
Bit Decomposition Protocols in Secure Multiparty Computation

Peeter Laud
Cybernetica AS
Tartu, Estonia
peeter@cyber.ee

Alisa Pankova
Cybernetica AS, STACC

Tartu, Estonia
alisa@cyber.ee

ABSTRACT

We present improved protocols for the conversion of secret-
shared bit-vectors into secret-shared integers and vice versa,
for the use as subroutines in secure multiparty computation
(SMC) protocols and for protocols verifying the adherence
of parties to prescribed SMC protocols. The protocols are
primarily designed for three-party computation with honest
majority. We evaluate our protocols as part of the Share-
mind three-party protocol set and see a general reduction of
verification overheads, thereby increasing the practicality of
covertly or actively secure Sharemind protocols.
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1 INTRODUCTION

Secure Multiparty Computation (SMC) allows a number of
mutually distrustful participants to perform computations
over the union of their data, such that no participant or
coalition (under a certain size) learns anything about other
parties’ data [22]. Presently, there exist a large number of
protocol sets and implementations differing from each other
in used cryptographic techniques, security guarantees offered
to different parties, symmetry of participant roles, communi-
cation and round complexity, relative complexity of different
operations with respect to each other, etc. See e.g. [31] for
an overview.

In this paper we focus on one kind of SMC protocols —
those based on secret sharing among a few (two or three)
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computing parties, who may receive the inputs of the com-
putation in secret-shared manner from a large number of
input parties and deliver the shares of results to any number
of result parties. A number of platforms are using this kind
of protocols, including ABY [19], Sharemind [7], SEPIA [9],
MEVAL [26], VIFF [13], MASCOT [24], etc. The sharing can
be either Shamir’s [43] or additive (the sum of the shares
in some ring equals the secret value), most recent work has
been on additive sharing. A platform may offer several rings
over which the secrets may be shared; different rings have
different associated performance profiles for the operations
with secrets. E.g. sharing over a ring with large characteris-
tic offers efficient arithmetic (addition and multiplication),
while sharing each bit separately (we call such sharing over
Z2 XOR-sharing in this paper) offers efficient comparisons.
Hence there is a need to convert secret-shared values be-
tween different rings. A complex protocol (e.g. floating-point
addition) may internally perform many such conversions.

To achieve security against stronger than passive adver-
saries, some verification mechanisms need to be built into
the SMC protocols. There are different kinds of mechanisms
available, discussed in Sec. 2 below. In this paper, we consider
mechanisms that are again based on secret sharing. Recently,
Laud et al. [30] have proposed an efficient method for imple-
menting the GMW compiler [22] that turns passively secure
protocols to actively secure ones by making the parties prove
in zero-knowledge that they have followed the protocol. Here
the proof consists of the party secret-sharing its private values
among other parties who will then repeat its computation as
a SMC protocol, with the proving party’s assistance. These
verification steps have their own performance profile, with e.g.
the depth of the computation being irrelevant. Here again the
verifying parties may need to convert between an additively
shared and XOR-shared version of prover’s private value.

In this paper we propose and discuss conversion protocols
between additively and XOR-shared integers (or: between
values shared as integers and values shared as bit-vectors),
both for private computation and for the verification of the
observance of the protocol. We discuss the performance of
these protocols in the context of Sharemind’s protocol set [7,
20, 27, 33], showing how they improve certain aspects of them,
particularly their communication costs. We also discuss these
protocols in the context of verifiable SMC, improving the
verification overheads reported in [30] for the protocols of
Sharemind. We note that the ideas discussed here have been
mentioned before in some form [19, 32], but have not been
followed through in the settings of this paper (discussed
further in Sec. 2).
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After reviewing related work in Sec. 2 we describe the
protocol set of Sharemind and its verification in Sec. 3 and
explain the parameters we strive to optimize. In Sec. 4 we
describe our protocols and in Sec. 5 provide an evaluation of
their benefits. We conclude in Sec. 6.

2 RELATED WORK

Conversion between integers and bit-vectors. For secret-
sharing based SMC protocol sets, where a private value is
normally stored as a secret-shared integer, one often wants to
obtain sharings of single bits of that value in order to perform
some relational operations — equality or inequality checks,
or oblivious choice. Such bit-decomposition, also wanted for
SMC protocol sets based on homomorphic encryption, has
received a fair amount of attention, starting from Algesheimer
et al. [1]. Work on more efficient protocols has continued over
the years [12, 40, 42, 44], sometimes in parallel to eliminating
the bit-decomposition step from certain protocols [37]. Bit
decomposition protocols have been proposed as subprotocols
for more complex private computations [10]. SMC proto-
cols and frameworks that use both homomorphic encryption
and garbled circuits typically need bit decomposition [8, 23].
Interestingly, ABY [19] does not have a bit-decomposition
protocol from additively to XOR-shared values, instead going
through garbled circuits.

The other direction — going from a vector of secret-shared
bits to an additively shared integer — has received much
less attention. This is likely because the bit-decomposition
operation does not change the ring over which the sharing
is done: each bit is just a shared integer with the value 0 or
1. In this case the backwards conversion is merely a trivial
linear combination. Converting a bit-vector to an integer is
meaningful only if sharings over different rings are involved.
This is the case for Sharemind [7] and for ABY [19], both
of which convert each bit separately to a shared integer and
then compute their linear combination. Demmler et al. [19]
passingly mention the idea we explore in Sec. 4, only to
immediately dismiss it and focus on converting single bits.

When verifying that a party has followed the protocol, the
direction of the computation does not matter [30]. Instead,
the proving party needs to show that a shared bit-vector is
equal to a shared integer. They propose to convert each bit
of the bit-vector to an integer and check that their linear
combination is equal to the shared integer.

Covert and actively secure multiparty computation based
on secret sharing. Actively secure SMC is a broad research
area and we cannot hope to give an overview of all of it in
this section. We therefore constrain ourselves to secret-shared
based SMC protocols and leave out garbled circuits. In all
of these approaches, the protocol is in some sense executed
many times, and the values coming from different executions
are compared to each other. The approaches differ on whether
the comparison is done (1) at the runtime or (2) after it, and
whether different executions are (a) similar to each other or
(b) not. The approaches also differ on whether they achieve

active or covert [2] security, and, in the former case, whether
a malicious party can be pinpointed.

The approach (1a) is present in the basic Shamir’s secret
sharing [43] based actively secure SMC [11]. It is also present
in the schemes of Furukawa, Lindell et al. [21, 35], where
redundancy is built into the sharing construction, and in the
scheme of Damg̊ard et al. [16] where messages are repeated.

The approach (1b) is perhaps most well-known, where the
messages are accompanied with some sort of MACs which are
also subjected to the computation and verified at each round.
SPDZ [15, 17, 18] is the best-known protocol following this
approach, but there are others, based e.g. on actively secure
oblivious transfer [36].

The approach (2a) can often be obtained from a protocol
following (1a), if the checks are moved to the end of the
protocol. Depending on the checked protocol, this may reduce
the security from active to covert. This approach may also
very cheaply turn a passively secure protocol into a covertly
secure one [14].

The post-execution verification that the party (or parties)
followed the protocol, possibly with assistance from these par-
ties, is the heart of approach (2b). This approach is followed
by Laud et al. [29, 30], where the local computations of a
party are repeated by the verifiers who have a secret-shared
copy of that party’s local state. It is also followed by Baum
et al. [3], where anyone with access to the transcript of the
protocol can check that the output is indeed correct.

3 PROTOCOLS OF SHAREMIND

In this section, we discuss in more details Sharemind SMC
platform [6]. We explain how its passively secure protocol set
has been extended to covertly and actively secure.

3.1 Passively secure protocols

The main protocol set of Sharemind is based on sharing
data among three computing parties, tolerating one passively
corrupted party (i.e an honest majority assumption). In other
words, no party in the three-party set is able to infer any
private information, as far as it does not form coalition with
one of the other two parties. Although two parties would
already be sufficient to hold a shared secret, assistance of the
third party allows to get much more efficient protocols.

