
  

 

Trilithium: an efficient
two-party ML-DSA protocol

Peeter Laud
with Antonín Dufka, Semjon Kravtšenko, Nikita Snetkov

1 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey — server-supported RSA signatures
pk = (n1n2,e) ni = piqi di · e ≡ 1 (mod φ(ni))
d′1 + d′′1 ≡ d1 (mod φ(n1)) u = Enc(PIN,d′1)

Client
u, n1, n2

Server
d′′1, d2, n1, n2

M0

PIN
d′1 M← pad(M0) s1 ← Md′1 (mod n1)

σ ← CRTn1,n2(s1 ·Md′′1 ,Md2)
σ

if Ver(pk,M0, σ)σ

2 04.12.2025 Public



  

 

SplitKey deployment
• Client is implemented in a smartphone
• If u leaks, then the attacker still cannot brute-force PIN
• (a clone detection mechanism allows Server to reset the wrong PIN counter)

• Produces functionally interchangable RSA-PSS signatures
• The length of keys and signatures is double the usual
• Multi-primality of the modulus is not detected

• Smart-ID service based on SplitKey is running in Baltic states since 2016
• 6.1M population. 3.7M users. www.smart-id.com
• There are other, smaller deployments of SplitKey technology, too

The days of Splitkey are numbered
Must replace RSA with some postquantum-secure signature scheme

3 04.12.2025 Public

https://www.smart-id.com


  

 

SplitKey deployment
• Client is implemented in a smartphone
• If u leaks, then the attacker still cannot brute-force PIN
• (a clone detection mechanism allows Server to reset the wrong PIN counter)

• Produces functionally interchangable RSA-PSS signatures
• The length of keys and signatures is double the usual
• Multi-primality of the modulus is not detected

• Smart-ID service based on SplitKey is running in Baltic states since 2016
• 6.1M population. 3.7M users. www.smart-id.com
• There are other, smaller deployments of SplitKey technology, too

The days of Splitkey are numbered
Must replace RSA with some postquantum-secure signature scheme

3 04.12.2025 Public

https://www.smart-id.com


  

 

Desiderata

• Two-party protocol
• “SplitKey-like properties”
• Not in today’s talk. Should not be too difficult

• Standardized
• At least interchangable with a standardized scheme

• Certifiable
• Can be meaningfully made to pass the tests created for single-party key

generation / signing

4 04.12.2025 Public



  

 

Dilithium / ML-DSA details
• q ∈ P, q = 223 − 213 + 1 = 213 · 3 · 11 · 31 + 1. Rq = Zq[XN + 1], N = 256
• Think of Zq as {−⌊q2⌋,−⌊

q
2⌋+ 1, . . . ,−1,0,1, . . . , ⌊q2⌋}

• I.e. each element of Zq has size between 0 and ⌊ q2⌋
• α = (q− 1)/44 or α = (q− 1)/16

• “Size” generalizes coefficient- and
component-wise to polynomials
and tuples. Denote ∥p∥∞, ∥p∥∞
• Sη := {p ∈ Rq | ∥p∥∞ ≤ η}
• Bτ ⊂ S1; elements of Bτ have
exactly τ non-zero coefficients

Let x′ = (x+ α
2 − 1) mod q

(i.e. x′ ∈ {0, . . . ,q− 1})

xH :=

{
⌊x′/α⌋, x′ ̸= q− 1
0, x′ = q− 1

xL := x− α · xH (mod± q)

5 04.12.2025 Public



  

 

Simplified Dilithium / ML-DSA

Signing
• y←$ Sℓ

γ1−1
• w← A · y
• c← H(M,wH) ∈ Bτ

• z← y + c · s1
• x← wL − c · s2
• if ∥z∥∞ ≥ γ1 − β, restart
• if ∥x∥∞ ≥ γ2 − β, restart
• return (z,c)

Key generation
• A←$ Rk×ℓ

q s1 ←$ Sℓ
η s2 ←$ Skη

• t← A · s1 + s2
• pk = (A, t) sk = (s1,s2)

Verification
• w′ ← A · z− c · t Note that w′ = x
• Check if ∥z∥∞ < γ1 − β and c = H(M,w′H)

(The decomposition parameter α is 2γ2)
6 04.12.2025 Public



  

 

Parameter sizes

7 04.12.2025 Public



  

 

Secure multiparty computation

I1

I2

...

In

x1

x2

xn

C1

C2 Ck

m11

m12

m1k

m21

m22

m2k

mn1 mn2

mnk

R1

Rm

...Run
protocol

m′
11

m′
21

m′
k1

m′
1m

m′
2m m′

km

y1

ym

. . .

8 04.12.2025 Public



  

 

Secure multiparty computation

I1

I2

...

In

x1

x2

xn

C1

C2 Ck

m11

m12

m1k

m21

m22

m2k

mn1 mn2

mnk

R1

Rm

...Run
protocol

m′
11

m′
21

m′
k1

m′
1m

m′
2m m′

km

y1

ym

. . .

8 04.12.2025 Public



  

 

Secure multiparty computation

I1

I2

...

