Järgmine kord, s.t. 6. oktoobril loengut ei toimu. Ma pole sel ajal Eestis.

Sorteerimine:

Antud massiiv a_1, \ldots, a_n . Massiivi elemendiks on

 $\langle v \tilde{o} t i, \text{kirje} \rangle$.

Massiivi elemendid tuleb ümber järjestada nii, et võtmed oleksid mittekahanevas järjekorras.

Kui seejuures võrdsete võtmetega elementide järjekord ei muutu, siis on sorteerimismeetod *stabiilne*.

Kõiki sorteerimismeetodeid on võimalik stabiliseerida, lisades massiivi elemendile täiendava välja:

$$\langle v \, \tilde{o} \, ti, \, orig, \, \text{kirje} \rangle$$
,

omistades enne sorteerimist a[i].orig := i ning lugedes sorteerides võtmeks paari $(v \tilde{o}ti, orig)$ (leksikograafiliselt järjestatuna).

Edasises tähistab

- $a_i < a_j$ massiivi i-nda ja j-nda elemendi võtmete võrdlemist;
- $a_i :=: a_j$ massiivi *i*-nda ja *j*-nda elemendi vahetamist.

Sorteerimine pistemeetodil (joonised 4.1 ja 4.2):

Kui lõik a_1, \ldots, a_i on juba sorteeritud, siis leia a_{i+1} jaoks õige koht a_1, \ldots, a_i seas ja pista ta sinna vahele (i muutub 1-st (n-1)-ni). Pistemeetod on stabiilne, kui "õige koht" on parempoolseim võimalik.

Keerukus:

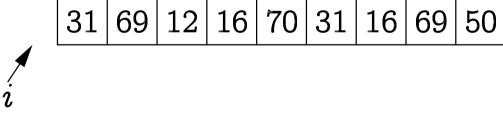
- Välimist tsüklit täidetakse n-1 korda.
- a_{i+1} -le koha otsimine ja ruumi tegemine võtab aega $\Theta(i)$:
 - kui a on massiiv, siis ruumi tegemine nõuab $\Theta(i)$ elemendi nihutamist (joonis 4.1);
 - kui a on list, siis koha otsimisel tuleb $\Theta(i)$ elementi läbi vaadata (joonis 4.2).

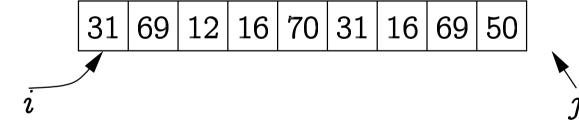
Kokku seega $\Theta(n^2)$.

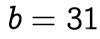
Sorteerimine kiirmeetodil (joonised 4.4 ja 4.5):

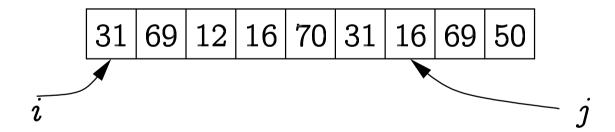
- ullet Vali mingi võtmeväärtus b (näiteks $b:=a_1$).
- Kogu kõik kirjed, mis on $\leq b$, massiivi algusesse, ja kirjed, mis on $\geq b$, massiivi lõppu (prots. jaotada).
 - Otsi samaaegselt massiivi algusest alates suuri kirjeid ja lõpust alates väikesi kirjeid.
 - Kui on leitud algusosast suur kirje ja lõpuosast väike kirje, siis vaheta nad ära ja otsi edasi.
 - Kui otsimisjärgedega massiivi keskel kokku saadakse, siis on valmis.
- Sorteeri mõlemad massiivipooled.

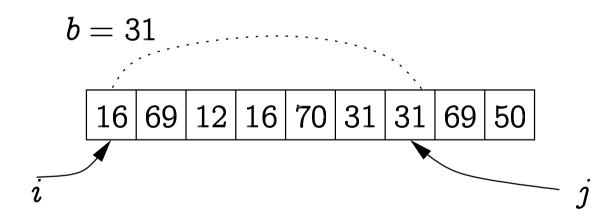
$$b=31$$

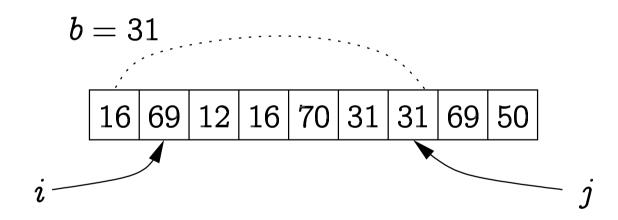


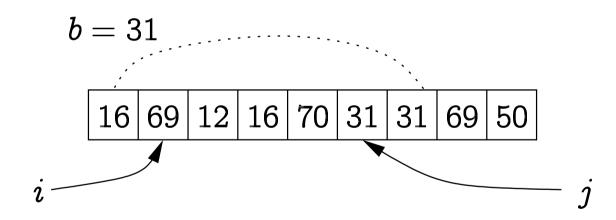


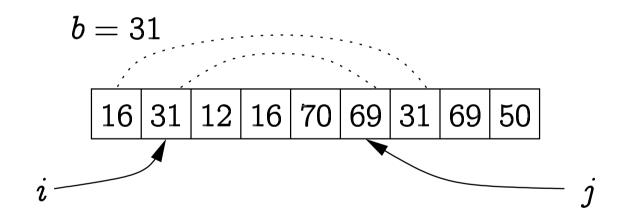


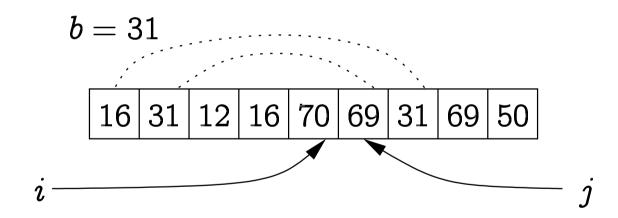


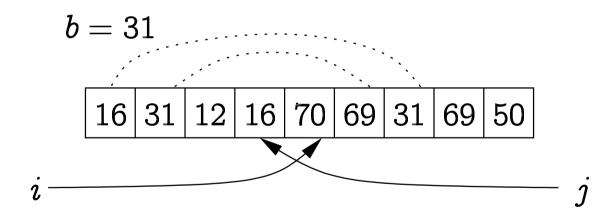


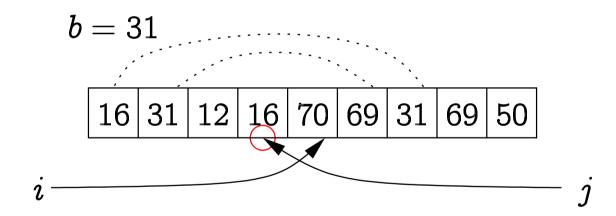












Kiirmeetod ei sobi lihtahela sorteerimiseks, sest protseduuris *jaotada* tuleb meil ahelat läbida mõlemat pidi.