Sharemind protocol set deploys both additive and XOR-
sharing, over finite rings Z2𝑚 and Z𝑚2 respectively. Additive
and XOR-sharing can be mixed in the same application, and
the protocols implementing transitions between Z2𝑚 and Z𝑚2
play a very important role. Sharemind derives its efficiency
from the great variety of protocols [7, 25, 27, 34] for integer,
fix- and floating point operations, as well as for shuffling the
arrays.

Sharemind has a tool for automatic compilation of lower-
level protocols from a specialized domain-specific language [32].
The protocols are presented as a clear description of how mes-
sages are computed and exchanged between parties. There
are over 100 such composable lower-level protocols, used as
building blocks for larger applications. During compilation,



the protocols undergo an intermediate format that represents
the local computation of each party as an arithmetic circuit.
These circuits in general consist of addition and multipli-
cation operations, defined over rings Z2𝑛 . One circuit may
be defined over several rings, so there are also transitions
between rings Z2𝑚 and Z2𝑛 . The circuits also contain bitwise
AND, OR, XOR operations, which are reduced to addition
and multiplication over Z2, introducing implicit transitions
between Z2𝑛 and Z𝑛2 .

A privacy-preserving application is described in a high-
level programming language (called SecreC) that is compiled
into bytecode [5]. It instructs the Sharemind virtual machine
(VM) to call the compiled lower-level protocols in certain
order with certain arguments. Combining the application
bytecode with the lower-level protocols that it uses, we get a
full description of local computation performed by each party
in that application.

3.2 Verifiable protocols

We now briefly repeat the results of [30], which describe
how passively secure Sharemind protocols can be extended
to covertly and actively secure. An important property of
Sharemind protocols is that, as far as no intermediate declas-
sifications take place, the main protocol set of Sharemind is
actively private [38], i.e. no party can infer any information
about the secrets of the other parties, even if it tampers with
the computation. Therefore, it suffices to verify the compu-
tation only before some value gets declassified, which often
happens in the end, when the shares of final outputs are
already available.

The main idea is to verify the computation of each party
separately. Hence, the local computation of a party should be
verified, and its description can be extracted from a Share-
mind application as described in Sec. 3.1. This approach
allows to identify the cheater. Moreover, it is more flexible
with respect to operations being verified, since the prover
party (𝑃) may give helpful hints to the other two parties
serving as verifiers (𝑉1 and 𝑉2), and these hints are easier to
verify than to compute.

The entire computation can be split into preprocessing,
execution, and verification phases. We now describe this
process step by step.

Preprocessing. The parties compute sufficient number of
precomputed tuples, i.e. random numbers that are correlated in
a certain way. They will be used only in the verification phase,
to verify a particular party’s computation. As a prover, each
party gets his own personal set of tuples. In particular, the
prover generates his own tuples himself, and then additively
shares them among the the two other parties, who will later
serve as verifiers. Correctness of these tuples is immediately
verified, and it is achieved by generating more tuples than
necessary and sacrificing some of them to verify the others.
Two main types of tuples are:

• The trusted multiplication triples are triples (𝑎, 𝑏, 𝑐)
from some ring Z2𝑚 (including𝑚 = 1), such that 𝑎 ·𝑏 = 𝑐.

• The trusted bits are values 𝑏 from some ring Z2𝑚 ,𝑚 > 1,
such that 𝑏 ∈ {0, 1}.

Execution. The parties execute a passively secure protocol
without any changes. To make further verification possible,
each party needs to get “committed” to its inputs and the
messages that it has sent or received. No cryptographic com-
mitment schemes are actually used, and all relevant values
are merely additively shared among the two other parties.

• Inputs: At the beginning of execution phase, each party
𝑃 shares its input 𝑥 as 𝑥 = 𝑥1 + 𝑥2 among the two other
parties 𝑉1 and 𝑉2.
• Randomness: Sharemind protocols are constructed in
such a way that each piece of randomness 𝑟 of 𝑃 is
also known either to 𝑉1 or 𝑉2, and it can be viewed as
being additively shared as 𝑟 = 𝑟 + 0 or 𝑟 = 0 + 𝑟 . The
randomness of 𝑃 and 𝑉𝑖 is only needed to hide data
from the third party 𝑉𝑗 , and choosing it in a bad way
does not give any benefits to 𝑃 .
• Messages: In three-party computation, each message 𝑚
that has been sent or received by 𝑃 is known at least to
one other party 𝑉1 or 𝑉2 that has been on the other side
of the communication. Any message𝑚 can be viewed as
being additively shared among the verifiers as𝑚 =𝑚+0
or 𝑚 = 0 +𝑚.

Verification. Treating each party as a prover 𝑃 , the two
other parties 𝑉1 and 𝑉2 repeat the computation of 𝑃 from
committed inputs, and see if they get committed outputs
in the end. They execute two-party computation, which is
assisted by 𝑃 . In verification setting, this task is much easier,
since 𝑃 already knows all the data that both verifiers have, and
may give them hints. It is sufficient for verifiers to compute
addition, multiplication, and conversion between Z2𝑛 and
Z𝑛2 , although there exist special, more efficient verification
methods for higher-level operations. These basic operations
can be computed by the verifiers as follows:

• All additions are computed locally, since all values are
additively shared.
• A multiplication 𝑧 = 𝑥 · 𝑦 is computed using a precom-
puted triple 𝑐 = 𝑎 · 𝑏 as 𝑧 = 𝑥 · (𝑦 − 𝑏) + 𝑏 · (𝑥 − 𝑎) + 𝑐,
where 𝑦′ = 𝑦 − 𝑏 and 𝑥 ′ = 𝑥 − 𝑎 are computed and pub-
lished by the prover. The verifiers postpone the checks
𝑥 − 𝑎 − 𝑥 ′ = 0 and 𝑦 − 𝑏 − 𝑦′ = 0.
• A ring conversion between Z2𝑛 and Z𝑛2 is computed
using 𝑛 trusted bits 𝑏0, . . . , 𝑏𝑛−1 ∈ Z2𝑛 . Suppose that the
verifiers hold a value 𝑥 , either additively shared over
𝑥 ∈ Z2𝑛 , or XOR-shared over Z𝑛2 . The prover knows
the exact value of 𝑥 and is able to publish the bits
𝑐0, . . . , 𝑐𝑛−1 such that, for all 𝑖, 𝑐𝑖 ⊕ 𝑏𝑖 mod 2 = 𝑥𝑖 , where
𝑥𝑖 is the 𝑖-th bit of 𝑥 , and ⊕ denotes XOR operation. For
all 𝑖, the verifiers may now compute 𝑦𝑖 = 𝑏𝑖 if 𝑐𝑖 = 0 and
𝑦𝑖 = 1−𝑏𝑖 otherwise. They take 𝑦 =

∑𝑛−1
𝑖=0 2𝑖𝑦𝑖 ∈ Z2𝑛 and

postpone the checks 𝑥𝑖 ⊕ 𝑐𝑖 ⊕ 𝑏𝑖 mod 2 = 0 if they need
additive sharing of 𝑥 . They take [𝑦0 mod 2, . . . , 𝑦𝑛−1 mod
2] and postpone the check 𝑥 −∑𝑛−1

𝑖=0 2𝑖𝑦𝑖 = 0 if they need
XOR-sharing of 𝑥 .



• For each outgoing message of 𝑃 , postpone the check
𝑦 − 𝑦′ = 0, where 𝑦′ is the committed output and 𝑦

is the value reconstructed by the verifiers themselves
using previous steps.