In

x1

x2

xn

C1

C2 Ck

m11

m12

m1k

m21

m22

m2k

mn1 mn2

mnk

R1

Rm

...Run
protocol

m′
11

m′
21

m′
k1

m′
1m

m′
2m m′

km

y1

ym

. . .

8 04.12.2025 Public



  

 

Secure multiparty computation

I1

I2

...

In

x1

x2

xn

C1

C2 Ck

m11

m12

m1k

m21

m22

m2k

mn1 mn2

mnk

R1

Rm

...Run
protocol

m′
11

m′
21

m′
k1

m′
1m

m′
2m m′

km

y1

ym

. . .

8 04.12.2025 Public



  

 

Secure multiparty computation

I1

I2

...

In

x1

x2

xn

C1

C2 Ck

m11

m12

m1k

m21

m22

m2k

mn1 mn2

mnk

R1

Rm

...Run
protocol

m′
11

m′
21

m′
k1

m′
1m

m′
2m m′

km

y1

ym

. . .

8 04.12.2025 Public



  

 

Public and private values

Inputs
• Some inputs from Ii may be public
• It’s OK if anyone learns them
• Think each of mi1, . . . ,mik including

such input
• Other inputs from Ii may be private
• Think a part of mi1, . . . ,mik being a

secret sharing of that input
• Ii computes that sharing

Outputs
• Also public or private
• Rj reconstructs its private output(s)

Computation
• C1, . . . ,Ck run a protocol:
• “shares of inputs”→ “shares of

outputs”
• no leaks to a single Ci

– (or a small set of them)

9 04.12.2025 Public



  

 

Public and private values

Inputs
• Some inputs from Ii may be public
• It’s OK if anyone learns them
• Think each of mi1, . . . ,mik including

such input
• Other inputs from Ii may be private
• Think a part of mi1, . . . ,mik being a

secret sharing of that input
• Ii computes that sharing

Outputs
• Also public or private
• Rj reconstructs its private output(s)

Computation
• C1, . . . ,Ck run a protocol:
• “shares of inputs”→ “shares of

outputs”
• no leaks to a single Ci

– (or a small set of them)

9 04.12.2025 Public



  

 

Public and private values

Inputs
• Some inputs from Ii may be public
• It’s OK if anyone learns them
• Think each of mi1, . . . ,mik including

such input
• Other inputs from Ii may be private
• Think a part of mi1, . . . ,mik being a

secret sharing of that input
• Ii computes that sharing

Outputs
• Also public or private
• Rj reconstructs its private output(s)

Computation
• C1, . . . ,Ck run a protocol:
• “shares of inputs”→ “shares of

outputs”
• no leaks to a single Ci

– (or a small set of them)

9 04.12.2025 Public



  

 

C1, . . . ,Ck as a secure virtual machine

• Think that there’s some program computing y1, . . . ,ym from x1, . . . , xn
• A sequence of three-address operations. . . e.g. a1 ← mul a2 a3

– . . . where all addresses are public
• For each possible operation, there is a protocol for C1, . . . ,Ck:
• “shares of inputs” −→ “shares of the output”

• Predetermined addresses for inputs and outputs of the computation

• Program may branch on public values

• a1 ← declassify a2 is an available operation

10 04.12.2025 Public



  

 

C1, . . . ,Ck as a secure virtual machine

• Think that there’s some program computing y1, . . . ,ym from x1, . . . , xn
• A sequence of three-address operations. . . e.g. a1 ← mul a2 a3

– . . . where all addresses are public
• For each possible operation, there is a protocol for C1, . . . ,Ck:
• “shares of inputs” −→ “shares of the output”

• Predetermined addresses for inputs and outputs of the computation
• Program may branch on public values
• a1 ← declassify a2 is an available operation

10 04.12.2025 Public



  

 

Additive secret sharing

• A modulus q ∈ Z has been fixed
• The values are elements of Zq
• {0,1, . . . ,q− 1}, with arithmetic modulo q

• Sharing v ∈ Zq as r: pick random r1, . . . , rk−1 ∈ Zq, let rk = v −
∑k−1

i=1 ri
• Recovery of v from r: compute v← r1 + · · ·+ rk
• . . . modulo q

• Let JvK denote “v that is held shared among C1, . . . ,Ck”
• Let JvKi denote the share held by Ci

11 04.12.2025 Public



  

 

Additive secret sharing

• A modulus q ∈ Z has been fixed
• The values are elements of Zq
• {0,1, . . . ,q− 1}, with arithmetic modulo q

• Sharing v ∈ Zq as r: pick random r1, . . . , rk−1 ∈ Zq, let rk = v −
∑k−1

i=1 ri
• Recovery of v from r: compute v← r1 + · · ·+ rk
• . . . modulo q

• Let JvK denote “v that is held shared among C1, . . . ,Ck”
• Let JvKi denote the share held by Ci

11 04.12.2025 Public



  

 

Linear computations

• Given shared values JxK, JyK, computing parties can compute:
• Jx+ yK, Jx− yK
• Jc · xK for some constant c ∈ Zq

