
PRIVACY-PRESERVING

FREQUENT ITEMSET MINING

WITH THE SECREC LANGUAGE

Roman Jagomägis

Theory days, Elva 2010

PROBLEM STATEMENT

 It is possible to gain significant added value by

combining and analyzing confidential information

 Serious security issues arise

 Cryptography researchers have proposed several

technical solutions to deal with the problem

 We want to implement Frequent Itemset Mining

algorithms with provable security guarantees

1
1

 J
u

n
e

 2
0

1
0

2

THE SECURE COMPUTATION PLATFORM

 We will implement our solution on the SHAREMIND secure
multi-party computation platform

 It can sequentially and in parallel execute operations on
private and public data

 Consists of 3 parties (miners) that process the data

 Uses the additive secret scheme in the ring

 Proven to be secure in the honest-but-curious security
model

1
1

 J
u

n
e

 2
0

1
0

3

𝑠1 + 𝑠2 + ⋯ + 𝑠𝑛 = 𝑠 𝑚𝑜𝑑 232

THE SHAREMIND DEPLOYMENT MODEL 1
1

 J
u

n
e

 2
0

1
0

4

THE SECREC LANGUAGE

 Syntactically based on C, but

 Omits several features (e.g. pointers)

 Adds some new ones (e.g. vectorized operations)

 Separation of public and private data

 Explicit declassification

1
1

 J
u

n
e

 2
0

1
0

public computation environmentpublic
inputs

public
outputs

private
inputs

private
outputs

controlled interactions between public and private data

private computation environment

5

WRITING PRIVACY-PRESERVING ALGORITHMS

 Declassify the private data as little as possible

 The control flow is public and must not be affected by private
data

 Oblivious selection still allows to hide the selected branch from
the observer by evaluating both branches
 if (a) x = y; else x = z; vs x = a*y + (1-a)*z

 Use aggregation techniques to maximize the entropy of the
output results (e.g. sum)

 Take a reasonable amount of data
 Better contribution to the uncertainty of the final result

 Better statistical results

 Parallelize operations smartly for better execution-times

1
1

 J
u

n
e

 2
0

1
0

6

WHAT IS FREQUENT ITEMSET MINING?

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

1
1

 J
u

n
e

 2
0

1
0

items / products

transactionscustomers

 What is the behavior of the customers in terms of

purchased products?

 What kind of products are frequently bought together?
7

WHAT IS FREQUENT ITEMSET MINING? 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Let 𝒜 = 𝑎1, … , 𝑎𝑚 be a list of all attributes.

The transaction 𝒯 is then a subset of 𝒜.

Thus, 𝒟𝑛×𝑚 =
𝒯1

⋮
𝒯𝑛

, so that 𝒟 𝑖, 𝑗 = 1 iff 𝑎𝑗 ∈ 𝒯𝑖 .

support 𝒳 – number of transactions that contain all items of 𝒳.

Frequent itemsets: support 𝒳 ≥ 𝑡

cover 𝒳 – the set of transaction identifiers that contain the itemset 𝒳.

8

FREQUENT ITEMSET MINING & PRIVACY

 Transactions are associated with the customers
 One can find out and exploit habits of individuals

 Stripping the associations does not protect the privacy enough
 Having extra knowledge when analysing the transactions makes

it possible to distinguish who is who

 We are thus motivated to use secure multi-party computation
systems

1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

9

FREQUENT ITEMSET MINING IN MPC 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

Then, given 𝑎 ∈ 𝒜

cover 𝑎 = 𝒟 ∗, 𝑎

cover 𝒳 ∪ 𝒴 = cover 𝒳 ⊙ cover 𝒴

supp 𝒳 = cover 𝒳 = 𝒙 = 𝑥1 + ⋯ + 𝑥𝑛

10

In privacy-preserving computations

covers can be represented as index

vectors 𝒙 such that:

 𝑥𝑖 = 1 if 𝒳 ∈ 𝒯𝑖 and otherwise 𝑥𝑖 = 0.

T

1

0

1

1

0

H

1

0

1

0

1

TH

1

0

1

0

0

FREQUENT ITEMSET MINING STRATEGIES 1
1

 J
u

n
e

 2
0

1
0

Tea Beer Honey Diapers

C 1 1 1 0

B 0 1 0 1

C 1 0 1 0

A 1 1 0 0

B 0 1 1 1

 Note, that support is an anti-
monotone function

 Subsets of frequent itemsets
must also be frequent

(T B H D)

(TB TH TD) (BH BD) (HD)

(TBH TBD) (THD) (BHD)

(TBHD)

 Tree traversal

problem

 Apriori – breadth-first

 Eclat – depth-first

𝒳 ⊆ 𝒴 ⟹ supp 𝒳 ≥ supp 𝒴

11

(Ø)

EXECUTING APRIORI

void main () {

public int[0][0] itemsets;

dbLoad ("dataTransactions");

itemsets = apriori (5000, 5, "mushroom");

matPrint (itemsets);

}

public int[][] apriori(public int threshold,

public int setSize,

public string table) {

...

}

1
1

 J
u

n
e

 2
0

1
0

12

DETERMINING FREQUENT COLUMNS IN DB

for (i = 0; i < dbColumns; i = i + 1) {

colName = "" + (i + 1);

z = dbGetColumn(colName, table);

frequency = vecSum(z);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

*** cache the column data for reuse ***

}

}

1
1

 J
u

n
e

 2
0

1
0

13

GENERATING CANDIDATES

for (i = 0; i < F_size; i = i + 1) {

for (j = i + 1; j < F_size; j = j + 1) {

prefixEqual = true;

for (n = 0; n < k - 1; n = n + 1) {

if (F[i][n] != F[j][n]) prefixEqual = false;

}

// are the two itemsets suitable for constructing a new candidate?

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

*** verify the new candidate ***

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

matResize(C, k, 1);

C = F[i][*];

matAddRow(C);

C[k] = F[j][k-1];

matAppendRow(F_new, C);

}

}

}

}

1
1

 J
u

n
e

 2
0

1
0

14

C = F[i][*] F[j][k-1];

// check if the prefix of

// two potential candidates

// are equal or not

VERIFYING CANDIDATES

if (prefixEqual && F[i][k-1] < F[j][k-1]) {

C_dot = F_cache[i][*];

z = F_cache[j][*];

C_dot = C_dot * z;

frequency = vecSum(C_dot);

isGood = (frequency >= threshold);

result = declassify(isGood);

if (result) {

matAppendRow(F_newcache, C_dot);

*** C = F[i][*] F[j][k-1]; ***

matAppendRow(F_new, C);

}

}

1
1

 J
u

n
e

 2
0

1
0

15

C_dot = F_cache[i][*] * F_cache[j][*];

SECURITY

 As long as sensitive data stays in the private
computation environment of SHAREMIND, it is fine.

 The only places in the code which declassify secret
data, do not leak more information than needed

 Individual rows are not distinguished

 We only open answers to the question: is the itemset
frequent or not?

 The final answer reveals the information about the
intermediate results, so there is no sense in hiding them.

1
1

 J
u

n
e

 2
0

1
0

16

PERFORMANCE

 Tested on the Mushroom dataset with 119 items, 8124
transactions and data density of 19.3%.

 High Performance Computing Center @ UT
 Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very

fast network

2
0

 M
a

y
 2

0
1

0

17

1
1

 J
u

n
e

 2
0

1
0

18

Thank You!

Questions?