Finally, the verifiers check [𝑧1, . . . , 𝑧𝑠 ] = [0, . . . , 0] succinctly
for all checks postponed during the verification. At this point,
the verifiers are holding shares [𝑧11, . . . , 𝑧

1
𝑠 ] and [𝑧21, . . . , 𝑧

2
𝑠 ],

such that [𝑧11 +𝑧
2
1, . . . , 𝑧

1
𝑠 +𝑧2𝑠 ] = [𝑧1, . . . , 𝑧𝑠 ]. They take collision-

resistant hash function ℎ (e.g. SHA-256), compute ℎ( [𝑧11, . . . , 𝑧
1
𝑠 ])

and ℎ( [−𝑧21, . . . ,−𝑧
2
𝑠 ]), and exchange these hashes. The verifi-

cation has passed iff these hashes are equal.
To achieve accountability or covert security, we may want

to identify who exactly was cheating. In that case, the same
verification mechanism can be used, only that all the shares
that are issued to the verifiers (including shares of precom-
puted tuples) need to be signed. If the hashes in the end do
not match, the prover has right to accuse one of the verifiers
𝑉𝑗 with whom he does not agree (at most one hash is wrong
since there is at most one corrupted party), and all signed
shares of 𝑉𝑗 are revealed to the other verifier 𝑉𝑘 , who may
now repeat computation of 𝑉𝑗 and find out who is guilty.

4 THE CONVERSION PROTOCOLS

In this section, we present our conversion protocols between
Z2𝑛 and Z𝑛2 . As mentioned in Sec. 3.2, to convert a passively
secure protocol to an actively secure, the initial protocol
needs to be actively private. If it is not actively private,
then post-verification can make it only covertly secure, unless
verification is applied immediately before the steps that break
active privacy.

In Sec. 4.1, we discuss an alternative for the passively secure
ring conversion protocol itself. A disadvantage of the new
protocol is that it is not actively private, so post-verification
would give us only covert security. In Sec. 4.2, we see if similar
ideas could help us in reducing the verification cost of ring
conversion. We use an analogous construction to establish a
new verification procedure, which will not suffer from missing
active privacy. The verification procedure is independent, and
can be used with both the old and the new version of the
passively secure ring conversion protocols.

As described in Sec. 3.2, each conversion from Z2 to Z2𝑛
would require a trusted bit 𝑏𝑖 ∈ Z2𝑛 , which is already an 𝑛-bit
value. To convert all 𝑛 bits, the cost of generating all required
trusted bits would become 𝑂 (𝑛2). We see if we can reduce it
to 𝑂 (𝑛).

In this section, we denote a protocol converting Z𝑛2 →
Z2𝑛 by XorToAdd, and a protocol converting Z2𝑛 → Z𝑛2 by

AddToXor. We use J𝑥K = (𝑥1, 𝑥2, 𝑥3) to denote a secret-shared
value 𝑥 , where 𝑥𝑖 is the share of party 𝑃𝑖 .

4.1 An Alternative Conversion Protocol

The current implementation of XorToAdd protocol of Share-
mind is given in Algorithm 1. For each input bit, it uses the
subprotocol ShareConv [7] (i.e. share conversion), for clarity
repeated in Algorithm 2, that converts a bit shared over Z2
to a bit shared over Z2𝑛 . The linear combination

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖 of

bits 𝑏𝑖 shared over Z2𝑛 comprises the final result. In Share-
Conv, one party sends an 𝑛-bit random value to one of the
other parties, followed by all three parties exchanging some
single bits that do not depend on 𝑛. This subprotocol is quite
asymmetric, making the whole XorToAdd conversion asym-
metric. The random bit 𝑏 does not depend on the input data,
so it can be preshared in the preprocessing phase, and the
online phase of the protocol in Algorithm 2 can be actually
made single-round. Hence, the protocol in Algorithm 1 is also
single-round, but its communication cost is 𝑂 (𝑛2) since each
bit needs to be converted.

Algorithm 1: Old XorToAdd protocol

Data: 𝑛 ∈ N, and shared bits J𝑏0K, . . . , J𝑏𝑛−1K
Result: J𝑚K, shared over Z2𝑛 , such that 𝑚 =

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖

1 Parties use the protocol ShareConv to convert each J𝑏𝑖K
from Z2 to Z2𝑛 , getting 𝑛 additively shared values 𝑐𝑖 .

2 Return the additively shared value J𝑚K =
∑𝑛−1
𝑖=0 2𝑖J𝑐𝑖K.

Algorithm 2: [7] Protocol J𝑣K ← ShareConv(J𝑢K) for
converting a share J𝑢K ∈ Z2 to J𝑣K ∈ Z2𝑛
Data: Value J𝑢K = (𝑢1, 𝑢2, 𝑢3) shared over Z2.
Result: Value J𝑣K such that J𝑢K = J𝑣K, shared over Z2𝑛 .

1 𝑃1 generates a random bit 𝑏
$← Z2 and sets 𝑚 = 𝑏 ⊕ 𝑢1.

2 𝑃1 locally converts 𝑚 to Z2𝑛 , generates a random

𝑚12
$← Z2𝑛 and computes 𝑚13 =𝑚 −𝑚12.

3 𝑃1 locally generates a random 𝑏12
$← Z2 and computes

𝑏13 = 𝑏 − 𝑏12 = 𝑏 ⊕ 𝑏12.
4 𝑃1 sends (𝑏12, 𝑚12) to 𝑃2, and (𝑏13, 𝑚13) to 𝑃3.

5 𝑃2 sets 𝑠23 = 𝑏12 ⊕ 𝑢2 and sends the result to 𝑃3.

6 𝑃3 sets 𝑠32 = 𝑏13 ⊕ 𝑢3 and sends the result to 𝑃2.

7 𝑃2 and 𝑃3 both set 𝑠 = 𝑠23 ⊕ 𝑠32.
8 if 𝑠 = 1 then
9 𝑃2 sets 𝑣2 = (1 −𝑚12)
10 𝑃3 sets 𝑣3 = (−𝑚13)
11 else
12 𝑃2 sets 𝑣2 =𝑚12
13 𝑃3 sets 𝑣3 =𝑚13
14 end

15 Return J𝑣K = (0, 𝑣2, 𝑣3).

A new variant of XorToAdd protocol is given in Algo-
rithm 3. The protocol idea was hinted in [32], but dismissed
for a protocol similar to Algorithm 1. This protocol is less
efficient for small 𝑛, including 𝑛 = 32 and 𝑛 = 64, which are
currently the main data types of Sharemind system. Neverthe-
less, this protocol has less communication for larger number
of bits since its complexity is 𝑂 (𝑛), although its number of
rounds is 𝑂 (log(𝑛)). As a subprotocol, it uses secure addition
of two XOR-shared numbers, which returns a XOR-shared
output [41, Sec. 3.1]. An adaptation of this protocol to sub-
traction, denoted SubXor, is given in Algorithm 4. It consists



Algorithm 3: New XorToAdd protocol

Data: 𝑛 ∈ N and shared bits J𝑏0K, . . . , J𝑏𝑛−1K
Result: J𝑚K, shared over Z2𝑛 , such that 𝑚 =

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖

1 Parties 𝑃1 and 𝑃3 generate 𝑛 random bits 𝑟1
𝑖

$← Z2 and

𝑟3
𝑖

$← Z2 respectively for 𝑖 ∈ {0, . . . , 𝑛 − 1}.
2 Treating (𝑟1

𝑖
, 0, 𝑟3

𝑖
) as the sharing of a new shared bit 𝑟𝑖 ,

parties invoke the addition protocol
SubXor( [J𝑏0K, . . . , J𝑏𝑛−1K], [J𝑟0K, . . . , J𝑟𝑛−1K]), obtaining
J𝑡0K, . . . , J𝑡𝑛−1K.

3 Parties open J𝑟0K, . . . , J𝑟𝑛−1K to party 𝑃2.

4 Parties open J𝑡0K, . . . , J𝑡𝑛−1K to party 𝑃3.

5 Return J𝑚K = (0,∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 ,

∑𝑛−1
𝑖=0 2𝑖𝑡𝑖 ).