Küll aga sobib kiirmeetod topeltseotud ahela sorteerimiseks (ahela, kus igast tipust on viit järgmisele ja eelmisele tipule).

Kiirmeetod on ebastabiilne.

Keerukus halvimal juhul:

Protseduur jaotada vaatab massiivi kõik elemendid korra läbi — keerukus $\Theta(n)$.

Kuna ühte poolde võib jääda ainult üks kirje (ja teise (n-1) kirjet), siis

$$T(n)=T(1)+T(n-1)+\Theta(n)$$
.

Kuna $T(1) = \Theta(1)$, siis

$$T(n) = T(n-1) + \Theta(n) = \sum_{i=1}^n \Theta(i) = \Theta(\sum_{i=1}^n i) = \Theta(n^2)$$
 .

Samas parimal juhul, kui jaotamine toimub alati keskelt, siis

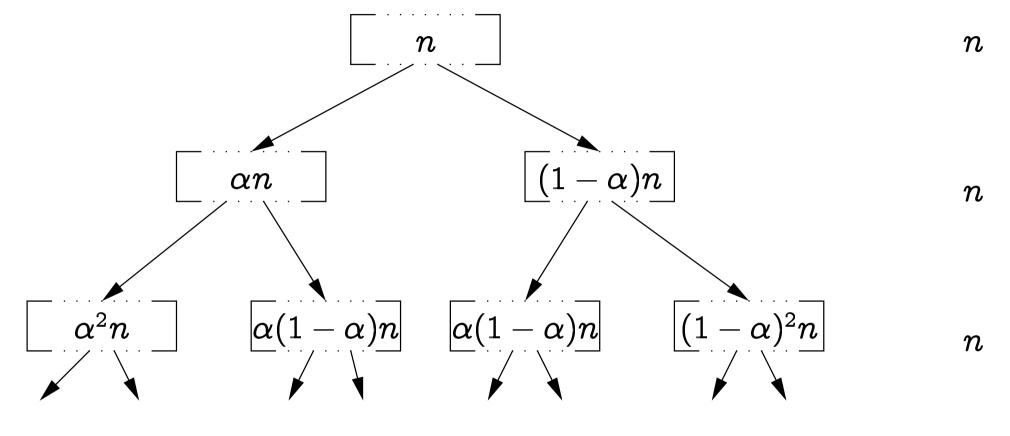
$$T(n) = 2T(n/2) + \Theta(n)$$

ja vastavalt põhiteoreemile (1. loeng), $T(n) = \Theta(n \log n)$.

Ka juhul, kui jaotamine toimub alati proportsioonis $\alpha:(1-\alpha)$, on keerukus logaritmiline. (α on suvaline reaalarv 0 ja 1 vahelt).

Tõepoolest, vaatame rekursioonipuud:

Töö hulk antud tasemel:



. .

 $\leq n$

tasemete arv: $\max(\log_{1/\alpha} n, \log_{1/(1-\alpha)} n) = \Theta(\log n)$

Randomiseeritud kiirmeetod: jaotamisel vali võtmeväärtuseks juhuslikult üks sorteeritava massiivi elementidest.

randomiseeritud_jaotada(a, i, j) on

- 1 Vali p juhuslikult hulgast $\{i, i+1, \ldots, j\}$
- $2 \quad a_i :=: a_p$
- 3 return jaotada(a, i, j) --- vt. joonist 4.4 Juhuslikult valides peab igal elemendil olema sama suur tõenäosus valituks saada.

randomiseeritud_kiir_sorteerida(a, i, j) on

- 1 if $i \geqslant j$ then return
- $2 \quad k := \text{randomiseeritud} \quad \text{jaotada}(a, i, j)$
- 3 randomiseeritud kiir sorteerida(a, i, k)
- 4 randomiseeritud_kiir_sorteerida(a, k + 1, j)

Randomiseeritud kiirmeetodi tööaeg ei sõltu sisendmassiivi kirjete järjekorrast.

Tõepoolest, protseduur jaotada võtab "veelahkmeks" esimese elemendi, protseduur randomiseeritud_jaotada seega juhuslikult ükskõik millise elemendi.

Leiame randomiseeritud kiirmeetodi keskmise tööaja T(n).

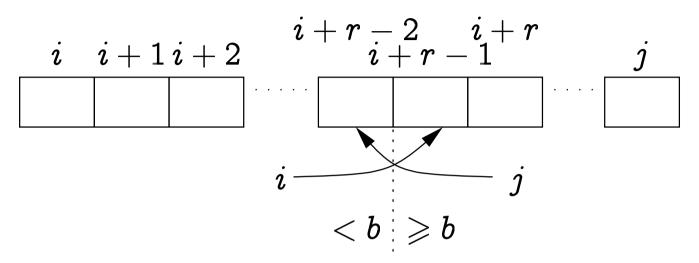
Analüüsi lihtsustamiseks loeme, et kõik massiivielemendid (s.t. kõigi elementide võtmed) on erinevad.

Kui $k := \text{randomiseeritud_jaotada}(a, i, j)$, siis k väärtuseks võib saada $i, i+1, \ldots, j-1$. Millise tõenäosusega saab k ühe või teise väärtuse?

Kui veelahkmeks $b = a_i$ on protseduuris jaotada (joonis 4.4) vähim element lõigus i...j, siis on lõpuks i ja j väärtuseks esialgne i väärtus, s.t. k = i.

