w← A · y
• c← H(M,wH) ∈ Bτ

• z← y + c · s1
• x← wL − c · s2
• if ∥z∥∞ ≥ γ1 − β, restart
• if ∥x∥∞ ≥ γ2 − β, restart
• return (z,c)

Key generation
• A←$ Rk×ℓ

q s1 ←$ Sℓ
η s2 ←$ Skη

• t← A · s1 + s2
• pk = (A, t) sk = (s1,s2)

Verification
• w′ ← A · z− c · t Note that w′ = x
• Check if ∥z∥∞ < γ1 − β and c = H(M,w′H)

(The decomposition parameter α is 2γ2)
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Parameter sizes
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Secure multiparty computation
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Public and private values

Inputs
• Some inputs from Ii may be public
• It’s OK if anyone learns them
• Think each of mi1, . . . ,mik including

such input
• Other inputs from Ii may be private
• Think a part of mi1, . . . ,mik being a

secret sharing of that input
• Ii computes that sharing

Outputs
• Also public or private
• Rj reconstructs its private output(s)

Computation
• C1, . . . ,Ck run a protocol:
• “shares of inputs”→ “shares of

outputs”
• no leaks to a single Ci

– (or a small set of them)
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C1, . . . ,Ck as a secure virtual machine

• Think that there’s some program computing y1, . . . ,ym from x1, . . . , xn
• A sequence of three-address operations. . . e.g. a1 ← mul a2 a3

– . . . where all addresses are public
• For each possible operation, there is a protocol for C1, . . . ,Ck:
• “shares of inputs” −→ “shares of the output”

• Predetermined addresses for inputs and outputs of the computation

• Program may branch on public values

• a1 ← declassify a2 is an available operation
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Additive secret sharing

• A modulus q ∈ Z has been fixed
• The values are elements of Zq
• {0,1, . . . ,q− 1}, with arithmetic modulo q

• Sharing v ∈ Zq as r: pick random r1, . . . , rk−1 ∈ Zq, let rk = v −
∑k−1

i=1 ri
• Recovery of v from r: compute v← r1 + · · ·+ rk
• . . . modulo q

• Let JvK denote “v that is held shared among C1, . . . ,Ck”
• Let JvKi denote the share held by Ci
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Linear computations

• Given shared values JxK, JyK, computing parties can compute:
• Jx+ yK, Jx− yK
• Jc · xK for some constant c ∈ Zq

• These can be computed without the computing parties talking to each
other
• Computing party does the operations locally, on its share(s)

• Can also locally create JcK for a constant c ∈ Zq
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Multiplication as a non-linear computation
• Have JxK, JyK. Want JzK, where z = xy (mod q)
• Suppose computing parties have obtained JaK, JbK, JcK, such that
• a,b ∈ Zq are generated uniformly randomly. c = ab
• JaK, JbK, JcK have not been used anywhere in the computation

Protocol
• Compute JαK = JxK− JaK and JβK = JyK− JbK
• Declassify α and β. (This is

privacy-preserving)
• Compute JzK← α · JyK + β · JaK + JcK

Creating JaK, JbK, JcK
• An offline protocol, or
• a separate “Correlated

Randomness Provider”
(CRP) party
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A typical pattern of MPC protocols

1. Compute some linear combinations of shared values
• with constants that all computing parties know

2. Declassify some values
• These become constants that all computing parties know
• Make sure that declassification is privacy-preserving

– E.g. they have been masked with randomness not used elsewhere

3. GOTO 1
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Passive vs. active corruptions

• An (external) adversary may “corrupt” the parties
• The protocol is secure as long as not too many parties are corrupted

• A passively corrupted party follows the protocol, but reports all it sees to
the adversary
• An actively corrupted party also gets from the adversary the messages it

sends to other parties
• There are surely contexts where passively secure MPC makes sense
• Threshold computation of signatures is not one of these contexts
• We’ll come back to it later
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Easy and hard parts of signing under MPC

Signing
• y←$ Sℓ

γ1−1
• w← A · y
• c← H(M,wH) ∈ Bτ

• z← y + c · s1
• x′ ← wL − c · s2
• if ∥z∥∞≥ γ1 − β, restart
• if ∥x′∥∞≥ γ2 − β, restart
• return (z,c)

Set-up
• Additive secret sharing modulo q
• wH is declassified. c computed in clear

How?
• Green — linear computations
• Blue — we know how to do
• Elements of y are between −2γ1−1 and 2γ1−1 − 1

– Can generate random shared bits modulo q
• Red — complicated
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Intro to high bits: bit decomposition

Task
Given JvK (modulo q), find
Jv0K, . . . , Jvn−1K (2n > q), such that:
• v0, . . . ,vn−1 ∈ {0,1}
• ∑n−1

i=0 2ivi = v

Correlated randomness
JrK, Jr0K, . . . , Jrn−1K
• r ∈ Zq is random; rest is like v-s