• These can be computed without the computing parties talking to each
other
• Computing party does the operations locally, on its share(s)

• Can also locally create JcK for a constant c ∈ Zq

12 04.12.2025 Public



  

 

Multiplication as a non-linear computation
• Have JxK, JyK. Want JzK, where z = xy (mod q)
• Suppose computing parties have obtained JaK, JbK, JcK, such that
• a,b ∈ Zq are generated uniformly randomly. c = ab
• JaK, JbK, JcK have not been used anywhere in the computation

Protocol
• Compute JαK = JxK− JaK and JβK = JyK− JbK
• Declassify α and β. (This is

privacy-preserving)
• Compute JzK← α · JyK + β · JaK + JcK

Creating JaK, JbK, JcK
• An offline protocol, or
• a separate “Correlated

Randomness Provider”
(CRP) party

13 04.12.2025 Public



  

 

A typical pattern of MPC protocols

1. Compute some linear combinations of shared values
• with constants that all computing parties know

2. Declassify some values
• These become constants that all computing parties know
• Make sure that declassification is privacy-preserving

– E.g. they have been masked with randomness not used elsewhere

3. GOTO 1

14 04.12.2025 Public



  

 

Passive vs. active corruptions

• An (external) adversary may “corrupt” the parties
• The protocol is secure as long as not too many parties are corrupted

• A passively corrupted party follows the protocol, but reports all it sees to
the adversary
• An actively corrupted party also gets from the adversary the messages it

sends to other parties
• There are surely contexts where passively secure MPC makes sense
• Threshold computation of signatures is not one of these contexts
• We’ll come back to it later

15 04.12.2025 Public



  

 

Easy and hard parts of signing under MPC

Signing
• y←$ Sℓ

γ1−1
• w← A · y
• c← H(M,wH) ∈ Bτ

• z← y + c · s1
• x′ ← wL − c · s2
• if ∥z∥∞≥ γ1 − β, restart
• if ∥x′∥∞≥ γ2 − β, restart
• return (z,c)

Set-up
• Additive secret sharing modulo q
• wH is declassified. c computed in clear

How?
• Green — linear computations
• Blue — we know how to do
• Elements of y are between −2γ1−1 and 2γ1−1 − 1

– Can generate random shared bits modulo q
• Red — complicated

16 04.12.2025 Public



  

 

Easy and hard parts of signing under MPC

Signing
• y←$ Sℓ

γ1−1
• w← A · y
• c← H(M,wH) ∈ Bτ

• z← y + c · s1
• x′ ← wL − c · s2
• if ∥z∥∞≥ γ1 − β, restart
• if ∥x′∥∞≥ γ2 − β, restart
• return (z,c)

Set-up
• Additive secret sharing modulo q
• wH is declassified. c computed in clear

How?
• Green — linear computations
• Blue — we know how to do
• Elements of y are between −2γ1−1 and 2γ1−1 − 1

– Can generate random shared bits modulo q
• Red — complicated

16 04.12.2025 Public



  

 

Intro to high bits: bit decomposition

Task
Given JvK (modulo q), find
Jv0K, . . . , Jvn−1K (2n > q), such that:
• v0, . . . ,vn−1 ∈ {0,1}
• ∑n−1

i=0 2ivi = v

Correlated randomness
JrK, Jr0K, . . . , Jrn−1K
• r ∈ Zq is random; rest is like v-s

Protocol
• Compute y← declassify(JvK− JrK)
• Execute bitwise addition circuit:

Jrn−1K · · · Jr1K Jr0K
yn−1 · · · y1 y0

Jvn−1K · · · Jv1K Jv0K

Result∑n−1
i=0 2ivi ∈ {v,v + q}

17 04.12.2025 Public



  

 

Intro to high bits: bit decomposition

Task
Given JvK (modulo q), find
Jv0K, . . . , Jvn−1K (2n > q), such that:
• v0, . . . ,vn−1 ∈ {0,1}
• ∑n−1

i=0 2ivi = v

Correlated randomness
JrK, Jr0K, . . . , Jrn−1K
• r ∈ Zq is random; rest is like v-s

Protocol
• Compute y← declassify(JvK− JrK)
• Execute bitwise addition circuit:

Jrn−1K · · · Jr1K Jr0K
yn−1 · · · y1 y0

Jvn−1K · · · Jv1K Jv0K

Result∑n−1
i=0 2ivi ∈ {v,v + q}

17 04.12.2025 Public



  

 

Intro to high bits: bit decomposition

Task
Given JvK (modulo q), find
Jv0K, . . . , Jvn−1K (2n > q), such that:
• v0, . . . ,vn−1 ∈ {0,1}
• ∑n−1

i=0 2ivi = v

Correlated randomness
JrK, Jr0K, . . . , Jrn−1K
• r ∈ Zq is random; rest is like v-s

Protocol
• Compute y← declassify(JvK− JrK)
• Execute bitwise addition circuit:

Jrn−1K · · · Jr1K Jr0K
yn−1 · · · y1 y0

Jvn−1K · · · Jv1K Jv0K

Result∑n−1
i=0 2ivi ∈ {v,v + q}

17 04.12.2025 Public



  