Kui veelahkmeks $b = a_i$ on suuruselt r-s element, kus $r \in \{2, \ldots, j - i + 1\}$, siis kõigepealt vahetatakse omavahel a_i ja kõige kaugemal asuv b-st väiksem element.

Seis vahetult enne jaotada-st väljumist:



Tagastatakse j.

k väärtuseks saab i + r - 2.

Tõenäosus, et k=i, on $\frac{2}{j-i+1}$.

Tõenäosus, et k on võrdne mingi muu fikseeritud väärtusega lõigust i+1...j-1, on $\frac{1}{j-i+1}$.

Meil on

$$T(n) = \sum_{i=1}^{n-1} \lambda_i \cdot ig(T(i) + T(n-i)ig) + \Theta(n),$$

kus λ_i on tõenäosus, et ülesande suurusega n lahendamiseks peame me lahendama alamülesanded suurusega i ja n-i.

Eelneva arutelu põhjal $\lambda_1=2/n$ ja $\lambda_i=1/n$, kui $i\neq 1$.

$$T(n) = rac{1}{n} \left(T(1) + T(n-1) + \sum_{i=1}^{n-1} ig(T(i) + T(n-i) ig)
ight) + \Theta(n)$$

Siin $\frac{1}{n}(T(1) + T(n-1))$ on O(n), sest T(n-1) on $O(n^2)$. See järeldub eespool olnud halvima juhu analüüsist.

Võime lugeda, et liige $\frac{1}{n}(T(1) + T(n-1))$ on liikme $\Theta(n)$ sees. Siis

$$T(n) = rac{1}{n} \sum_{i=1}^{n-1} ig(T(i) + T(n-i) ig) + \Theta(n) = rac{2}{n} \sum_{i=1}^{n-1} T(i) + \Theta(n) \;\;.$$

Näitame, et mingite konstantide a ja b jaoks $T(n) \leq an \log n + b$. Tõestus on induktsiooniga üle n.

Kui n = 1, siis tähendab see võrratus, et $T(1) \leq b$. Me võime valida b piisavalt suure selleks, et see võrratus kehtiks.

Kui n > 1, siis

$$T(n) = rac{2}{n} \sum_{i=1}^{n-1} T(i) + \Theta(n) \leqslant rac{2}{n} \sum_{i=1}^{n-1} (ai \log i + b) + \Theta(n) = rac{2a}{n} \sum_{i=1}^{n-1} i \log i + rac{2b}{n} (n-1) + \Theta(n) \; .$$

Hindame summat $\sum_{i=1}^{n-1} i \log i$.

Järgnev hinnang on liiga jäme:

$$\sum_{i=1}^{n-1} i \log i \leqslant \sum_{i=1}^{n-1} i \log n = \log n \frac{n(n-1)}{2} \leqslant \frac{1}{2} n^2 \log n$$
.

Seda hinnangut kasutades saame

$$T(n)\leqslant rac{2a}{n}\sum_{i=1}^{n-1}i\log i+rac{2b}{n}(n-1)+\Theta(n)\leqslant \ an\log n+b+ig(rac{n-2}{n}b+\Theta(n)ig)
otin an\log n+b \ .$$

Järgnevas hindame summat $\sum_{i=1}^{n-1} i \log i$ täpsemalt.

$$egin{aligned} \sum_{i=1}^{n-1} i \log i &= \sum_{i=1}^{\lceil n/2
ceil - 1} i \log i + \sum_{i=\lceil n/2
ceil}^{n-1} i \log i \leqslant \ &\sum_{i=1}^{\lceil n/2
ceil - 1} i \log (n/2) + \sum_{i=\lceil n/2
ceil}^{n-1} i \log n = \ &(\log n - 1) \sum_{i=1}^{\lceil n/2
ceil - 1} i + \log n \sum_{i=\lceil n/2
ceil}^{n-1} i = \ &\log n \sum_{i=1}^{n-1} i - \sum_{i=1}^{\lceil n/2
ceil - 1} i \leqslant \ &\log n \cdot rac{n(n-1)}{2} - rac{1}{2} \left(rac{n}{2} - 1
ight) rac{n}{2} \leqslant rac{1}{2} n^2 \log n - rac{1}{8} n^2 \end{aligned}$$

Seda hinnangut kasutades saame

$$egin{align} T(n) \leqslant rac{2a}{n} \sum_{i=1}^{n-1} i \log i + rac{2b}{n}(n-1) + \Theta(n) \leqslant \ rac{2a}{n} \left(rac{1}{2} n^2 \log n - rac{1}{8} n^2
ight) + rac{2b}{n}(n-1) + \Theta(n) \leqslant \ an \log n - rac{a}{4} n + 2b + \Theta(n) = an \log n + b + \left(\Theta(n) + b - rac{a}{4} n
ight) \ . \end{align}$$

Me võime valida a piisavalt suure selleks, et $\frac{a}{4}n\geqslant \Theta(n)+b$. Siis $T(n)\leqslant an\log n+b$.

S.t. randomiseeritud kiirmeetodi keskmine tööaeg on $\Theta(n \log n)$.

Sorteerimine ühildusmeetodil (joonis 4.6):

- Jaga massiiv kaheks (enam-vähem) võrdse suurusega pooleks.
- Sorteeri mõlemad pooled.
- Ühilda need sorteeritud pooled.

Sobib lihtahelate sorteerimiseks, on stabiilne.

Keerukus: $T(n) = 2T(n/2) + \Theta(n)$, sest ühildamise keerukus on $\Theta(n)$. Põhiteoreemi järgi siis $T(n) = \Theta(n \log n)$.

Sorteerimine kuhjameetodil (joonis 3.12):

Olgu kuhjaomaduseks "ühegi tipu võti pole suurem kui ühegi tema järglase võti" (s.t. vastupidine eelmise loenguga). Siis on kahendkuhja juurtipus kõige väiksema võtmeväärtusega kirje.

