PRIVACY-PRESERVING FREQUENT ITEMSET MINING WITH THE SECREC LANGUAGE

Roman Jagomägis

Theory days, Elva 2010

PROBLEM STATEMENT

 It is possible to gain significant added value by combining and analyzing confidential information

Serious security issues arise

- Cryptography researchers have proposed several technical solutions to deal with the problem
- We want to implement Frequent Itemset Mining algorithms with provable security guarantees

THE SECURE COMPUTATION PLATFORM

- We will implement our solution on the SHAREMIND secure multi-party computation platform
- It can sequentially and in parallel execute operations on private and public data
- Consists of 3 parties (miners) that process the data
- Uses the additive secret scheme in the ring $\mathbb{Z}_{2^{32}}$
 - $s_1 + s_2 + \dots + s_n = s \mod 2^{32}$
- Proven to be secure in the honest-but-curious security model

THE SHAREMIND DEPLOYMENT MODEL

THE SECREC LANGUAGE

Syntactically based on C, but

- Omits several features (e.g. pointers)
- Adds some new ones (e.g. vectorized operations)

Separation of public and private data

Explicit declassification

WRITING PRIVACY-PRESERVING ALGORITHMS

- Declassify the private data as little as possible
- <u>The control flow is public</u> and must not be affected by private data
- <u>Oblivious selection</u> still allows to hide the selected branch from the observer by evaluating both branches

if (a) x = y; else x = z; vs x = a*y + (1-a)*z

 <u>Use aggregation techniques</u> to maximize the entropy of the output results (e.g. sum)

Take a reasonable amount of data

- Better contribution to the uncertainty of the final result
- Better statistical results
- Parallelize operations smartly for better execution-times

WHAT IS FREQUENT ITEMSET MINING?

 What is the behavior of the customers in terms of purchased products?

• What kind of products are frequently bought together?

WHAT IS FREQUENT ITEMSET MINING?

	Теа	Beer	Honey	Diapers
С	1	1	1	0
В	0	1	0	1
С	1	0	1	0
Α	1	1	0	0
В	0	1	1	1

Let $\mathcal{A} = (a_1, ..., a_m)$ be a list of all attributes. The transaction \mathcal{T} is then a subset of \mathcal{A} . Thus, $\mathcal{D}^{n \times m} = \begin{array}{c} \mathcal{T}_1 \\ \vdots \\ \mathcal{T}_n \end{array}$, so that $\mathcal{D}[i, j] = 1$ iff $a_j \in \mathcal{T}_i$.

support(\mathcal{X}) – number of transactions that contain all items of \mathcal{X} .

Frequent itemsets: $support(\mathcal{X}) \ge t$

 $\operatorname{cover}(\mathcal{X})$ – the set of transaction identifiers that contain the itemset \mathcal{X} .

11 June 2010

FREQUENT ITEMSET MINING & PRIVACY

	Теа	Beer	Honey	Diapers
С	1	1	1	0
В	0	1	0	1
С	1	0	1	0
Α	1	1	0	0
В	0	1	1	1

- Transactions are associated with the customers
 - One can find out and exploit habits of individuals
- Stripping the associations does not protect the privacy enough
 - Having extra knowledge when analysing the transactions makes it possible to distinguish who is who
- We are thus motivated to use secure multi-party computation systems

FREQUENT ITEMSET MINING IN MPC

	Теа	Beer	Honey	Diapers
С	1	1	1	0
В	0	1	0	1
С	1	0	1	0
Α	1	1	0	0
В	0	1	1	1

In privacy-preserving computations covers can be represented as index vectors x such that:

 $x_i = 1$ if $\mathcal{X} \in \mathcal{T}_i$ and otherwise $x_i = 0$.

Then, given $a \in \mathcal{A}$ cover({a}) = $\mathcal{D}[*, a]$ cover($\mathcal{X} \cup \mathcal{Y}$) = cover(\mathcal{X}) \bigcirc cover(\mathcal{Y})

 $\operatorname{supp}(\mathcal{X}) = |\operatorname{cover}(\mathcal{X})| = |\mathbf{x}| = x_1 + \dots + x_n$

Т		Н		TH
1		1		1
0	\sim	0	_	0
1	0	1	_	1
1		0		0
0		1		0

FREQUENT ITEMSET MINING STRATEGIES

	Теа	Beer	Honey	Diapers
С	1	1	1	0
В	0	1	0	1
С	1	0	1	0
Α	1	1	0	0
В	0	1	1	1

 Note, that support is an antimonotone function

 $\mathcal{X} \subseteq \mathcal{Y} \Longrightarrow \operatorname{supp}(\mathcal{X}) \ge \operatorname{supp}(\mathcal{Y})$

 Subsets of frequent itemsets must also be frequent

- Tree traversal problem
- Apriori breadth-first
- Eclat depth-first

EXECUTING APRIORI

```
void main () {
    public int[0][0] itemsets;
    dbLoad ("dataTransactions");
    itemsets = apriori (5000, 5, "mushroom");
    matPrint (itemsets);
```

```
}
```

}

DETERMINING FREQUENT COLUMNS IN DB

```
for (i = 0; i < dbColumns; i = i + 1) {
    colName = "" + (i + 1);
    z = dbGetColumn(colName, table);
    frequency = vecSum(z);
    isGood = (frequency >= threshold);
    result = declassify(isGood);
```

}

```
if (result) {
    *** cache the column data for reuse ***
}
```

GENERATING CANDIDATES

```
11 June 2010
for (i = 0; i < F \text{ size}; i = i + 1) {
    for (j = i + 1; j < F size; j = j + 1) {</pre>
        prefixEqual = true;
        for (n = 0; n < k - 1; n = n + 1) {
                                                             // check if the prefix of
            if (F[i][n] != F[j][n]) prefixEqual = false; // two potential candidates
        }
                                                              // are equal or not
        // are the two itemsets suitable for constructing a new candidate?
        if (prefixEqual && F[i][k-1] < F[j][k-1]) {
            *** verify the new candidate ***
            result = declassify(isGood);
            if (result) {
                matAppendRow(F newcache, C dot);
                matResize(C, k, 1);
                C = F[i][*];
                                                C = F[i][*] U F[j][k-1];
                matAddRow(C);
                C[k] = F[j][k-1];
                matAppendRow(F new, C);
                                                                                         14
```

VERIFYING CANDIDATES

```
if (prefixEqual && F[i][k-1] < F[j][k-1]) {
      C dot = F_cache[i][*];
      C dot = C dot * z;
      frequency = vecSum(C dot);
      isGood = (frequency >= threshold);
      result = declassify(isGood);
      if (result) {
            matAppendRow(F newcache, C dot);
            *** C = F[i][*] ∪ F[j][k-1]; ***
            matAppendRow(F_new, C);
      }
```

SECURITY

- As long as sensitive data stays in the private computation environment of SHAREMIND, it is fine.
- The only places in the code which declassify secret data, do not leak more information than needed
- Individual rows are not distinguished
- We only open answers to the question: is the itemset frequent or not?
- The final answer reveals the information about the intermediate results, so there is no sense in hiding them.

17

PERFORMANCE

- Tested on the Mushroom dataset with 119 items, 8124 transactions and data density of 19.3%.
- High Performance Computing Center @ UT
 - Machines with 2.5GHz quad-core Intel Xeon CPUs, 32GB RAM and very fast network

Thank You!

Questions?