 

Intro to high bits: bit decomposition

Task
Given JvK (modulo q), find
Jv0K, . . . , Jvn−1K (2n > q), such that:
• v0, . . . ,vn−1 ∈ {0,1}
• ∑n−1

i=0 2ivi = v

Correlated randomness
JrK, Jr0K, . . . , Jrn−1K
• r ∈ Zq is random; rest is like v-s

Protocol
• Compute y← declassify(JvK− JrK)
• Execute bitwise addition circuit:

Jrn−1K · · · Jr1K Jr0K
yn−1 · · · y1 y0

Jvn−1K · · · Jv1K Jv0K

Result∑n−1
i=0 2ivi ∈ {v,v + q}

17 04.12.2025 Public



  

 

More general intro: characteristic vectors

• The characteristic vector of v ∈ {0,1, . . . ,U− 1} is (0, . . . ,0︸ ︷︷ ︸
v times

,1, 0, . . . ,0︸ ︷︷ ︸
(U−v−1) times

)

• Sometimes we represent a private v as Jv0K, . . . , JvU−1K
• Only if U is not too large

• This linearizes all functions f : {0,1, . . . ,U− 1} → Y:

Jf(v)K =
U−1∑
i=0

f(i) · JviK

18 04.12.2025 Public



  

 

Computing the characteristic vector
Task
Given JvK (modulo q), find
Jv0K, . . . , Jvq−1K, such that:
• v0, . . . ,vq−1 is the C.V. of v
(Note that length of vector equals
sharing modulus)

Correlated randomness
JrK, Jr0K, . . . , Jrq−1K
• r ∈ Zq is random; rest is the C.V. of r

Protocol
• Compute y← declassify(JvK− JrK)
• Rotate r, so it becomes v:

JviK← Jr(i−y) mod qK for all i

Moduli of sharing
JvK may be shared over a modulus
different from Jv0K, . . . , Jvq−1K

19 04.12.2025 Public



  

 

Computing the characteristic vector
Task
Given JvK (modulo q), find
Jv0K, . . . , Jvq−1K, such that:
• v0, . . . ,vq−1 is the C.V. of v
(Note that length of vector equals
sharing modulus)

Correlated randomness
JrK, Jr0K, . . . , Jrq−1K
• r ∈ Zq is random; rest is the C.V. of r

Protocol
• Compute y← declassify(JvK− JrK)
• Rotate r, so it becomes v:

JviK← Jr(i−y) mod qK for all i

Moduli of sharing
JvK may be shared over a modulus
different from Jv0K, . . . , Jvq−1K

19 04.12.2025 Public



  

 

Computing the characteristic vector
Task
Given JvK (modulo q), find
Jv0K, . . . , Jvq−1K, such that:
• v0, . . . ,vq−1 is the C.V. of v
(Note that length of vector equals
sharing modulus)

Correlated randomness
JrK, Jr0K, . . . , Jrq−1K
• r ∈ Zq is random; rest is the C.V. of r

Protocol
• Compute y← declassify(JvK− JrK)
• Rotate r, so it becomes v:

JviK← Jr(i−y) mod qK for all i

Moduli of sharing
JvK may be shared over a modulus
different from Jv0K, . . . , Jvq−1K

19 04.12.2025 Public



  

 

Computing the characteristic vector
Task
Given JvK (modulo q), find
Jv0K, . . . , Jvq−1K, such that:
• v0, . . . ,vq−1 is the C.V. of v
(Note that length of vector equals
sharing modulus)

Correlated randomness
JrK, Jr0K, . . . , Jrq−1K
• r ∈ Zq is random; rest is the C.V. of r

Protocol
• Compute y← declassify(JvK− JrK)
• Rotate r, so it becomes v:

JviK← Jr(i−y) mod qK for all i

Moduli of sharing
JvK may be shared over a modulus
different from Jv0K, . . . , Jvq−1K

19 04.12.2025 Public



  

 

Decomposition into digits

• Given (constants) (r0, r1, . . . , rn−1) ∈ Zn be such, that
∏
i ri ≥ 2q

• Denote Ri = r0 · r1 · · · ri−1. (And R0 = 1)
• Given JvK, compute Jd0K, . . . , Jdn−1K, such that
• 0 ≤ di < ri
• ∑n−1

i=0 Ri · di ∈ {v,v + q}
• Actually, instead of JdiK output its C.V. JbiK

• Protocol: very similar to bit decomposition
• Correlated randomness: shares of r ←$ Zq and C.V.-s of r’s digits
• Addition circuit is similar; C.V.-s help to compute the carries

20 04.12.2025 Public



  

 

Decomposition into digits

• Given (constants) (r0, r1, . . . , rn−1) ∈ Zn be such, that
∏
i ri ≥ 2q

• Denote Ri = r0 · r1 · · · ri−1. (And R0 = 1)
• Given JvK, compute Jd0K, . . . , Jdn−1K, such that
• 0 ≤ di < ri
• ∑n−1

i=0 Ri · di ∈ {v,v + q}
• Actually, instead of JdiK output its C.V. JbiK
• Protocol: very similar to bit decomposition
• Correlated randomness: shares of r ←$ Zq and C.V.-s of r’s digits
• Addition circuit is similar; C.V.-s help to compute the carries