Meetod:

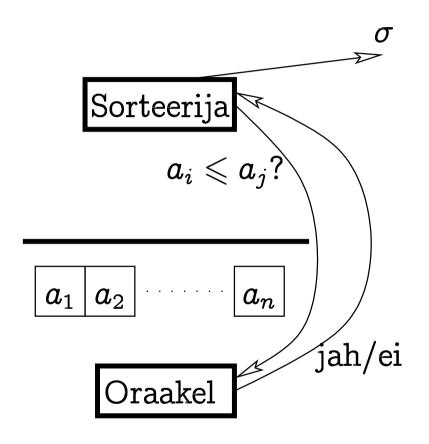
- Tee massiivist kuhi (joonis 3.11).
- Võta kuhjast vähimat elementi senikaua, kuni kuhi tühjaks saab.

Keerukus: esimene samm on $\Theta(n)$, teises sammus tuleb n korda teha võtmist, mille keerukus on $\Theta(\log n)$. Kokku $\Theta(n \log n)$.

Erinevate sorteerimismeetodite ajalises keerukuses on Θ sisse peidetud konstandid erineva suurusega, seetõttu võivad väikestel sisenditel asümptootiliselt aeglasemad algoritmid kiiremad olla (vt. joonis 4.5).

Paari loengu pärast näeme, kuidas panna kiirmeetod tööle halvimal juhul ajaga $\Theta(n \log n)$ ("veelahe" tuleb hästi valida; see on ka deterministlikult võimalik).

Vaadeldud sorteerimismeetodid põhinesid elementide võrdlemisel:



Lõpuks peab sorteerija väljastama sellise σ , et $a_{\sigma(1)} \leqslant a_{\sigma(2)} \leqslant \cdots \leqslant a_{\sigma(n)}$.

Mitu võrdlemist on halvimal juhul vähemalt vaja?

Olgu hulgas X n elementi.

Alice on välja valinud mingi $x \in X$. Bob tahab teada, millise elemendi Alice valis.

Alice on nõus vastama selle elemendi kohta käivatele kas-küsimustele.

Mitu küsimust peab Bob halvimal juhul esitama, et teada saada, millise elemendi Alice valis?

Kui Bob pole veel midagi küsinud, siis võib elemendiks x olla (Bobi jaoks) ükskõik milline X-i element, s.t. on n võimalust.

Kui Bob on esitanud ühe küsimuse, siis halvemal juhul on veel järgi vähemalt n/2 võimalust.

Kui Bob on esitanud kaks küsimust, siis halvemal juhul on veel järgi vähemalt n/4 võimalust.

Kui Bob on esitanud k küsimust, siis halvemal juhul on veel järgi vähemalt $n/2^k$ võimalust.

Seega peab küsimusi olema vähemalt $\lceil \log n \rceil$.

Sorteerimisel on võimaluste arv n!, neist tuleb välja valida üks (kui kõik sorteeritavad elemendid on erinevad).

Halvemal juhul on siis võrdlemisi vähemalt

$$egin{aligned} \log n! &= \sum_{i=1}^n \log i \geqslant \sum_{i=\lceil n/2
ceil}^n \log i \geqslant \sum_{i=\lceil n/2
ceil}^n \log \lceil n/2
ceil \geqslant \ & \lceil n/2
ceil \log \lceil n/2
ceil = \Omega(n \log n) \enspace . \end{aligned}$$

(Samas muidugi ka $\log n! \leqslant \log n^n = n \log n$.)

Kui kasutada ka midagi muud peale elementide võrdlemiste, siis õnnestub sorteerida kiiremini kui keerukusega $\Theta(n \log n)$.

Seejuures tuleb sorteeritavate võtmete kohta midagi eeldada. Samuti kasutavad kõik meetodid täiendavalt mälu suuruses $\Theta(n)$.

Loendamismeetodil eeldatakse, et kõik võtmed on täisarvud hulgast $\{1, \ldots, k\}$. Kirjete a_1, \ldots, a_n sorteerimiseks vajatakse täiendavalt sama suurt massiivi b ja võtmemassiivi c suurusega k.

- Välja c_i väärtuseks võta võtme i esinemiste arv massiivis a.
 - Iga $i \in \{1, \ldots, n\}$ jaoks suurenda c_{a_i} väärtust ühe võrra.
- Välja c_i väärtuseks võta võtmete $\leq i$ esinemiste arv massiivis a.
 - Kui c_{i-1} on võtmete $\leqslant (i-1)$ esinemiste arv ja c_i võtmete i esinemiste arv, siis võta $c_i := c_i + c_{i-1}$.
 - -i muutub 2-st k-ni.

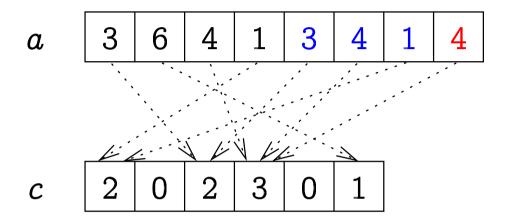
. . .

- Massiivi b väljadeks $c_{x-1} + 1$ kuni c_x võta massiivi a kirjed võtmetega x.
 - Iga $i \in \{1, \ldots, n\}$ jaoks võta $b_{c_{a_i}}$ väärtuseks a_i ning vähenda c_{a_i} väärtust ühe võrra.
 - Kui seda teha i kahanemise järjekorras, siis on meetod stabiilne.
- Tagasta *b*.