Algorithm 4: Secure subtraction of XOR-shared num-
bers (SubXor), adapted from [41]

Data: 𝑛 ∈ N, shared bits
J𝑏0K, . . . , J𝑏𝑛−1K, J𝑟0K, . . . , J𝑟𝑛−1K ∈ Z2

Result: J𝑠0K, . . . , J𝑠𝑛−1K ∈ Z2 satisfying∑𝑛−1
𝑖=0 2𝑖𝑏𝑖 = (

∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 +

∑𝑛−1
𝑖=0 2𝑖𝑠𝑖 ) mod 2𝑛

1 J𝑐0K = 0 /* 𝑐0, . . . , 𝑐𝑛 ∈ Z2 */

2 for 𝑘 = 0 to 𝑛 − 1 do
3 J𝑠𝑘K = J𝑏𝑘K ⊕ J𝑟𝑘K ⊕ J𝑐𝑘K
4 J𝑐𝑘+1K = ((J𝑐𝑘K ⊕ J𝑟𝑘K) ∧ (J𝑐𝑘K ⊕ J𝑠𝑘K)) ⊕ J𝑐𝑘K
5 end

6 Return J𝑠0K, . . . , J𝑠𝑛−1K.

of bit additions and 𝑛 sequential bit multiplications, which can
be computed in log(𝑛) rounds if parallelized. Since the value
𝑐𝑛−1 is actually never used, the number of multiplications can
be reduced to 𝑛 − 1.

Proposition 4.1. The protocol of Algorithm 4 is correct.

Proof. First, the computation of 𝑐𝑘+1, the next carry bit,
could be expressed as

𝑐𝑘+1 = if 𝑐𝑘 = 0 then 𝑟𝑘 ∧ 𝑠𝑘 else 𝑟𝑘 ∨ 𝑠𝑘 .

Second, at the beginning of the loop, the following invariant
is satisfied:

𝑘−1∑
𝑖=0

2𝑖𝑟𝑖 +
𝑘−1∑
𝑖=0

2𝑖𝑠𝑖 =
𝑘−1∑
𝑖=0

2𝑖𝑏𝑖 + 2𝑘𝑐𝑘 .

During the loop, we compute 𝑠𝑘 and 𝑐𝑘+1 so, that the invariant
stays valid. There are two possibilities:

• 𝑐𝑘 = 0, meaning that there is no carry from bit 𝑘 − 1
to bit 𝑘. In this case, we select 𝑠𝑘 so, that 𝑟𝑘 ⊕ 𝑠𝑘 = 𝑏𝑘 .
The outgoing carry is 𝑟𝑘 ∧ 𝑠𝑘 .
• 𝑐𝑘 = 1, i.e. there is incoming carry from bit 𝑘 − 1 to bit
𝑘. In this case we select 𝑠𝑘 so, that 𝑟𝑘 ⊕ 𝑠𝑘 ⊕ 1 = 𝑏𝑘 . The
outgoing carry is 1 if at least one of 𝑟𝑘 or 𝑠𝑘 is 1.

When 𝑘 = 𝑛 is reached, the invariant gives us
∑𝑛−1
𝑖=0 2𝑖𝑏𝑖 =

(∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 +

∑𝑛−1
𝑖=0 2𝑖𝑠𝑖 ) mod 2𝑛 as we wanted. □

We note that Algorithm 4 can easily be parallelized, simi-
larly to parallel adders. Indeed, the only state going from one
iteration of the loop to the next is the bit 𝑐𝑘 . The parallelized
version would work in (parallel) time 𝑂 (log𝑛).

Protocols of Sharemind need to be universally compos-
able [31], so that they could be combined with each other
in arbitrary way in larger applications. However, the out-
put of XorToAdd has been shared only among 𝑃2 and 𝑃3, so
there might be a question whether some final reshare step is
missing. It has been proven in [4] that final resharing is not
necessary if composed protocols are input-private. Resharing
is needed only when followed by a protocol that is not input
private, and Sharemind system avoids such protocols. Input
privacy is defined as indistinguishability of the party’s view
and the simulation of this view, whereas the simulation is
based only on the input of that party.

Proposition 4.2. The SubXor protocol of Algorithm 4 is
universally composable in presence of a passive adversary
corrupting one party.

Proof. The protocol Algorithm 4 only uses universally
composable subprotocols (AND and XOR of bits) as black
boxes, so it is itself also universally composable by composi-
tion theorem. □

Proposition 4.3. The XorToAdd protocol of Algorithm 3
is input-private in presence of a passive adversary corrupting
one party.

Proof. We show how to construct the simulator 𝑆 𝑗 for
the view of a party 𝑃 𝑗 , using only inputs of 𝑃 𝑗 and without
interacting with the real protocol.

The protocol SubXor is universally composable and hence
can be substituted by a blackbox ideal functionality that
computes XOR-sharing of 𝑡 = 𝑏 −𝑟 from bits [J𝑏0K, . . . , J𝑏𝑛−1K]
and [J𝑟0K, . . . , J𝑟𝑛−1K], where 𝑏 =

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖 and 𝑟 =

∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 .

For its simulation, 𝑆 𝑗 needs the inputs 𝑏
𝑗
𝑖
and 𝑟

𝑗
𝑖
for 𝑖 ∈

{0, . . . , 𝑛 − 1}. For all 𝑖, 𝑆1 takes 𝑟1
𝑖

$← Z2, 𝑆3 takes 𝑟3
𝑖

$← Z2,
and 𝑆2 takes 𝑟2

𝑖
= 0. Each 𝑏

𝑗
𝑖
is an input of 𝑃 𝑗 and so is

available to 𝑆 𝑗 .
After executing SubXor, there are more values in the views

of parties that need to be simulated. First of all, we note that,
if 𝑛 bits 𝑎0, . . . , 𝑎𝑛−1 are mutually independent, and each 𝑎𝑖 is
uniformly distributed in Z2, then 𝑎 =

∑𝑛−1
𝑖=0 2𝑖𝑎𝑖 is uniformly

distributed in Z2𝑛 , and vice versa.

(1) The party 𝑃1 does not receive any messages from the
other parties and always returns 0, so 𝑆1 does not need
to simulate anything else.

(2) The party 𝑃2 gets the bits 𝑟0, . . . , 𝑟𝑛. More precisely,
since there is no additional resharing, for all 𝑖, it gets
the bit 𝑟1

𝑖
from 𝑃1, and 𝑟3

𝑖
from 𝑃3. Both 𝑟1

𝑖
and 𝑟3

𝑖
are

uniformly distributed and have not been used by 𝑆2 so

far. Hence, 𝑆2 generates 𝑟1
𝑖

$← Z2 and 𝑟3
𝑖

$← Z2.
(3) The party 𝑃3 gets the value 𝑡 = 𝑏−𝑟 , where 𝑏 =

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖

and 𝑟 =
∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 . Since SubXor is universally compos-

able, the bit shares 𝑡30 , . . . , 𝑡
3
𝑛−1 that 𝑆3 produced during



simulation of SubXor are random values that are not
related to 𝑏 − 𝑟 in any way, so there are no constraints
on 𝑡 yet.
Each 𝑟𝑖 is computed as 𝑟1

𝑖
⊕ 𝑟3

𝑖
, where 𝑆3 has already

simulated 𝑟3
𝑖
, but not 𝑟1

𝑖
. Hence, 𝑟1

𝑖
masks 𝑟𝑖 , so each 𝑟𝑖 is

uniformly distributed in Z2, and 𝑟 =
∑𝑛−1
𝑖=0 2𝑖𝑟𝑖 uniformly

distributed in Z2𝑛 , so 𝑟 can serve as a mask for 𝑏 in
𝑡 = 𝑏 − 𝑟 . Again, since 𝑡 is uniformly distributed in Z2𝑛 ,
each 𝑡𝑖 is uniformly distributed in Z2, so 𝑆3 generates

𝑡𝑖
$← Z2 for all 𝑖 ∈ {0, . . . , 𝑛 − 1}. It now needs to simulate

shares 𝑡1
𝑖
and 𝑡2

𝑖
sent to 𝑃3 by 𝑃1 and 𝑃2 respectively.