20 04.12.2025 Public



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)

return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise

(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))

return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s

− JCK

(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s− JCK
(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0

, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s− JCK
(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0, d4 > s

b0,0, . . . ,b3,0, (
∑

i>s b4,i) = 1
• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s− JCK
(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s− JCK
(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Computing high bits

Jw′KJwK

Jb2KJb3KJb4K Jb1K Jb0K
d0d1d2d3d4 r0r1r2r3r4

The trick
r0r1r2r3 = α

If d4 < s
(then D = w′ < q− 1)
return Jd4K

Otherwise
(D = w′ +q (or w′ = q−1))
return Jd4K− s− JCK
(subtracts q− 1 from D)

Condition C
d0, . . . ,d3 = 0, d4 > s
b0,0, . . . ,b3,0, (

∑
i>s b4,i) = 1

• Each is ∈ {0,1}
• Add up, check that = 5

21 04.12.2025 Public

Computing wH

w′ ← (w + α
2 − 1) (mod q)

wH =

{
⌊w′/α⌋, w′ < q− 1
0, w′ = q− 1

Denote s = (q− 1)/α
Denote D =

∑
i Ridi

The computation from JbiK is:
• Let f(x) := if x < s then x else x− s
• Compute JCK, evaluating −→ under J·K
• return Jf(d4)K− JCK



  

 

Limited range zero check

Task
• Given JvK (modulo q) with v ≤ B
• Compute JbK, b = [v = 0]

Denote a = ⌊q/B⌋

Correlated randomness
• JrK, JtK, r ←$ Zq
• t is C.V. of ⌊r/a⌋
• . . . of length B

Protocol
• y← declassify(JrK + a · JvK)
• Output Jt⌊y/a⌋K

Correctness
Must get ⌊ ra⌋ = ⌊

y
a⌋ iff v = 0

• ⌊ya⌋ = ⌊
r+av
a ⌋ = ⌊

r
a⌋+ v

• But if r + av ≥ q then y ≤ r − a and
⌊ ya⌋ ≤ ⌊

r
a⌋ − 1

22 04.12.2025 Public



  

 

Limited range zero check

Task
• Given JvK (modulo q) with v ≤ B
• Compute JbK, b = [v = 0]

Denote a = ⌊q/B⌋

Correlated randomness
• JrK, JtK, r ←$ Zq
• t is C.V. of ⌊r/a⌋
• . . . of length B

Protocol
• y← declassify(JrK + a · JvK)
• Output Jt⌊y/a⌋K

Correctness
Must get ⌊ ra⌋ = ⌊

y
a⌋ iff v = 0

• ⌊ya⌋ = ⌊
r+av
a ⌋ = ⌊

r
a⌋+ v

• But if r + av ≥ q then y ≤ r − a and
⌊ ya⌋ ≤ ⌊

r
a⌋ − 1

22 04.12.2025 Public



  

 

Limited range zero check

Task
• Given JvK (modulo q) with v ≤ B
• Compute JbK, b = [v = 0]

Denote a = ⌊q/B⌋

Correlated randomness
• JrK, JtK, r ←$ Zq
• t is C.V. of ⌊r/a⌋
• . . . of length B

Protocol
• y← declassify(JrK + a · JvK)
• Output Jt⌊y/a⌋K

Correctness
Must get ⌊ ra⌋ = ⌊

y
a⌋ iff v = 0

• ⌊ya⌋ = ⌊
r+av
a ⌋ = ⌊

r
a⌋+ v

• But if r + av ≥ q then y ≤ r − a and
⌊ ya⌋ ≤ ⌊

r
a⌋ − 1

22 04.12.2025 Public



  

 

Limited range zero check

Task
• Given JvK (modulo q) with v ≤ B
• Compute JbK, b = [v = 0]

Denote a = ⌊q/B⌋

Correlated randomness
• JrK, JtK, r ←$ Zq
• t is C.V. of ⌊r/a⌋
• . . . of length B

Protocol
• y← declassify(JrK + a · JvK)
• Output Jt⌊y/a⌋K

Correctness
Must get ⌊ ra⌋ = ⌊

y
a⌋ iff v = 0

• ⌊ya⌋ = ⌊
r+av
a ⌋ = ⌊

r
a⌋+ v

• But if r + av ≥ q then y ≤ r − a and
⌊ ya⌋ ≤ ⌊

r
a⌋ − 1

22 04.12.2025 Public



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 ⊥
1 0 0 ⊥
1 0 1 0
1 1 0 0
1 1 1 1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

⊥

1 0 0

⊥

1 0 1

0

1 1 0

0

1 1 1

1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

⊥

1 0 0

⊥

1 0 1

0

1 1 0

0

1 1 1

1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0

0

0 0 1

1

0 1 0

1

0 1 1

⊥

1 0 0

⊥

1 0 1

0

1 1 0

0

1 1 1

1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0 0
0 0 1

1

0 1 0

1

0 1 1

⊥

1 0 0

⊥

1 0 1

0

1 1 0

0

1 1 1

1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 ⊥
1 0 0 ⊥
1 0 1 0
1 1 0 0
1 1 1 1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing whether JwK < c