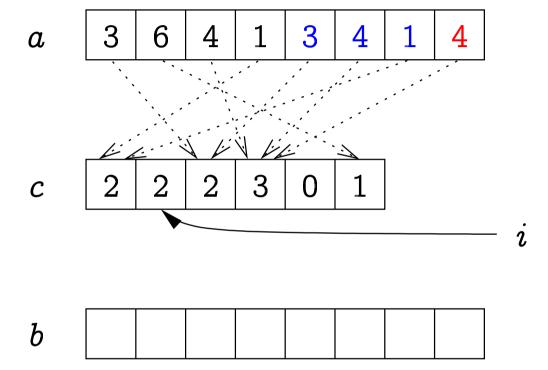
a 3 6 4 1 3 4 1 4

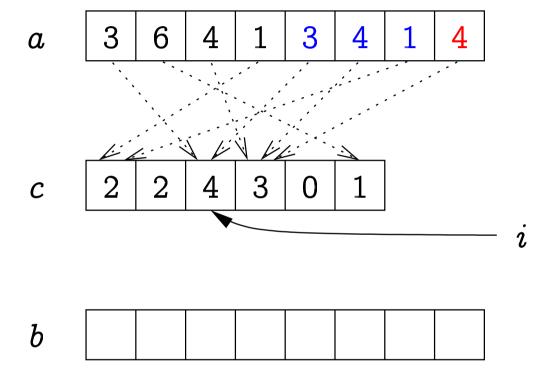
 $c \mid 0 \mid 0 \mid 0 \mid 0 \mid 0 \mid 0$