𝑆3 generates 𝑡1
𝑖

$← Z2 and takes 𝑡2
𝑖
= 𝑡𝑖 ⊕ 𝑡1𝑖 ⊕ 𝑡

3
𝑖
. □

So far, we have proven that the protocol is passively secure.
However, it is not actively private. If we want to achieve
active security, the verification should be applied immediately
before the opening of final shares to 𝑃2 and 𝑃3. In the next
section, we focus on using the construction of Algorithm 3 to
establish a new verification procedure, which will not have
this problem.

4.2 An Alternative Verification of Conversion

The outline of verification of ring conversion of [30], that we
repeated in 3.2, is very similar to the outline of Algorithm 1.
For each conversion, 𝑛 trusted bits 𝑏 ∈ {0, 1} have been gener-
ated and shared over Z2𝑛 . Both additive and XOR-sharings
can be reconstructed from such bits [𝑏0, . . . , 𝑏𝑛−1] ∈ Z𝑛2𝑛 , which
are [𝑏0 mod 2, . . . , 𝑏𝑛−1 mod 2] ∈ Z𝑛2 and

∑𝑛−1
𝑖=0 2𝑖𝑏𝑖 ∈ Z2𝑛 . To

transform random bits 𝑏𝑖 to actual bits 𝑥𝑖 , it remains for the
prover to publish the hint 𝑐𝑖 = 𝑏𝑖 ⊕ 𝑥𝑖 .

The good property of this method is that the prover needs
to publish 𝑛 bits for an 𝑛-bit conversion. On the other hand,
each conversion requires 𝑛 trusted bits 𝑏𝑖 , and since each
of them should be shared over Z2𝑛 , the complexity of the
preprocessing phase becomes𝑂 (𝑛2). As the result, for complex
protocols that use a lot of share conversions (such as division
or bit shift protocols), the communication complexity of the
preprocessing phase can be thousands of times larger than
the execution phase [30]. This can be a problem, since the
main advantage of the verification mechanism of [30] is that
it can turn arbitrary customized passively secure protocols
to actively secure ones, and the verification of such complex
protocols is actually one of the most interesting things that it
is able to do. We would like to get reasonable preprocessing
cost for these protocols, making them practical.

The problem of the 𝑂 (𝑛2) complexity of trusted bit gen-
eration is very similar to the protocol of Algorithm 1. We
can improve the complexity of preprocessing by using the
structure of Algorithm 3. Instead of computing additively
shared value as a linear combination of 𝑛 bits shared over Z2𝑛 ,
the verifiers will execute a two-party analogue of Algorithm 3.
Let ⟨⟨𝑥⟩⟩ = (𝑥1, 𝑥2) denote a value 𝑥 additively shared among
the verifiers 𝑉1 and 𝑉2. The verification procedure is described
in Figure 1.

In the preprocessing phase, the parties generate 𝑛−1 trusted
multiplication triples in Z2 for each ring conversion Z2𝑛 ↔ Z𝑛2

that will be performed by the verifiers. The triples will be
needed for the subprotocol SubXor. Triple generation method
is the same as in Sec. 3.2.

Verification of the prover’s entire computation is verified
gate-by-gate, as described in Sec. 3.2. The difference comes
at the point when the verifiers need to apply share conversion.
Assume that the verifiers 𝑉1 and 𝑉2 hold additive shares 𝑥1

and 𝑥2 respectively, such that 𝑥 = 𝑥1 + 𝑥2 ∈ Z2𝑛 . They want
to convert ⟨⟨𝑥⟩⟩ to shared bits [⟨⟨𝑦0⟩⟩, . . . , ⟨⟨𝑦𝑛−1⟩⟩], each bit
shared as 𝑦𝑖 = 𝑦1

𝑖
⊕ 𝑦2

𝑖
in Z2.

First,𝑉1 locally computes bit decomposition [𝑥10 , . . . , 𝑥
1
𝑛−1] ←

𝑥1, and 𝑉2 computes [𝑥20 , . . . , 𝑥
2
𝑛−1] ← (−𝑥

2). Let 𝑣𝑖 , 𝑢𝑖 ∈ Z2
be shared as 𝑣𝑖 = 𝑥1

𝑖
⊕ 0 and 𝑢𝑖 = 0 ⊕ 𝑥2

𝑖
. This sharing does

not require any communication since 𝑉1 already knows 𝑥1
𝑖
,

and 𝑉2 knows 𝑥2
𝑖
. The verifiers now hold shared bit vectors

[⟨⟨𝑣0⟩⟩, . . . , ⟨⟨𝑣𝑛−1⟩⟩] and [⟨⟨𝑢0⟩⟩, . . . , ⟨⟨𝑢𝑛−1⟩⟩].
The verifiers execute two-party instance of SubXor (Algo-

rithm 4, using two-party sharing ⟨⟨·⟩⟩ instead of three-party
sharing J·K), applying it to the bit vectors [⟨⟨𝑣0⟩⟩, . . . , ⟨⟨𝑣𝑛−1⟩⟩]
and [⟨⟨𝑢0⟩⟩, . . . , ⟨⟨𝑢𝑛−1⟩⟩]. The XOR operations of SubXor are
computed locally on shares. For the (𝑛 − 1) AND operations,
the verifiers use the (𝑛−1) precomputed multiplication triples
over Z2. The shared bits [⟨⟨𝑦0⟩⟩, . . . , ⟨⟨𝑦𝑛−1⟩⟩] resulting from
SubXor protocol are the bits of 𝑥 = 𝑥1 − (−𝑥2) = 𝑥1 + 𝑥2. In-
stead of applying SubXor to compute 𝑥1 − (−𝑥2) = 𝑥1 +𝑥2, the
verifiers may directly use addition of XOR-shared numbers
from [41, Sec. 3.1], which has essentially the same complexity.

Let us now consider the other conversion direction. The
verifiers hold shared bits [⟨⟨𝑥0⟩⟩, . . . , ⟨⟨𝑥𝑛−1⟩⟩] and want to con-
vert them to additive shares ⟨⟨𝑦⟩⟩. In that case, they need one
more hint from the prover. The prover will commit 𝑦 itself as
a hint, sharing it among the verifiers. The verifiers proceed
in their verification using provided ⟨⟨𝑦⟩⟩. They also use the
procedure Z2𝑛 → Z𝑛2 (described above) to decompose ⟨⟨𝑦⟩⟩ to
bits [⟨⟨𝑦0⟩⟩, . . . , ⟨⟨𝑦𝑛−1⟩⟩]. They will then check that 𝑥𝑖 ⊕ 𝑦𝑖 = 0
for all 𝑖 ∈ {0, . . . , 𝑛 − 1}. The final check does not contribute
to computation complexity, since it becomes a part of the
succinct zero check described in Sec. 3.2.

Compared to the old verification method, using multipli-
cation triples requires prover to open 𝑎𝑖 ⊕ 𝑠𝑖 and 𝑎𝑖 ⊕ 𝑡𝑖 for
all values 𝑠𝑖 and 𝑡𝑖 that participate in the multiplications of
SubXor protocol, so now there are 2(𝑛−1) opened bits instead
of 𝑛 bits of the old verification method. Moreover, if the
transition goes from Z𝑛2 to Z2𝑛 , then the verifiers additionally
need an 𝑛-bit hint to be committed to. The communication
complexity of the verification phase may thus increase up to
three times.