Protocol
• Compute y← declassify(JvK− JrK)
• Execute bitwise addition circuit:

Jrn−1K · · · Jr1K Jr0K
yn−1 · · · y1 y0

Jvn−1K · · · Jv1K Jv0K

Result∑n−1
i=0 2ivi ∈ {v,v + q}
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More general intro: characteristic vectors

• The characteristic vector of v ∈ {0,1, . . . ,U− 1} is (0, . . . ,0︸ ︷︷ ︸
v times

,1, 0, . . . ,0︸ ︷︷ ︸
(U−v−1) times

)

• Sometimes we represent a private v as Jv0K, . . . , JvU−1K
• Only if U is not too large

• This linearizes all functions f : {0,1, . . . ,U− 1} → Y:

Jf(v)K =
U−1∑
i=0

f(i) · JviK
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Computing the characteristic vector
Task
Given JvK (modulo q), find
Jv0K, . . . , Jvq−1K, such that:
• v0, . . . ,vq−1 is the C.V. of v
(Note that length of vector equals
sharing modulus)

Correlated randomness
JrK, Jr0K, . . . , Jrq−1K
• r ∈ Zq is random; rest is the C.V. of r

Protocol
• Compute y← declassify(JvK− JrK)
• Rotate r, so it becomes v:

JviK← Jr(i−y) mod qK for all i

Moduli of sharing
JvK may be shared over a modulus
different from Jv0K, . . . , Jvq−1K
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Decomposition into digits

• Given (constants) (r0, r1, . . . , rn−1) ∈ Zn be such, that
∏
i ri ≥ 2q

• Denote Ri = r0 · r1 · · · ri−1. (And R0 = 1)
• Given JvK, compute Jd0K, . . . , Jdn−1K, such that
• 0 ≤ di < ri
• ∑n−1

i=0 Ri · di ∈ {v,v + q}
• Actually, instead of JdiK output its C.V. JbiK

• Protocol: very similar to bit decomposition
• Correlated randomness: shares of r ←$ Zq and C.V.-s of r’s digits
• Addition circuit is similar; C.V.-s help to compute the carries
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Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK
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Limited range zero check

Task
• Given JvK (modulo q) with v ≤ B
• Compute JbK, b = [v = 0]

Denote a = ⌊q/B⌋

Correlated randomness
• JrK, JtK, r ←$ Zq
• t is C.V. of ⌊r/a⌋
• . . . of length B

Protocol
• y← declassify(JrK + a · JvK)
• Output Jt⌊y/a⌋K

Correctness
Must get ⌊ ra⌋ = ⌊

y
a⌋ iff v = 0

• ⌊ya⌋ = ⌊
r+av
a ⌋ = ⌊

r
a⌋+ v

• But if r + av ≥ q then y ≤ r − a and
⌊ ya⌋ ≤ ⌊

r
a⌋ − 1
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Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 ⊥
1 0 0 ⊥
1 0 1 0
1 1 0 0
1 1 1 1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c
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• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing overflow of JwK (small sharing
modulus r)

• Let JuK0 ← JwK0 and JuK1 ← JvK1
• Think of JuK being shared modulo q, where q ≥ 2r − 1
• Let JvK be the C.V. of JuK
• Compute JcK←

∑q−1
i=r JviK

• (The next algorithm also needs JbK← Jvr−1K)
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Computing overflow of JwK

• Fix a radix basis (r0, . . . , rn−1), s.t. Rn > q
• Also fix moduli q0, . . . ,qn−1, s.t. qi ≥ 2ri − 1
• Party 0 splits JwK0 to digits Jv0K0, . . . , Jvn−1K0
• Party 1 splits JwK1 + (Rn − q) to digits Jv0K1, . . . , Jvn−1K1
• Compute overflow bits JbiK, JciK for JviK. Result is

cn−1 ∨ (cn−2 ∧ bn−1) ∨ (cn−3 ∧ bn−2 ∧ bn−1) ∨ · · · ∨ (c0 ∧ b1 ∧ · · · ∧ bn−1)

• This can be privately computed as follows. . .
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Computing that boolean formula

• cn−1 ∨ (cn−2 ∧ bn−1) ∨ (cn−3 ∧ bn−2 ∧ bn−1) ∨ · · · ∨ (c0 ∧ b1 ∧ · · · ∧ bn−1)
• Note that bi ∧ ci = false for all i
• Hence at most one disjunct is true

• JbiK, JciK are additively shared. We do not have “∧” and “∨”.
• Define weights: γi ← 2i. β0 ← 0. βi ← 2i−1

• Compute JSK←
∑n−1

i=0 γi · JciK +
∑n−1

i=0 βi · JbiK
• Let the sharing modulus be ≥ 2n. Then the computation does not overflow

• JSK ≥ 2n−1 iff the boolean formula is true
• Use the C.V. of JSK to find out
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Security against active adversaries