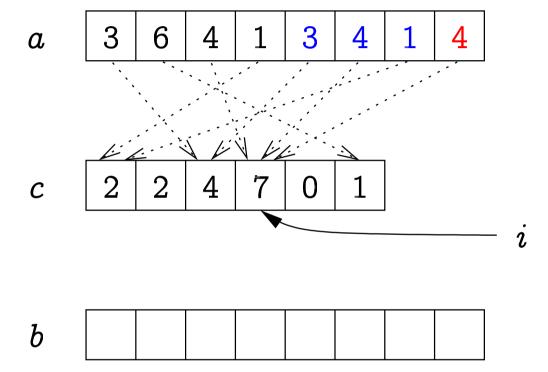
b

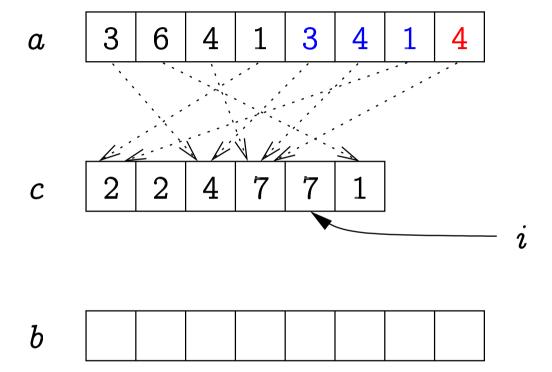


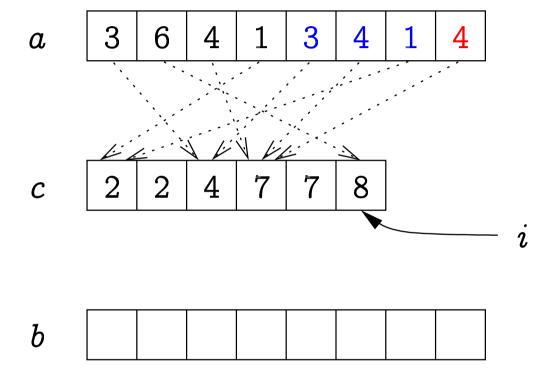
b | | | | | | | |

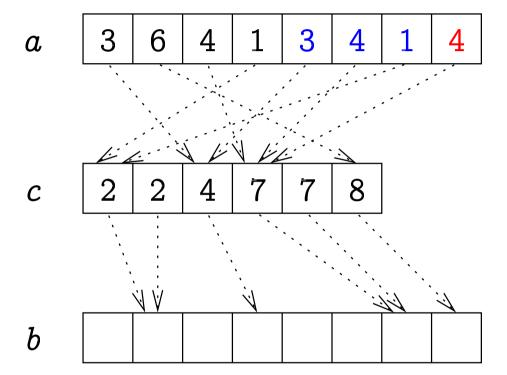


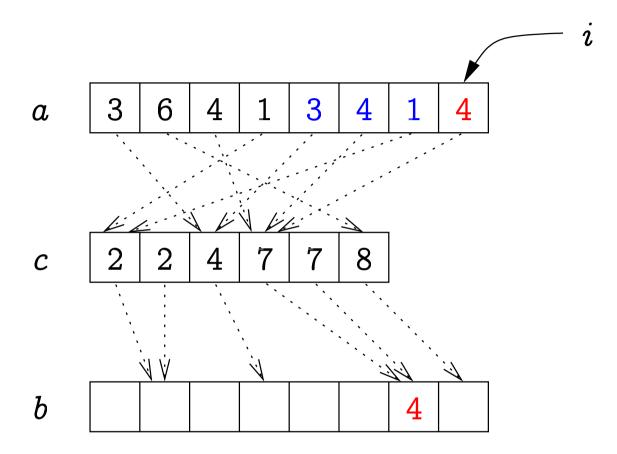


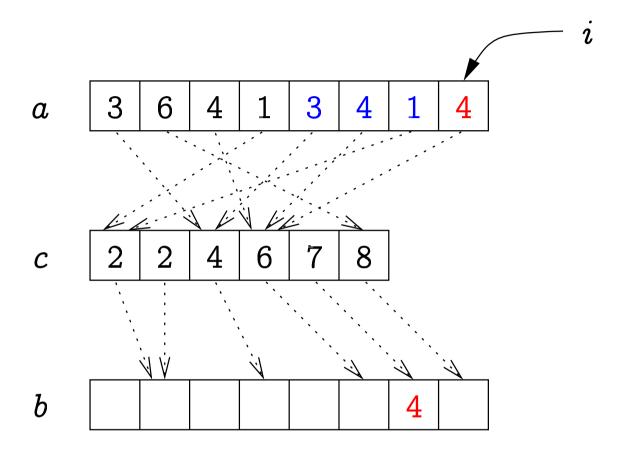


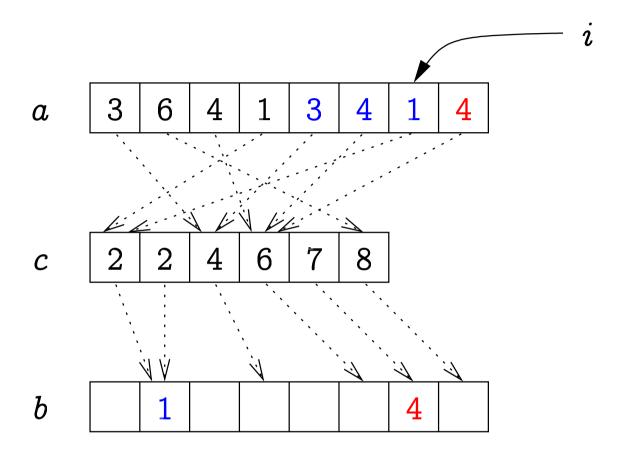


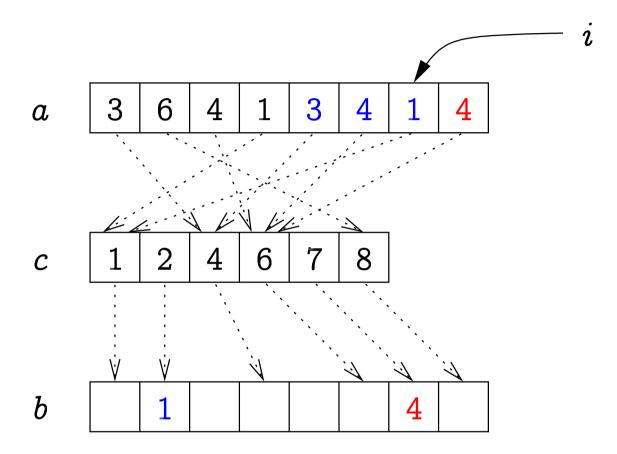


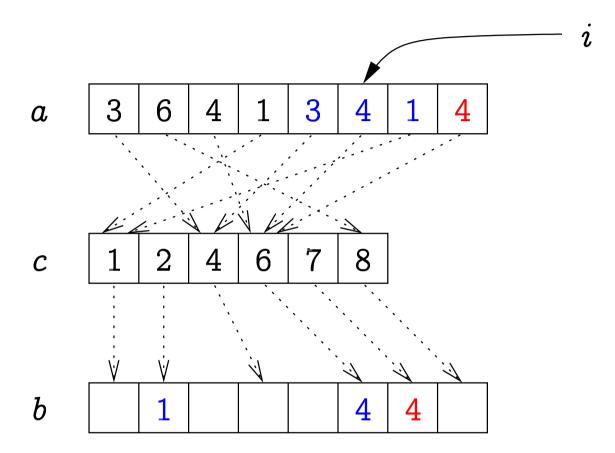


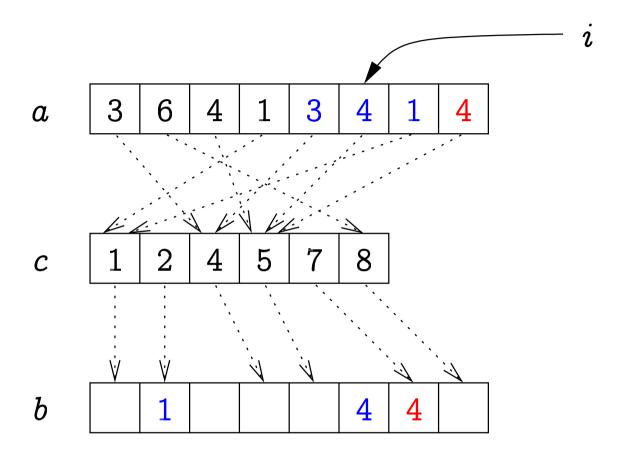


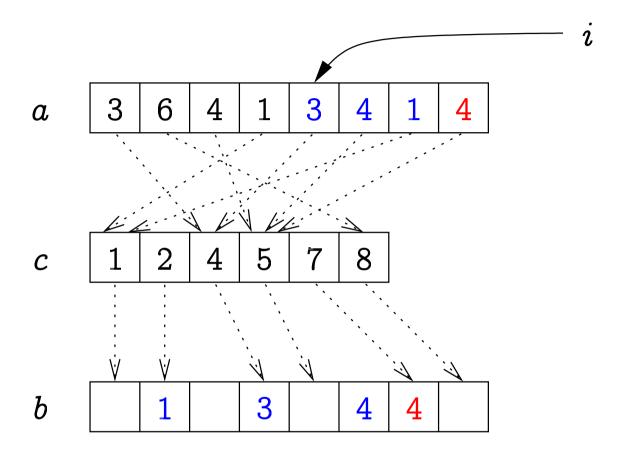


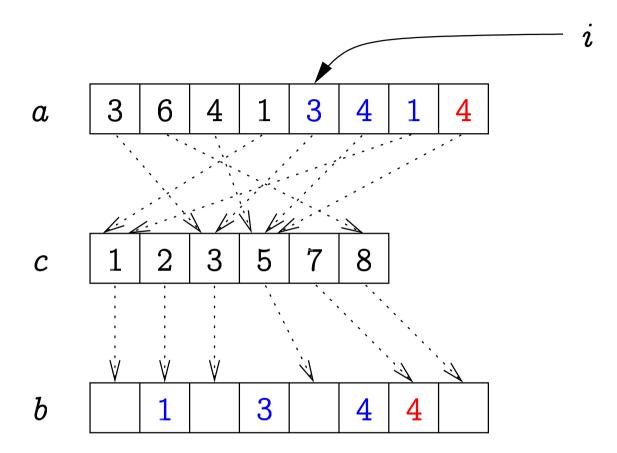


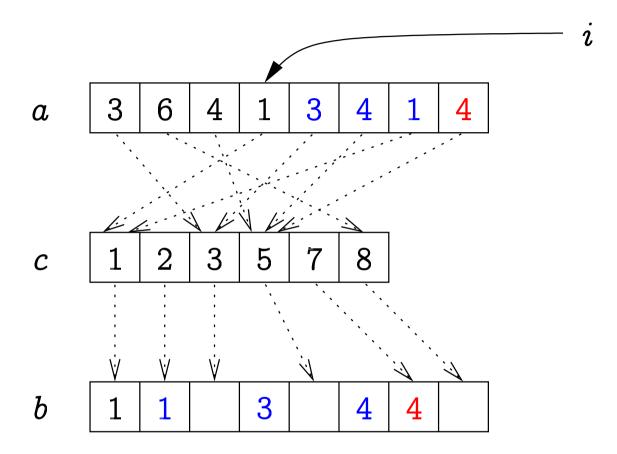


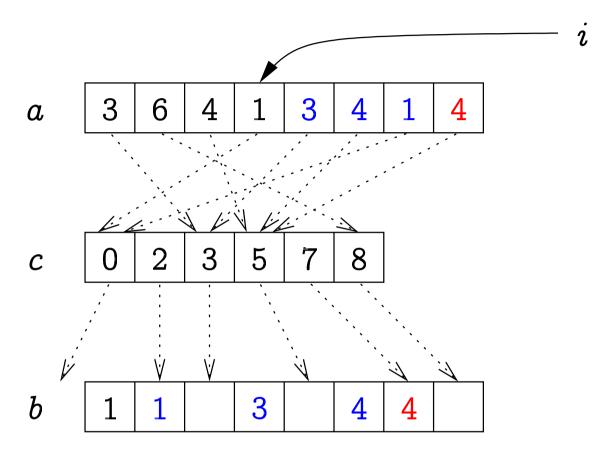


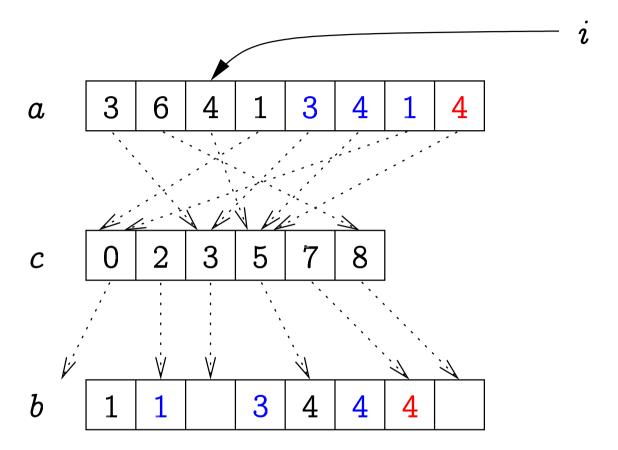


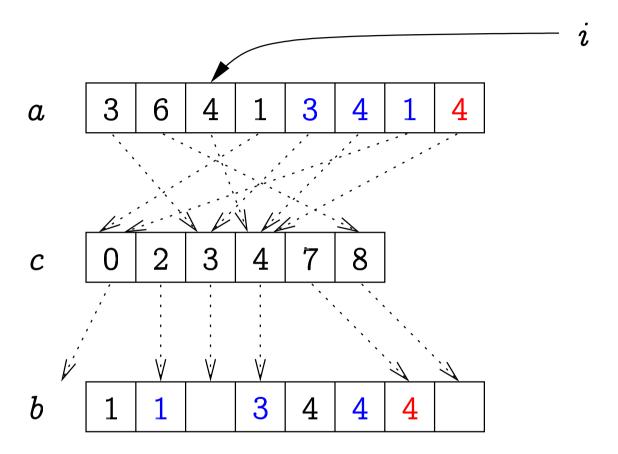


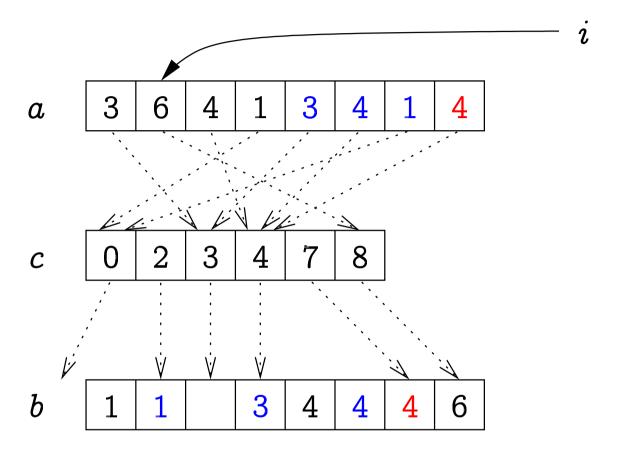


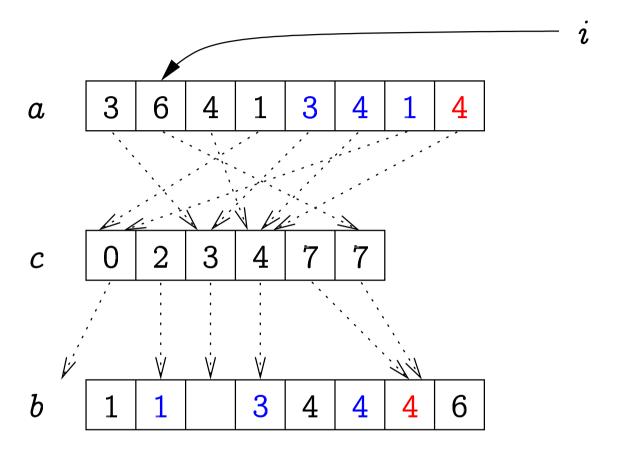


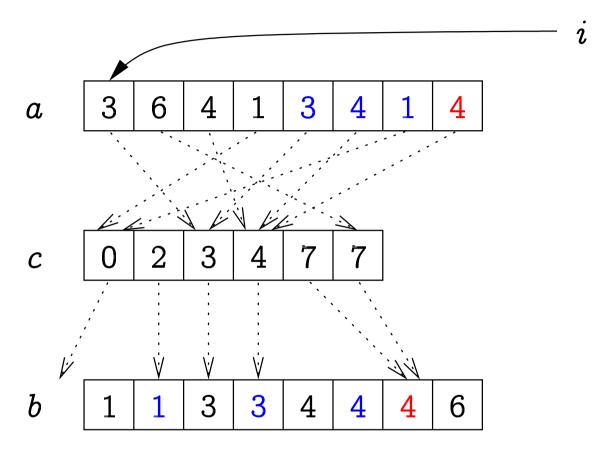


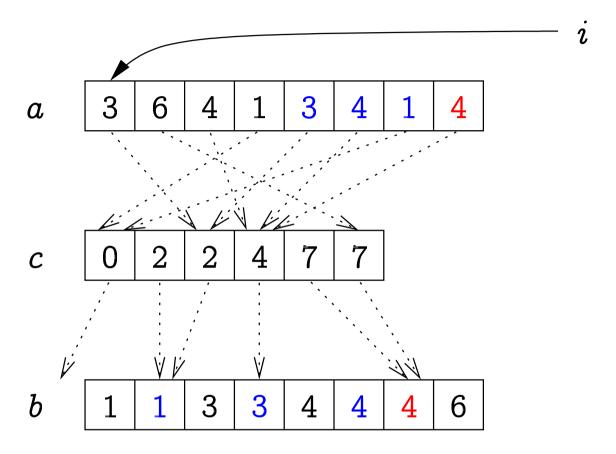












Positsioonimeetodil eeldatakse, et võti on kujul

$$(v\~oti_1, v\~oti_2, \ldots, v\~oti_d)$$

ning järjestus on defineeritud leksikograafiliselt.

Algoritm:

- 1 for j = d downto 1 do
- Sorteeri a võtme $v \tilde{o} t i_j$ järgi, kasutades stabiilset meetodit.

Lause. Tsüklis, rea 2 järel on a sorteeritud

$$(v\~oti_j, v\~oti_{j+1}, \ldots, v\~oti_d)$$

järgi.

Tõestus induktsiooniga. Baas, j = d on ilmne.

Samm. Olgu a sorteeritud

$$(v\~oti_{j+1}, v\~oti_{j+2}, \ldots, v\~oti_d)$$

järgi. Sorteerime ta stabiilselt $v \tilde{o} t i_j$ järgi.