On the other hand, instead of generating 𝑛 trusted bits in
𝑂 (𝑛2) communication, the parties now generate 𝑛 AND triples
in 𝑂 (𝑛) communication, while the number of rounds stays
the same. Hence, the complexity of the preprocessing phase
decreases 𝑛 times. We believe this to be a reasonable trade-off,
since the preprocessing phase is much more expensive and is
a bottleneck for the covert/active security in general. This
aspect gives practical advantage to our protocols.



Preprocessing.
For each share conversion, generate (𝑛 − 1) trusted
multiplication triples (𝑎𝑖 , 𝑏𝑖 , 𝑐𝑖 ) ∈ Z2 (i.e. 𝑐𝑖 = 𝑎𝑖 ∧ 𝑏𝑖).

Verification.

• Z2𝑛 → Z𝑛2 : Let the verifiers 𝑉1 and 𝑉2 hold additive

shares 𝑥1 and 𝑥2 respectively, such that 𝑥 = 𝑥1 + 𝑥2 ∈
Z2𝑛 . They want to locally convert ⟨⟨𝑥⟩⟩ to shared bits
[⟨⟨𝑦0⟩⟩, . . . , ⟨⟨𝑦𝑛−1⟩⟩].

(1) 𝑉1 locally computes bit decomposition
[𝑥10 , . . . , 𝑥

1
𝑛−1] ← 𝑥1, and 𝑉2 computes

[𝑥20 , . . . , 𝑥
2
𝑛−1] ← (−𝑥

2).
(2) Let 𝑣𝑖 , 𝑢𝑖 ∈ Z2 be shared as 𝑣𝑖 = 𝑥1

𝑖
⊕ 0 and 𝑢𝑖 = 0 ⊕ 𝑥2

𝑖
.

(3) The verifiers execute SubXor (Algorithm 4), ap-
plying it to the bit vectors [⟨⟨𝑣0⟩⟩, . . . , ⟨⟨𝑣𝑛−1⟩⟩] and
[⟨⟨𝑢0⟩⟩, . . . , ⟨⟨𝑢𝑛−1⟩⟩]. The XOR operations of SubXor
are computed locally. For the (𝑛−1) AND operations,
the verifiers use the (𝑛 − 1) precomputed multiplica-
tion triples over Z2.

(4) The verifiers proceed with the shares
[⟨⟨𝑦0⟩⟩, . . . , ⟨⟨𝑦𝑛−1⟩⟩] resulting from SubXor pro-
tocol.

• Z𝑛2 → Z2𝑛 : Let the verifiers hold shared bits
[⟨⟨𝑥0⟩⟩, . . . , ⟨⟨𝑥𝑛−1⟩⟩] that they want to convert to ad-
ditive shares of ⟨⟨𝑦⟩⟩. In this case, the prover has to ad-
ditionally commit 𝑦 itself as a hint, sharing it among the
verifiers. The verifiers proceed in their verification using
provided ⟨⟨𝑦⟩⟩. They also use the procedure described
above to decompose 𝑦 to bits [𝑦0, . . . , 𝑦𝑛−1]. They will
then check that 𝑥𝑖 ⊕ 𝑦𝑖 = 0 for all 𝑖 ∈ {0, . . . , 𝑛 − 1}.

Figure 1: New verification of ring conversions Z2𝑛 ↔ Z𝑛2

4.3 Generalization to 𝑛 parties

We note that the verification mechanism of [30] is not con-
strained to 3-party protocols (although 3-party case is the
most efficient), but can be generalized to any number 𝑛 of
parties, as long as there is an honest majority (the number
of corrupted parties is 𝑡 < 𝑛/2). Addition and subtraction of
two xor-shared numbers (protocol SubXor) can be generalized
directly, taking 𝑛-party protocol versions of underlying basic
operations. In XorToAdd protocol, we would need to generate
𝑟𝑡 shared random numbers, and execute 𝑡 instances of 𝑛-party
XorToAdd to compute 𝑠 = 𝑏 − 𝑟1 − · · · − 𝑟𝑡 . The final result
would be shared among some 𝑡 + 1 parties as 𝑟1, . . . , 𝑟𝑡 , 𝑠, so
that no coalition of 𝑡 parties would learn the secret. In the
verification procedure, each of 𝑡 + 1 verifiers would convert its
additive share locally to bits, and 𝑡 instances of bitwise addi-
tion protocol would need to be executed. We leave detailed
security and performance analysis of 𝑛-party generalization
out of this paper.

5 EVALUATION

We benchmarked our implementation on three 2× Intel Xeon
E5-2640 v3 2.6 GHz/8GT/20M servers, with 125GB RAM
running on a 1Gbps LAN, similarly to the benchmarks re-
ported in [30]. We run a large number of instances of protocol

Table 1: Running times of the verification phase for 32-bit
AddToXor protocol

# runs time (s)
Old verification [30] New verification (Fig. 1)

𝑃1 𝑃2 𝑃3 𝑃1 𝑃2 𝑃3
103 0.481 0.491 0.484 0.478 0.489 0.492
104 0.886 0.896 0.920 0.865 0.916 0.912
105 2.35 2.73 2.77 2.32 2.84 2.90
106 14.8 18.1 18.7 14.6 19.0 19.5

verification in parallel, and report the amortized time for a
single protocol.

Differently from [30], we have chosen to not measure the
running time of the execution phase of new protocols. The
performance profile of the new XorToAdd protocol is very
different from the old one, with larger number of rounds but
smaller communication. The actual execution-phase benefits
of the new protocol depend a lot on the other operations
that the privacy-preserving application using this protocol
performs, as well as on the amount of data it processes. The
increase of the number of rounds may have a noticeable effect
on the execution-time performance, if everything else in the
application has very small round complexity and data sizes
are small. But if some other protocol requiring a significant
number of rounds is run in parallel with XorToAdd, or if the
amount of processed data is large, then its round complexity
does not matter and the reduced bandwidth brings perfor-
mance benefits. We thus evaluate the number of rounds and
communicated bits of the execution phase of our protocols,
as these are more robust over different applications. Addi-
tionally, the execution phase has the smallest run-time of the
three phases, and has the least effect on the total running
time. Also note that the execution times of preprocessing
and verification phases depend much less on context.

Laud et al. [30] have evaluated the older versions of the
AddToXor and XorToAdd protocols that have been available
in Sharemind implementation at that time. Those protocols
had not been optimized, although more efficient versions have
already been developed on theory level. The domain-specific
language [32], enables to re-implement the same AddToXor
and XorToAdd protocols, and apply some automatic circuit op-
timizations to them. It reduces the total communication time
of the execution phase, as well as of pre- and postprocessing
phases. In this work, we report the times of these optimized
protocols, and show that our new verification improves them
even more.

For the AddToXor protocol, the comparison of the old
and new verification methods is given in Table 1. For the
XorToAdd protocol, the comparison is given in Table 2. Since
the protocols are asymmetric, we evaluate time needed to
verify the parties 𝑃1, 𝑃2, 𝑃3 separately. The three proofs have
been run in parallel, so the total running time is the maximum
of these. The verification time for the new implementation
slightly increases, as we expected. However, the difference is
not significant. The verification times of the new XorToAdd
protocol are more evenly distributed between the provers,
since the protocol itself is more symmetric.



