
Efficient Primitive Protocols for Sharemind

Bingsheng Zhang1,2

1Cybernetica AS, Estonia
2University of Tartu, Estonia

Estonian Theory Days in Elva,
11.06.2010-13.06.2010

Outline Outline

Division in Z∗
232

Multiplication in Z∗
232

High degree Conjunction
Random Shuffle Protocol

Outline Outline

Division in Z∗
232

Division in Z∗
232

Outline Outline

Division in Z∗
232

Server’s input: [[A]] ∈ Z∗
232 and [[B]] ∈ Z∗

232

Server’s output: [[C]] ∈ Z∗
232 , where C = A ·B−1

1 Each minerMp∈{0,1,2} generates a random number
Rp ←u {1,2, · · · ,231}. Set R ′p = 2 ·Rp −1.

2 All minersMp∈{0,1,2} compute and open [[D]] = [[B]] · [[R ′]].
3 All minersMp∈{0,1,2} compute and set

[[C]] = D−1 · [[R ′]] · [[A]].

The total protocol costs 3 rounds.

Outline Outline

Multiplication in Z∗
232

Multiplication in Z∗
232

Outline Outline

Multiplication in Z∗
232

Generating Random Invertible Pairs

Server’s input: ⊥

Server’s output: Data shares in Z232 : [[R ←u Z
∗

232]] and [[R−1]]

1 Each minerMp∈{0,1,2} generates two random number
Ap ←u {1,2, · · · ,231} and Bp ←u {1,2, · · · ,231}. Set
Rp = 2 ·Ap −1 and R ′p = 2 ·Bp −1

2 All minersMp∈{0,1,2} compute and open [[C]] = [[R]] · [[R ′]].
3 Each minerMp∈{0,1,2} computes and sets

[[R−1]] = C−1 · [[R ′]].

The total protocol costs 2 rounds.

Outline Outline

Multiplication in Z∗
232

Unbounded Fan-in Multiplication

Server’s input: Data shares in Z∗
232 : [[X1]], · · · , [[Xk]]

Server’s output: Data shares in Z∗
232 : [[

∏k
i=1 Xi]]

1 All minersMp∈{0,1,2} generate random invertible pairs
([[R0]], [[R−1

0]]), · · · ,([[Rk]], [[R−1
k]]) by using sub-protocol in

previous section.
2 For i ∈ {1, · · · ,k }, all minersMp∈{0,1,2} compute and open

[[Ai]] = [[Ri−1]] · [[Xi]] · [[R−1
i]].

3 Each minerMp∈{0,1,2} computes
B =
∏k

i=1 Ai (= R0 ·
∏k

i=1 Xi ·R−1
k).

4 All minersMp∈{0,1,2} compute [[S]] = [[R−1
0]] ·B · [[Rk]].

The total protocol costs 3+2 rounds.

Outline Outline

High degree Conjunction

High degree Conjunction

Outline Outline

High degree Conjunction

Server’s input: [[X1]], · · · , [[Xk]] (Xi ∈ {0,1})

Server’s output: [[Y]] = [[X1∧ · · ·∧Xk)]]

1 All minersMp∈{0,1,2} computes [[S]] =
∑k

i=1[[Xi]].
2 All minersMp∈{0,1,2} call Equal sub-protocol to check if

[[S]] = k and return the result bit as [[Y]].

This protocol was improved by Margus Niitsoo’s comments. It
takes the same rounds as equality check protocol, which is 7
rounds. In theory, it is O(log logk) rounds protocol, where k is the
degree.

Outline Outline

Random Shuffle Protocol

Random Shuffle Protocol

Outline Outline

Random Shuffle Protocol

For i ∈ {1, · · · ,k logn}, all minersMp∈{0,1,2} do:
Split documents into shared bits, for each bit do:

1 Generate a random number with length n, and split Rp to bits,
denoting as Rp [0], · · · ,Rp [n−1].

2 Call one bit share conversion sub-protocol to compute
additive shares: bp [0], · · · ,bp [n−1].

3 Call (m,n)-PIR sub-protocol to select ‘documents’ to set 1
according to bits b[j] (, b[j] = 1 means select,) and to select
the rest ‘documents’ to set 0 according to bits (1−b[j]).

All minersMp∈{0,1,2} combine the shared documents from
shared bits.

O(k log2 n) rounds, given that (m,n)-PIR sub-protocol takes logn
rounds. O(n logn) computation, given that (m,n)-PIR sub-protocol
costs O(n) computation regardless m.

Outline Outline

Random Shuffle Protocol

(m,n)-PIR Protocol

Client’s input:
−→
B = {b0, · · · ,bn−1}.

For j ∈ {1, · · · ,n−1}, all minersMp∈{0,1,2} do:
1 Compute [[Qj]] =

∑j−1
w=0[[bj]].

2 Call bit decomposition sub-protocol to split [[Qj]] into bits,
denoting as [[Qj [0]]], · · · , [[Qj [t]]], where t = blognc.

3 Set [[s0]] = [[b0]]. Compute and set
[[sj]] = [[bj]] ·

∏t
v=0([[Qj [v]]] ·22v). (i.e. [[sj]] = [[bj]] ·2[[Qj]].)

Denote the selection vector [[
−→
S]] = {[[s0]], · · · , [[sn−1]]} and

document vector [[
−−−→
D[k]]] = {[[d0[k]]], · · · , [[dn−1[k]]]}. For

k ∈ {0, · · · , |D | −1}, all miners compute

[[R[k]]]← [[
−→
S]] · [[

−−−→
D[k]]]T . Then split [[R[k]]] to bits.

Outline Outline

Random Shuffle Protocol

Perfect Random Shuffle Protocol

1 For set size i = {n,n/2,n/22, · · · ,1}, all minersMp∈{0,1,2} do:
1 Create array Ap[i] = 0. Pick i/2 positions randomly, and set

them to 1. Now Ap[i] can be regarded as random number
with hamming weight exactly i/2.

2 For u = 0,1,2, minerMu shares Au[i] bitwisely:
[[b[0]]], · · · , [[b[i−1]]].

1 Call (m,n)-PIR sub-protocol to select ‘documents’ to set 1
according to bits b[j] (, b[j] = 1 means select,) and to select
the rest ‘documents’ to set 0 according to bits (1−b[j]).

3 All minersMp∈{0,1,2} will execute recursively in a parallel for
sets 0 and 1 for next round.

Outline Outline

Random Shuffle Protocol

Thank You!
Questions?

	Outline
	Division in Z*232
	Multiplication in Z*232
	High degree Conjunction
	Random Shuffle Protocol