Vaatame kirjeid a_k ja a_l . Kui $a_k.v\tilde{o}ti_j$ ja $a_l.v\tilde{o}ti_j$ on erinevad, siis pärast sorteerimist $v\tilde{o}ti_j$ järgi asuvad nad õiges järjekorras.

Kui $a_k.v \tilde{o}ti_j = a_l.v \tilde{o}ti_j$, siis pärast sorteerimist on nad samas järjekorras kui enne. Induktsiooni eelduse kohaselt olid nad enne positsioonide $j+1,\ldots,d$ järgi sorteeritud. Seega on nad õiges järjekorras.

Kimbumeetodil eeldatakse, et võtmed on reaalarvud vahemikust 0 (kaasa arvatud) kuni 1 (välja arvatud). Samuti eeldatakse, et nad on ühtlaselt ja üksteisest sõltumatult jaotunud.

Ühtlane jaotus tähendab, et kui $0 \leqslant \alpha \leqslant \beta < 1$, siis kui valime juhuslikult mingi a ja seejärel mingi $i \in \{1, \ldots, n\}$ (tõenäosus, et i saab mingi konkreetse väärtuse, on 1/n), siis on sündmuse $\alpha \leqslant a_i \leqslant \beta$ tõenäosus $\frac{1}{\beta-\alpha}$.

Algoritm:

- Initsialiseerime n lihtahelat p_0, \ldots, p_{n-1} .
- ullet Käime a läbi ning lisame elemendi a_i ahelasse $p_{\lfloor na_i \rfloor}$.
- Sorteerime kõik *n* lihtahelat.
- Konkateneerime nad üheks lihtahelaks.

Keerukus:

Esimene, teine ja neljas samm töötavad ajaga $\Theta(n)$.

Ühes ahelas on keskmiselt 1 element.

Loeme, et sorteerimine toimub $\Theta(n^2)$ -keerukusega meetodiga. Leiame ühe ahela sorteerimise keskmise keerukuse.

Olgu n_i ahela p_i pikkus. Tõenäosus, et mingi a element on ahelas p_i on 1/n ja erinevate elementide ahelas p_i olemise tõenäosused üksteisest ei sõltu. (ühtlane jaotus!)