• How does one party verify that the other party is following the protocol?
• “Active security”: a deviation will be caught
• A wrong answer will be impossible
• leaks due to deviation cannot happen

• “Active privacy”: Nothing leaks to the deviating party
• . . . until the result has been opened

– the amount of “wrongness” in the result may give information to the malicious party
• The (sub-)protocols we’ve seen so far only provide security against

passive adversaries
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BeDOZa-style MACs

• Let the sharing be over a field Zq
• Pi has a private MAC key ∆i ∈ Zq
• The sharing ⟪x⟫ of x ∈ Zq consists of
• JxK (as in passive case)
• JJxK0 ·∆1K and JJxK1 ·∆0K (the “MAC”-s)

• Whenever Pi sends some JyKi to Pj, it also sends JJyKi ·∆jKi

• Suppose Pi wants to send some JyK′i instead. Pi knows d = JyK′i − JyKi
• In order to pass, Pi has to change the MAC share by ∆j · d
• If Pi is successful, then ∆j can be obtained from his knowledge
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BeDOZa style MACs (cont.)

• Cheating against Pi is at least as hard as guessing a random element of Zq
• How hard is this? Depends on q
• If q is small, then we just use more ∆-s
• Instead of ∆i, have ∆i,1, . . . ,∆i,k, s.t. qk is sufficiently large

• If several different q-s are used in the protocol, then have different ∆-s
for each of them
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MACs in computations

• MACs are linear. Linear operations are still local
• Correlated randomness includes MACs
• If some Pi needs to enter a new value v into the computation:
• Correlated randomness includes a random ⟪r⟫ (with all the MACs)
• Open r to Pi
• Pi sends δ = v − r to everybody
• Take ⟪v⟫← ⟪r⟫+ δ
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Communication complexity of MACs

• MAC shares are included in correlated randomness. This gets bigger
• MAC shares are communicated in the online phase
• In general, many values are sent in each round. Each has accompanying MAC

share(s)
• But the receiver already knows, what he is supposed to receive
• Do not send the shares themselves. Send their hash
• I.e. The online communication complexity is minimal
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MACs for multiplications and high bits

• Correlated randomness also gets MACs
• The operations in the title, together with correlated randomness, are

“linear” operations
• Other “linear” operations:
• Characteristic vector
• equality check
• Generation of random bits
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MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

Active security against one party only

• Rejection check is actively secure against phone, passively secure against
server
• It is actively private against server

• If checks pass, then the signature will be revealed to phone only
• Phone verifies the signature. If bad, then server has cheated

• Server’s best strategy to learn something: follow the protocol
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Source of correlated randomness?
• This randomness could be generated ahead-of-time
• There are protocols for certain kinds of correlated randomness
• These protocols are (more) expensive

• We just add an extra party
• Randomness going to one of the parties (Phone) can be expanded from a

single random seed
• We keep that extra party close to the other party (Server)

– But under independent control
• In a 3-party protocol (P and S and CRP), we can handle one malicious

party
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Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO
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Discussion
• Cozzo & Smart [IMACC 2019]: should compute H(µ,wH) under MPC
• Barthe et al. [EC 2018]: introduce a hardness assumption to open wH

• Problem occurs also in hardware security
• Migliore et al. [ACNS 2019] ignore it
• Coron et al. [TCHES 2023(4)] [TCHES 2024(4)] and Azouaoui et al. [TCHES

2023(4)] recognize it
– “Future work”, “need a hardness assumption”, “conjecture that not a problem”

• Bienstock et al. [ePrint 2025/1163] modify Dilithium, such that security of
opening wH follows from MLWE assumption

• We modify Bienstock et al.’s argument, use MLWR on unmodified Dilithium
• Hopefully the argument can be improved. See [ePrint 2025/675]
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Benchmarking set-up

Phone Server

CRP

Key generation protocolSigning protocol

random seed correlated
randomness

share of
private key

share of
private key

public key public key

µ

σ σ
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Network traffic

Key generation: traffic volume
ML-DSA- P↔S CRP→S

-44 920.52 KiB 1.42 MiB
-65 1760.22 KiB 2.66 MiB
-87 3704.24 KiB 4.44 MiB

Key generation: num. of rounds
3

Signing attempt: traffic volume
ML-DSA- P↔S CRP→S

-44 186.72 KiB 55.05 MiB
-65 244.86 KiB 71.23 MiB
-87 328.50 KiB 95.95 MiB

Signing attempt: num. of rounds
14
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Time to create a signature (mean)
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Time to create a signature (median)
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Time to create a signature (3rd quartile)
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Conclusion

• We obtain our desiderata (two-party, interchangable with a standardized
scheme, passes known answer tests)
• The online complexity is good enough
• The setting with an extra CRP may be challenging wrt. certification
• But hopefully can be set up and presented in an approvable manner

• The amount of correlated randomness is a bit too high
• But probably not show-stoppingly high
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