Efficient Primitive Protocols for Sharemind

Bingsheng Zhang ${ }^{1,2}$
${ }^{1}$ Cybernetica AS，Estonia
${ }^{2}$ University of Tartu，Estonia
Estonian Theory Days in Elva， 11．06．2010－13．06．2010

- Division in $\mathbb{Z}_{2^{32}}^{*}$
- Multiplication in $\mathbb{Z}_{2^{32}}^{*}$
- High degree Conjunction
- Random Shuffle Protocol

Outline

Division in $\mathbb{Z}_{2^{32}}^{*}$

Server's input: $[[A]] \in \mathbb{Z}_{2^{32}}^{*}$ and $[[B]] \in \mathbb{Z}_{2^{32}}^{*}$
Server's output: $[[C]] \in \mathbb{Z}_{2^{32}}^{*}$, where $C=A \cdot B^{-1}$
(1) Each miner $\mathcal{M}_{p \in\{0,1,2\}}$ generates a random number $R_{p} \leftarrow_{u}\left\{1,2, \cdots, 2^{31}\right\}$. Set $R_{p}^{\prime}=2 \cdot R_{p}-1$.
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute and open $[[D]]=[[B]] \cdot\left[\left[R^{\prime}\right]\right]$.
(3) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute and set $[[C]]=D^{-1} \cdot\left[\left[R^{\prime}\right]\right] \cdot[[A]]$.

The total protocol costs 3 rounds.

Multiplication in $\mathbb{Z}_{2^{32}}^{*}$

Generating Random Invertible Pairs

Server's input: \perp
Server's output: Data shares in $\mathbb{Z}_{2^{32}}:\left[\left[R \leftarrow u \mathbb{Z}_{2^{32}}^{*}\right]\right]$ and $\left[\left[R^{-1}\right]\right]$
(1) Each miner $\mathcal{M}_{p \in\{0,1,2\}}$ generates two random number $A_{p} \leftarrow_{u}\left\{1,2, \cdots, 2^{31}\right\}$ and $B_{p} \leftarrow_{u}\left\{1,2, \cdots, 2^{31}\right\}$. Set $R_{p}=2 \cdot A_{p}-1$ and $R_{p}^{\prime}=2 \cdot B_{p}-1$
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute and open $[[C]]=[[R]] \cdot\left[\left[R^{\prime}\right]\right]$.
(3) Each miner $\mathcal{M}_{p \in\{0,1,2\}}$ computes and sets

$$
\left[\left[R^{-1}\right]\right]=C^{-1} \cdot\left[\left[R^{\prime}\right]\right] .
$$

The total protocol costs 2 rounds.

Unbounded Fan-in Multiplication

Server's input: Data shares in $\mathbb{Z}_{2^{32}}^{*}:\left[\left[X_{1}\right]\right], \cdots,\left[\left[X_{k}\right]\right]$
Server's output: Data shares in $\mathbb{Z}_{2^{32}}^{*}:\left[\left[\prod_{i=1}^{k} X_{i}\right]\right]$
(1) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ generate random invertible pairs $\left(\left[\left[R_{0}\right]\right],\left[\left[R_{0}^{-1}\right]\right]\right), \cdots,\left(\left[\left[R_{k}\right]\right],\left[\left[R_{k}^{-1}\right]\right]\right)$ by using sub-protocol in previous section.
(2) For $i \in\{1, \cdots, k\}$, all miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute and open $\left[\left[A_{i}\right]\right]=\left[\left[R_{i-1}\right]\right] \cdot\left[\left[X_{i}\right]\right] \cdot\left[\left[R_{i}^{-1}\right]\right]$.
(3) Each miner $\mathcal{M}_{p \in\{0,1,2\}}$ computes $B=\prod_{i=1}^{k} A_{i} \quad\left(=R_{0} \cdot \prod_{i=1}^{k} X_{i} \cdot R_{k}^{-1}\right)$.
(4) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ compute $[[S]]=\left[\left[R_{0}^{-1}\right]\right] \cdot B \cdot\left[\left[R_{k}\right]\right]$.

The total protocol costs $3+2$ rounds.

Outline

High degree Conjunction

Server's input: $\left[\left[X_{1}\right]\right], \cdots,\left[\left[X_{k}\right]\right]\left(X_{i} \in\{0,1\}\right)$
Server's output: $\left.[[Y]]=\left[\left[X_{1} \wedge \cdots \wedge X_{k}\right)\right]\right]$
(1) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ computes $[[S]]=\sum_{i=1}^{k}\left[\left[X_{i}\right]\right]$.
(2) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ call Equal sub-protocol to check if $[[S]]=k$ and return the result bit as $[[Y]]$.