• Say that JwK overflows, if JwK0 + JwK1 ≥ q
• Let there be a protocol OF(JwK) 7→ JbK

• Let c be shared as JcK0 = 0, JcK1 = c
• Let
• JXK = OF(JwK)
• JYK = OF(JwK− JcK)
• JZK0 = 0, JZK1 ∈ {0,1}, JZK1 = 1 iff JwK1 ≥ c

• Output JRK = JYK− JXK + JZK

X Y Z R
0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 ⊥
1 0 0 ⊥
1 0 1 0
1 1 0 0
1 1 1 1

23 04.12.2025 Public

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c

First row in table
• 0 ≤ JwK0 + JwK1 < q
• 0 ≤ JwK0 + (JwK1 − c) mod q < q
• 0 ≤ JwK1 < c
• 0 ≤ JwK0 + JwK1 + q− c < q
• c− q ≤ JwK0 + JwK1 < c



  

 

Computing overflow of JwK (small sharing
modulus r)

• Let JuK0 ← JwK0 and JuK1 ← JvK1
• Think of JuK being shared modulo q, where q ≥ 2r − 1
• Let JvK be the C.V. of JuK
• Compute JcK←

∑q−1
i=r JviK

• (The next algorithm also needs JbK← Jvr−1K)

24 04.12.2025 Public



  

 

Computing overflow of JwK

• Fix a radix basis (r0, . . . , rn−1), s.t. Rn > q
• Also fix moduli q0, . . . ,qn−1, s.t. qi ≥ 2ri − 1
• Party 0 splits JwK0 to digits Jv0K0, . . . , Jvn−1K0
• Party 1 splits JwK1 + (Rn − q) to digits Jv0K1, . . . , Jvn−1K1
• Compute overflow bits JbiK, JciK for JviK. Result is

cn−1 ∨ (cn−2 ∧ bn−1) ∨ (cn−3 ∧ bn−2 ∧ bn−1) ∨ · · · ∨ (c0 ∧ b1 ∧ · · · ∧ bn−1)

• This can be privately computed as follows. . .

25 04.12.2025 Public



  

 

Computing that boolean formula

• cn−1 ∨ (cn−2 ∧ bn−1) ∨ (cn−3 ∧ bn−2 ∧ bn−1) ∨ · · · ∨ (c0 ∧ b1 ∧ · · · ∧ bn−1)
• Note that bi ∧ ci = false for all i
• Hence at most one disjunct is true

• JbiK, JciK are additively shared. We do not have “∧” and “∨”.
• Define weights: γi ← 2i. β0 ← 0. βi ← 2i−1

• Compute JSK←
∑n−1

i=0 γi · JciK +
∑n−1

i=0 βi · JbiK
• Let the sharing modulus be ≥ 2n. Then the computation does not overflow

• JSK ≥ 2n−1 iff the boolean formula is true
• Use the C.V. of JSK to find out

26 04.12.2025 Public



  

 

Security against active adversaries

• How does one party verify that the other party is following the protocol?
• “Active security”: a deviation will be caught
• A wrong answer will be impossible
• leaks due to deviation cannot happen

• “Active privacy”: Nothing leaks to the deviating party
• . . . until the result has been opened

– the amount of “wrongness” in the result may give information to the malicious party
• The (sub-)protocols we’ve seen so far only provide security against

passive adversaries

27 04.12.2025 Public



  

 

BeDOZa-style MACs

• Let the sharing be over a field Zq
• Pi has a private MAC key ∆i ∈ Zq
• The sharing ⟪x⟫ of x ∈ Zq consists of
• JxK (as in passive case)
• JJxK0 ·∆1K and JJxK1 ·∆0K (the “MAC”-s)

• Whenever Pi sends some JyKi to Pj, it also sends JJyKi ·∆jKi

• Suppose Pi wants to send some JyK′i instead. Pi knows d = JyK′i − JyKi
• In order to pass, Pi has to change the MAC share by ∆j · d
• If Pi is successful, then ∆j can be obtained from his knowledge

28 04.12.2025 Public



  

 

BeDOZa-style MACs

• Let the sharing be over a field Zq
• Pi has a private MAC key ∆i ∈ Zq
• The sharing ⟪x⟫ of x ∈ Zq consists of
• JxK (as in passive case)
• JJxK0 ·∆1K and JJxK1 ·∆0K (the “MAC”-s)

• Whenever Pi sends some JyKi to Pj, it also sends JJyKi ·∆jKi
• Suppose Pi wants to send some JyK′i instead. Pi knows d = JyK′i − JyKi
• In order to pass, Pi has to change the MAC share by ∆j · d
• If Pi is successful, then ∆j can be obtained from his knowledge

28 04.12.2025 Public



  

 

BeDOZa style MACs (cont.)