Table 2: Running times of the verification phase for 32-bit XorToAdd protocol

# runs time (s)

old prot. (Alg. 1), new prot. (Alg. 3), new prot. (Alg. 3)
old verification [30] old verification new verification (Fig. 1)

𝑃1 𝑃2 𝑃3 𝑃1 𝑃2 𝑃3 𝑃1 𝑃2 𝑃3
103 0.450 0.516 0.503 0.510 0.515 0.504 0.490 0.506 0.503
104 0.760 1.06 1.07 0.956 0.961 0.967 0.964 0.962 0.975
105 2.31 4.39 4.34 3.06 3.52 3.51 2.97 3.32 3.38
106 14.1 27.4 27.9 21.0 25.6 25.7 21.0 23.9 23.8

Table 3: Time to generate 𝑢 = 108 verified 32-bit tuples [30]

tuple mult. triples trusted bits bitwise AND triples

time 236 s 72 s 236 s

The total cost of actively secure bit conversion protocols
is given in Table 4. To estimate the preprocessing time, we
counted the total number of precomputed tuples required
for verification, doing it separately for the old and the new
verification. We then estimated the preprocessing time using
the timings in Table 3, where one XOR-shared AND triple is
equivalent to 32 multiplication triples over Z2. The execution
phase has been actually measured only for old XorToAdd
protocol, since it has not been improved compared to the cur-
rent version of this protocol inside Sharemind. The protocol
AddToXor has been optimized and can be only faster than its
older version inside Sharemind, so we may take the running
time of that older protocol as an upper bound. The situa-
tion is more complicated for the new version of XorToAdd
protocol. The total communication, as well as the number of
rounds, have been increased. We see that these numbers are
not very different from AddToXor protocol, which itself has a
similar structure, and uses SubXor as a subprotocol. We may
assume that the protocol will not be much slower, and take
“around 2 times slower than the old XorToAdd protocol” as a
conservative upper bound.

From the results of Table 4, we see that if we apply the
new verification method, the total time for the 32-bit Ad-
dToXor protocol reduces from 206 µs to 164 µs. For the 32-bit
XorToAdd protocol, we see no improvement.

To see how well our new methods would work in general,
we have counted the bit communication of all three phases
for larger Sharemind protocols. These numbers are given in
Table 5 and Table 6 for integer protocols, and in Table 7
for floating point protocols. For each protocol, the results
are presented in the form

𝑥:𝑦:𝑧
1 :a:b

. The upper line lists the

total communication cost (in bits): 𝑥 for the execution of the
protocol, 𝑦 for its verification in the post-execution phase,
and 𝑧 for the generation of precomputed tuples in the prepro-
cessing phase. The suffixes 𝑘 and 𝑀 denote the multipliers
103 and 106, respectively. The lower line is computed directly
from the upper line, and it shows how many times more
expensive each phase is, compared to the execution phase, i.e.
a = 𝑦/𝑥 , b = 𝑧/𝑥 . The only difference is the new XorToAdd

protocol since we compare it with its old version, and also
the private shift right protocol (J𝑎K≫ J𝑏K), for which we also
get a new version since it uses XorToAdd as subroutine. The
lower line of these two protocols is of the form c:a:b, where
c = 𝑥/𝑥 ′, a = 𝑦/𝑥 ′, b = 𝑧/𝑥 ′, and 𝑥 ′ is the cost of the execution
phase of the old version. We see that, while the new Xor-
ToAdd protocol is indeed worse for 8, 16, 32 bits, it actually
becomes better starting from 64 bits, and J𝑎K≫ J𝑏K also does
benefit from it.

Although some floating point protocols also use XorToAdd
as subroutine, replacing it with a new one does not give much
improvement, so we have not included the new versions of
these protocols into Table 7.

For all protocols, we compare the cost using old [30] and
new (Fig. 1) verification methods. This choice does not affect
the execution phase at all, but the costs of pre- and postpro-
cessing are different. As we expected, for the new verification
method, the cost of the verification phase itself has increased,
since now each bit that undergoes conversion requires two or
three bits of hint from the prover. However, the increase is
not too large compared to the decrease in the overhead of
the preprocessing phase, which has been reduced by an order
of magnitude for division and left shift protocols. Hence, the
total cost of active and covert security for these protocols
becomes much smaller.

The private shift right protocol (J𝑎K ≫ J𝑏K) still has a
relatively high preprocessing phase. The reason for this is its
overly efficient execution phase, using tricks similar to [28,
Alg. 4], causing the amount of communication (the cost
of execution phase) to be asymptotically smaller than the
amount of local computations (which have to be verified). We
believe that a special form of precomputed triples could be
used to verify these local computations. We do not explore
this direction in this paper.

6 CONCLUSION

In this work, we have improved the performance of active and
covert security of Sharemind protocols. In particular, we have
proposed a new method for verification of computation of
conversion beween rings Z2𝑛 and Z𝑛2 , which is in turn sufficient
to compute conversion between any two rings Z2𝑛 and Z2𝑚 .
We have evaluated both methods and compared them. Since
Sharemind protocols contain many such conversions, all of
which need to be verified to achieve active or covert security,



Table 4: Total cost of actively secure bit conversion protocols

32-bit AddToXor 32-bit XorToAdd

protocol (old – Alg. 1, new – Alg. 3) old old old new new

verification (old – [30], new – Fig. 1) old new old old new

# AND triples 58 60 0 90 92
# MULT triples 0 0 64 0 0
# trusted bits 64 0 96 64 0

running time of preprocessing phase (µs) 183 142 220 258 217

# rounds of exec.phase 7 7 1 7 7
# comm.bits of exec.phase 1024 1024 1088 1216 1216

running time of execution phase (µs) < 2.3 < 2.3 5.1 < 10 < 10

max. verification time (µs) 18.6 19.5 27.8 25.8 23.9

total time (µs) ≈ 206 164 252 295 250

Table 5: Total bit communication of different phases for 8 and 16-bit integer protocols

Integer 8 bits 16 bits
operation Old verif. [30] New verif. (Fig. 1) Old verif. [30] New verif. (Fig. 1)

J𝑥K · J𝑦K 48 : 192 : 1008
1 : 4 :21

48 : 192 : 1008
1 : 4 :21

96 : 384 : 2017
1 : 4 :21

96 : 384 : 2017
1 : 4 :21

J𝑥K / J𝑦K 4306 : 36k : 1.1M
1 : 8 :249

4306 : 46.5k : 225k
1 : 10 :52

10.0k : 85.7k : 4.9M
1 : 8 :486

10k : 113k : 542.2k
1 : 11 :54

J𝑥K / 𝑦 404 : 5172 : 92.3k
1 : 12 :228

404 : 7120 : 34.3k
1 : 17 :85

948 : 12.1k : 330.6k
1 : 12 :349

948 : 16.0k : 77.6k
1 : 16 :82

J𝑥K ≪ J𝑦K 144 : 818 : 5234
1 : 5 :36

144 : 914 : 4706
1 : 6 :33

400 : 2648 : 17.7k
1 : 6 :44

400 : 2840 : 14.7k
1 : 7 :37

𝑜𝑙𝑑

J𝑥K ≫ J𝑦K 312 : 4050 : 22.7k
1 : 12 :73

312 : 4082 : 22.4k
1 : 13 :72

848 : 14.5k : 82.2k
1 : 17 :97

848 : 14.6k : 80.2k
1 : 17 :95

𝑛𝑒𝑤

J𝑥K ≫ J𝑦K 472 : 4738 : 26.1k
1.5 : 15.2 :84

472 : 4818 : 25.4k
1.5 : 15.4 :81

1120 : 15.6k : 87k
1.3 : 18.4 :103

1120 : 15.8k : 83.0k
1.3 : 18.6 :98

J𝑥K ≫ 𝑦
180 : 1690 : 15.2k
1 : 9 :84

180 : 2224 : 10.8k
1 : 12 :60

468 : 4218 : 53.5k
1 : 9 :114

468 : 5504 : 26.6k
1 : 11 :57

J𝑥K = J𝑦K 50 : 200 : 1571
1 : 4 :31

50 : 232 : 1219
1 : 4 :24

106 : 424 : 4549
1 : 4 :43

106 : 488 : 2563
1 : 4 :24

J𝑥K < J𝑦K 280 : 2748 : 16.0k
1 : 9 :57

280 : 2844 : 14.9k
1 : 10 :53

719 : 7440 : 46.0k
1 : 10 :64

719 : 7632 : 40.1k
1 : 10 :56

AddToXor
160 : 1120 : 6403
1 : 7 :40

160 : 1152 : 6050
1 : 7 :38

416 : 3008 : 18.1k
1 : 7 :44

416 : 3072 : 16.1k
1 : 7 :39

𝑜𝑙𝑑

XorToAdd
80 : 560 : 3722
1 : 7 :47

80 : 560 : 3722
1 : 7 :47

288 : 2144 : 14.7k
1 : 7 :51

288 : 2144 : 14.7k
1 : 7 :51

𝑛𝑒𝑤

XorToAdd
208 : 1184 : 6739
2.6 : 15 :84

208 : 1232 : 6387
2.6 : 15 :80

512 : 3136 : 18.8k
1.8 : 11 :65

512 : 3232 : 16.8k
1.8 : 11 :58

the performance overheads of some larger protocols has been
reduced by an order of magnitude.