Seega on iga $1 \leqslant j_1 < j_2 < \cdots < j_k \leqslant n$ jaoks tõenäosus, et täpselt a_{j_1}, \ldots, a_{j_k} ahelasse p_i satuvad $\left(\frac{1}{n}\right)^k \cdot \left(\frac{n-1}{n}\right)^{n-k}$.

Need j_1, \ldots, j_k saab valida $\binom{n}{k}$ erineval viisil, s.t.

$$\Pr[n_i = k] = \left(\frac{1}{n}\right)^k \cdot \left(\frac{n-1}{n}\right)^{n-k} \cdot \binom{n}{k} = \binom{n}{k} \frac{(n-1)^{n-k}}{n^n}$$
.

Sorteerimise keskmine keerukus on

$$\sum_{k=0}^n inom{n}{k} rac{(n-1)^{n-k}}{n^n} \Theta(k^2) = \Theta\left(rac{1}{n^n} \sum_{k=0}^n inom{n}{k} k^2 (n-1)^{n-k}
ight) \ .$$

Kuna
$$k \cdot \binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{1\cdot 2\cdots(k-1)} = n \cdot \binom{n-1}{k-1}$$
, siis

$$k^2inom{n}{k}=nkinom{n-1}{k-1}=n(k-1)inom{n-1}{k-1}+ninom{n-1}{k-1}=\ n(n-1)inom{n-2}{k-2}+ninom{n-1}{k-1}\ .$$

Siin loeme, et kui m < 0, siis $\binom{n}{m} = 0$.

$$rac{1}{n^n}\sum_{k=0}^n inom{n}{k} k^2 (n-1)^{n-k} = \ rac{n-1}{n^{n-1}}\sum_{k=2}^n inom{n-2}{k-2} (n-1)^{n-k} + rac{1}{n^{n-1}}\sum_{k=1}^n inom{n-1}{k-1} (n-1)^{n-k} = \ rac{(n-1)n^{n-2}}{n^{n-1}} + rac{n^{n-1}}{n^{n-1}} = 2 - rac{1}{n} < 2 \ .$$

S.t. ühe ahela sorteerimine käib keskmiselt konstantse ajaga ning n ahela sorteerimine keskmiselt ajaga $\Theta(n)$.

Tõenäosusteooriast mõningaid teadmisi omades oleks see tuletus lihtsam olnud...