• Cheating against Pi is at least as hard as guessing a random element of Zq
• How hard is this? Depends on q
• If q is small, then we just use more ∆-s
• Instead of ∆i, have ∆i,1, . . . ,∆i,k, s.t. qk is sufficiently large

• If several different q-s are used in the protocol, then have different ∆-s
for each of them

29 04.12.2025 Public



  

 

MACs in computations

• MACs are linear. Linear operations are still local
• Correlated randomness includes MACs
• If some Pi needs to enter a new value v into the computation:
• Correlated randomness includes a random ⟪r⟫ (with all the MACs)
• Open r to Pi
• Pi sends δ = v − r to everybody
• Take ⟪v⟫← ⟪r⟫+ δ

30 04.12.2025 Public



  

 

Communication complexity of MACs

• MAC shares are included in correlated randomness. This gets bigger
• MAC shares are communicated in the online phase
• In general, many values are sent in each round. Each has accompanying MAC

share(s)
• But the receiver already knows, what he is supposed to receive
• Do not send the shares themselves. Send their hash
• I.e. The online communication complexity is minimal

31 04.12.2025 Public



  

 

MACs for multiplications and high bits

• Correlated randomness also gets MACs
• The operations in the title, together with correlated randomness, are

“linear” operations
• Other “linear” operations:
• Characteristic vector
• equality check
• Generation of random bits

32 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

MACs for less-than
• Operation: JwKi 7→ (Jv0Ki, Jv1Ki, . . . , Jvn−1Ki)
• JwKi has MAC for party P1−i. How do we get MACs on JvjKi?

• Consider the following correlated
randomness:
• s ∈ Zq, known to party 0 only
• J∆1 · sK (i.e. MAC on s)
• ⟪d0⟫, . . . , ⟪dn−1⟫, for digits
d0, . . . ,dn−1 of s

• P0 sends t = JwK0 − s to P1
• With MAC check

• P0 updates JwK0 := s
• P1 updates JwK1 := JwK1 + t

• Now we have MACs on P0’s shares of digits of JwK
• Same MACs work for P0’s shares of digits of JwK− JcK
• Other details of “less than” also support MACs on P0’s shares

33 04.12.2025 Public



  

 

Active security against one party only

• Rejection check is actively secure against phone, passively secure against
server
• It is actively private against server

• If checks pass, then the signature will be revealed to phone only
• Phone verifies the signature. If bad, then server has cheated

• Server’s best strategy to learn something: follow the protocol

34 04.12.2025 Public



  

 

Active security against one party only

• Rejection check is actively secure against phone, passively secure against
server
• It is actively private against server

• If checks pass, then the signature will be revealed to phone only
• Phone verifies the signature. If bad, then server has cheated
• Server’s best strategy to learn something: follow the protocol

34 04.12.2025 Public



  

 

Source of correlated randomness?
• This randomness could be generated ahead-of-time
• There are protocols for certain kinds of correlated randomness
• These protocols are (more) expensive

• We just add an extra party
• Randomness going to one of the parties (Phone) can be expanded from a

single random seed
• We keep that extra party close to the other party (Server)

– But under independent control
• In a 3-party protocol (P and S and CRP), we can handle one malicious

party

35 04.12.2025 Public



  

 

Source of correlated randomness?
• This randomness could be generated ahead-of-time
• There are protocols for certain kinds of correlated randomness
• These protocols are (more) expensive

• We just add an extra party
• Randomness going to one of the parties (Phone) can be expanded from a

single random seed
• We keep that extra party close to the other party (Server)

– But under independent control
• In a 3-party protocol (P and S and CRP), we can handle one malicious

party

35 04.12.2025 Public



  

 

Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO

36 04.12.2025 Public



  

 

Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO

36 04.12.2025 Public



  

 

Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO

36 04.12.2025 Public



  

 

Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO

36 04.12.2025 Public



  

 

Making wH public? “Dilithium identification
protocol”

sk = (s1,s2) pk = (A, t)α = wH = (A · y)H

y←$ Sℓ
γ1−1 β = c c←$ Bτ

γ = z = y + c · s1???γ = z = y + c · s1

no-abort Honest Verifier
Zero-Knowledge
Bob forgets that this
interaction took place at all

Alice checks:
• Would the value of y + c · s1 be achievable for all possible s̃1 ∈ Rn1?
• Is it the case that ∀s̃1 ∈ Sℓ

η ∃ỹ ∈ Sℓ
γ1−1, s.t. y + β · s1 = ỹ + c · s̃1?

• Would the value of wL − c · s2 be achievable for all possible s̃2 ∈ Rm1 ?
• I.e. aren’t these values “dangerously off to one side”?