While we have managed to significantly reduce the pre-
processing phase, we have slightly increased the verification
phase. We conclude that the old method can be still prefered
in the cases where the preprocessing time is of less impor-
tance. Nevertheless, in this paper we have achieved better
overall performance.

With the protocols proposed in this paper, we see a general
disappearance of huge verification overheads from actively
secure Sharemind protocols, compared to passively secure

ones. While other actively secure SMC protocol sets may
give a better performance on multiplications, real privacy-
preserving applications contain a mix of operations with
private values and we believe the Sharemind protocol set to
be the most suitable choice for them.
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Table 6: Total bit communication of different phases for 32 and 64-bit integer protocols

Integer 32 bits 64 bits
operation Old verif. [30] New verif. (Fig. 1) Old verif. [30] New verif. (Fig. 1)

J𝑥K · J𝑦K 192 : 768 : 4034
1 : 4 :21

192 : 768 : 4034
1 : 4 :21

384 : 1536 : 8067
1 : 4 :21

384 : 1536 : 8067
1 : 4 :21

J𝑥K / J𝑦K 31.7k : 275k : 28M
1 : 8 :884

31.7k : 358k : 1.7M
1 : 11 :54

88.6k : 793k : 180M
1 : 8 :2029

88.6k : 1.1M : 5.0M
1 : 11 :56

J𝑥K / 𝑦 2180 : 27.5k : 1.2M
1 : 12 :563

2180 : 35.4k : 173.4k
1 : 16 :80

4932 : 62.0k : 4.7M
1 : 12 :950

4932 : 77.7k : 383.2k
1 : 15 :78

J𝑥K ≪ J𝑦K 1296 : 9374 : 64.6k
1 : 7 :50

1296 : 9758 : 50.9k
1 : 7 :39

4624 : 35.1k : 245.8k
1 : 7 :53

4624 : 35.9k : 187.8k
1 : 7 :41

𝑜𝑙𝑑

J𝑥K ≫ J𝑦K 2384 : 53k : 303.6k
1 : 22 :127

2384 : 53.1k : 294.5k
1 : 22 :124

7120 : 199.2k : 1.1M
1 : 27 :161

7120 : 199.5k : 1.1M
1 : 28 :156

𝑛𝑒𝑤

J𝑥K ≫ J𝑦K 2608 : 52.7k : 297k
1.1 : 22.1 :125

2608 : 53.0k : 278.8k
1.1 : 22.2 :117

5968 : 185.3k : 1.1M
0.8 : 26 :154

5968 : 185.9k : 977k
0.8 : 26.1 :137

J𝑥K ≫ 𝑦
1092 : 9946 : 184.1k

1 : 9 :169
1092 : 12.5k : 61.2k

1 : 11 :56
2564 : 22.9k : 661k

1 : 8 :258
2564 : 28.2k : 138.5k

1 : 10 :54

J𝑥K = J𝑦K 218 : 872 : 14.3k
1 : 4 :66

218 : 1000 : 5252
1 : 4 :24

442 : 1768 : 49.3k
1 : 4 :112

442 : 2024 : 10.6k
1 : 4 :24

J𝑥K < J𝑦K 1750 : 18.7k : 127k
1 : 10 :73

1750 : 19.0k : 100k
1 : 10 :57

4109 : 44.7k : 354.7k
1 : 10 :86

4109 : 45.4k : 238.6k
1 : 11 :58

AddToXor
1024 : 7552 : 49.4k

1 : 7 :48
1024 : 7680 : 40.3k

1 : 7 :39
2432 : 18.2k : 135.5k

1 : 7 :56
2432 : 18.4k : 96.8k

1 : 7 :40
𝑜𝑙𝑑

XorToAdd
1088 : 8384 : 58.7k

1 : 7 :54
1088 : 8384 : 58.7k

1 : 7 :54
4224 : 33.2k : 234.2k

1 : 7 :55
4224 : 33.2k : 234.2k

1 : 7 :55
𝑛𝑒𝑤

XorToAdd
1216 : 7808 : 50.8k
1.1 : 7 :47

1216 : 8000 : 41.7k
1.1 : 7 :38

2816 : 18.7k : 138.2k
0.7 : 4 :33

2816 : 19.1k : 99.5k
0.7 : 4 :24

Table 7: Total bit communication of different phases for floating point protocols

Float 32-bit mantissa, 16-bit exponent 64-bit mantissa, 16-bit exponent
operation Old verif. [30] New verif. Old verif. [30] New verif.

J𝑥K + J𝑦K 26.4k : 374.8k : 3.4M
1 : 14 :128

26.4k : 391.2k : 2.1M
1 : 14 :81

72.3k : 1.2M : 11.8M
1 : 16 :163

72.3k : 1.2M : 7.0M
1 : 17 :96

J𝑥K · J𝑦K 4857 : 44.7k : 945.5k
1 : 9 :195

4857 : 54.2k : 267.8k
1 : 11 :55

10.7k : 96.5k : 3.1M
1 : 9 :294

10.7k : 114.4k : 569k
1 : 10 :53

J𝑥K = J𝑦K 560 : 3488 : 168.1k
1 : 6 :300

560 : 5632 : 26.6k
1 : 10 :47

1008 : 6048 : 469.7k
1 : 6 :466

1008 : 9600 : 45.4k
1 : 9 :45

J𝑥K < J𝑦K 4337 : 43.8k : 440.6k
1 : 10 :102

4337 : 46.8k : 242.5k
1 : 10 :56

9503 : 98.3k : 1.2M
1 : 10 :126

9503 : 103.5k : 539k
1 : 10 :57

J𝑥K−1 11.3k : 109k : 7.8M
1 : 9 :687

11.3k : 144k : 695k
1 : 12 :61

31.3k : 305k : 47.8M
1 : 9 :1528

31.3k : 398k : 1.9M
1 : 12 :62√

J𝑥K 12.2k : 122k : 5.2M
1 : 9 :421

12.2k : 152k : 746.4k
1 : 12 :61

46.5k : 476k : 39.8M
1 : 10 :856

46.5k : 583k : 2.9M
1 : 12 :62

exp(J𝑥K) 17.6k : 263k : 5.4M
1 : 14 :308

17.6k : 291k : 1.5M
1 : 16 :86

55.3k : 941k : 37.3M
1 : 17 :674

55.3k : 1.0M : 5.4M
1 : 18 :97

ln(J𝑥K) 96.6k : 1.3M : 15.4M
1 : 13 :159

96.6k : 1.4M : 7.4M
1 : 14 :76

276k : 4.2M : 76.6M
1 : 15 :277

276k : 4.4M : 24.2M
1 : 15 :88

sin(J𝑥K) 76.0k : 784k : 11.6M
1 : 10 :152

76.0k : 866k : 4.6M
1 : 11 :60

244k : 2.7M : 68.3M
1 : 10 :280

244k : 2.9M : 15.7M
1 : 12 :64

erf (J𝑥K) 25.7k : 207k : 7.5M
1 : 8 :293

25.7k : 251k : 1.2M
1 : 9 :48

89.3k : 730k : 49.8M
1 : 8 :558

89.3k : 870k : 4.3M
1 : 9 :48
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