This protocol was improved by Margus Niitsoo's comments. It takes the same rounds as equality check protocol, which is 7 rounds. In theory, it is $O(\log \log k)$ rounds protocol, where k is the degree.

Outline

Random Shuffle Protocol

Random Shuffle Protocol

Random Shuffle Protocol

－For $i \in\{1, \cdots, k \log n\}$ ，all miners $\mathcal{M}_{p \in\{0,1,2\}}$ do：
－Split documents into shared bits，for each bit do：
（1）Generate a random number with length n ，and split R_{p} to bits， denoting as $R_{p}[0], \cdots, R_{p}[n-1]$ ．
（2）Call one bit share conversion sub－protocol to compute additive shares：$b_{p}[0], \cdots, b_{p}[n-1]$ ．
（3）Call (m, n)－PIR sub－protocol to select＇documents＇to set 1 according to bits $b[j](, b[j]=1$ means select，）and to select the rest＇documents＇to set 0 according to bits $(1-b[j])$ ．
－All miners $\mathcal{M}_{p \in\{0,1,2\}}$ combine the shared documents from shared bits．
$O\left(k \log ^{2} n\right)$ rounds，given that (m, n)－PIR sub－protocol takes $\log n$ rounds．$O(n \log n)$ computation，given that (m, n)－PIR sub－protocol costs $O(n)$ computation regardless m ．

(m,n)-PIR Protocol

Client's input: $\vec{B}=\left\{b_{0}, \cdots, b_{n-1}\right\}$.

- For $j \in\{1, \cdots, n-1\}$, all miners $\mathcal{M}_{p \in\{0,1,2\}}$ do:
(1) Compute $\left[\left[Q_{j}\right]\right]=\sum_{w=0}^{j-1}\left[\left[b_{j}\right]\right]$.
(2) Call bit decomposition sub-protocol to split $\left[\left[Q_{j}\right]\right]$ into bits, denoting as $\left[\left[Q_{j}[0]\right]\right], \cdots,\left[\left[Q_{j}[t]\right]\right]$, where $t=\lfloor\log n]$.
(3) Set $\left[\left[s_{0}\right]\right]=\left[\left[b_{0}\right]\right]$. Compute and set

$$
\left[\left[s_{j}\right]\right]=\left[\left[b_{j}\right]\right] \cdot \Pi_{v=0}^{t}\left(\left[\left[Q_{j}[v]\right]\right] \cdot 2^{2 v}\right) \cdot\left(\text { i.e. }\left[\left[s_{j}\right]\right]=\left[\left[b_{j}\right]\right] \cdot 2^{\left[\left[Q_{j}\right]\right.} .\right)
$$

- Denote the selection vector $[[\vec{S}]]=\left\{\left[\left[s_{0}\right]\right], \cdots,\left[\left[s_{n-1}\right]\right]\right\}$ and document vector $[[\overrightarrow{D[k]}]]=\left\{\left[\left[d_{0}[k]\right]\right], \cdots,\left[\left[d_{n-1}[k]\right]\right]\right\}$. For $k \in\{0, \cdots,|D|-1\}$, all miners compute
$[[R[k]]] \leftarrow[[\vec{S}]] \cdot[[\overrightarrow{D[k]}]]^{\top}$. Then split $[[R[k]]]$ to bits.

Random Shuffle Protocol

Perfect Random Shuffle Protocol

(1) For set size $i=\left\{n, n / 2, n / 2^{2}, \cdots, 1\right\}$, all miners $\mathcal{M}_{p \in\{0,1,2\}}$ do:
(1) Create array $A_{p}[i]=0$. Pick $i / 2$ positions randomly, and set them to 1 . Now $A_{p}[i]$ can be regarded as random number with hamming weight exactly $i / 2$.
(2) For $u=0,1,2$, miner \mathcal{M}_{u} shares $A_{u}[i]$ bitwisely: $[[b[0]]], \cdots,[[b[i-1]]]$.
(1) Call (m, n)-PIR sub-protocol to select 'documents' to set 1 according to bits $b[j](, b[j]=1$ means select,) and to select the rest 'documents' to set 0 according to bits ($1-b[j]$).
(3) All miners $\mathcal{M}_{p \in\{0,1,2\}}$ will execute recursively in a parallel for sets 0 and 1 for next round.

Thank You! Questions?