YES

NO

36 04.12.2025 Public



  

 

Discussion
• Cozzo & Smart [IMACC 2019]: should compute H(µ,wH) under MPC
• Barthe et al. [EC 2018]: introduce a hardness assumption to open wH

• Problem occurs also in hardware security
• Migliore et al. [ACNS 2019] ignore it
• Coron et al. [TCHES 2023(4)] [TCHES 2024(4)] and Azouaoui et al. [TCHES

2023(4)] recognize it
– “Future work”, “need a hardness assumption”, “conjecture that not a problem”

• Bienstock et al. [ePrint 2025/1163] modify Dilithium, such that security of
opening wH follows from MLWE assumption

• We modify Bienstock et al.’s argument, use MLWR on unmodified Dilithium
• Hopefully the argument can be improved. See [ePrint 2025/675]

37 04.12.2025 Public

Azouaoui et al. [TCHES 2023(4)]



  

 

Discussion
• Cozzo & Smart [IMACC 2019]: should compute H(µ,wH) under MPC
• Barthe et al. [EC 2018]: introduce a hardness assumption to open wH

• Problem occurs also in hardware security
• Migliore et al. [ACNS 2019] ignore it
• Coron et al. [TCHES 2023(4)] [TCHES 2024(4)] and Azouaoui et al. [TCHES

2023(4)] recognize it
– “Future work”, “need a hardness assumption”, “conjecture that not a problem”

• Bienstock et al. [ePrint 2025/1163] modify Dilithium, such that security of
opening wH follows from MLWE assumption
• We modify Bienstock et al.’s argument, use MLWR on unmodified Dilithium
• Hopefully the argument can be improved. See [ePrint 2025/675]

37 04.12.2025 Public

Azouaoui et al. [TCHES 2023(4)]



  

 

Discussion
• Cozzo & Smart [IMACC 2019]: should compute H(µ,wH) under MPC
• Barthe et al. [EC 2018]: introduce a hardness assumption to open wH

• Problem occurs also in hardware security
• Migliore et al. [ACNS 2019] ignore it
• Coron et al. [TCHES 2023(4)] [TCHES 2024(4)] and Azouaoui et al. [TCHES

2023(4)] recognize it
– “Future work”, “need a hardness assumption”, “conjecture that not a problem”

• Bienstock et al. [ePrint 2025/1163] modify Dilithium, such that security of
opening wH follows from MLWE assumption
• We modify Bienstock et al.’s argument, use MLWR on unmodified Dilithium
• Hopefully the argument can be improved. See [ePrint 2025/675]

37 04.12.2025 Public

Azouaoui et al. [TCHES 2023(4)]



  

 

Benchmarking set-up

Phone Server

CRP

Key generation protocolSigning protocol

random seed correlated
randomness

share of
private key

share of
private key

public key public key

µ

σ σ

38 04.12.2025 Public



  

 

Network traffic

Key generation: traffic volume
ML-DSA- P↔S CRP→S

-44 920.52 KiB 1.42 MiB
-65 1760.22 KiB 2.66 MiB
-87 3704.24 KiB 4.44 MiB

Key generation: num. of rounds
3

Signing attempt: traffic volume
ML-DSA- P↔S CRP→S

-44 186.72 KiB 55.05 MiB
-65 244.86 KiB 71.23 MiB
-87 328.50 KiB 95.95 MiB

Signing attempt: num. of rounds
14

39 04.12.2025 Public



  

 

Network traffic

Key generation: traffic volume
ML-DSA- P↔S CRP→S

-44 920.52 KiB 1.42 MiB
-65 1760.22 KiB 2.66 MiB
-87 3704.24 KiB 4.44 MiB

Key generation: num. of rounds
3

Signing attempt: traffic volume
ML-DSA- P↔S CRP→S

-44 186.72 KiB 55.05 MiB
-65 244.86 KiB 71.23 MiB
-87 328.50 KiB 95.95 MiB

Signing attempt: num. of rounds
14

39 04.12.2025 Public



  

 

Time to create a signature (mean)

2 4 6 8 10
0

250

500

750

1000

1250

1500

1750

clie
nt-

se
rve

r t
ran

sm
iss

ion
 [K

iB]

2000

3000

4000

5000

6000

7000

8000

9000

10000

me
an

 tim
e [

ms
]

signing with parallel iterations
latency 0 ms
latency 30 ms
latency 100 ms

40 04.12.2025 Public



  

 

Time to create a signature (median)

2 4 6 8 10
0

250

500

750

1000

1250

1500

1750

clie
nt-

se
rve

r t
ran

sm
iss

ion
 [K

iB]

1000

2000

3000

4000

5000

6000

7000

me
dia

n t
im

e [
ms

]

signing with parallel iterations
latency 0 ms
latency 30 ms
latency 100 ms

41 04.12.2025 Public



  

 

Time to create a signature (3rd quartile)

2 4 6 8 10
0

250

500

750

1000

1250

1500

1750

clie
nt-

se
rve

r t
ran

sm
iss

ion
 [K

iB]

2000

4000

6000

8000

10000

12000

3rd
 qu

art
ile

 tim
e [

ms
]

signing with parallel iterations
latency 0 ms
latency 30 ms
latency 100 ms

42 04.12.2025 Public



  

 

Conclusion

• We obtain our desiderata (two-party, interchangable with a standardized
scheme, passes known answer tests)
• The online complexity is good enough
• The setting with an extra CRP may be challenging wrt. certification
• But hopefully can be set up and presented in an approvable manner

• The amount of correlated randomness is a bit too high
• But probably not show-stoppingly high

43 04.12.2025 Public


