Olgu antud (reaalarvu)maatriksid A_1, \ldots, A_n . Olgu maatriksi A_i dimensioonid $d_{i-1} \times d_i$. Mitu arvude korrutamist tuleb teha korrutise $A_1 \cdots A_n$ leidmisel? $m \times n$ ja $n \times p$ maatriksite korrutamisel tekib $m \times p$ maatriks, arvude korrutamisi tuleb mnp.

Kolme maatriksi korral (A_1, A_2, A_3) võib nende korrutist leida kahel viisil: $(A_1A_2)A_3$ ja $A_1(A_2A_3)$. Mõlemad annavad sama tulemuse (maatriksite korrutamine on assotsiatiivne).

Esimesel juhul on arvude korrutamiste arv $d_0d_1d_2 + d_0d_2d_3$. Teisel juhul on arvude korrutamiste arv $d_1d_2d_3 + d_0d_1d_3$. Need on üldiselt erinevad.

Milline on korrutamiste minimaalne arv? Kuidas seda leida? Mitmel erineval viisil on võimalik avaldises $A_1 \cdots A_n$ sulud paigutada?

Vaatame viimast korrutustehet: $A_1 \cdots A_n = (A_1 \cdots A_k) \cdot (A_{k+1} \cdots A_n).$

Olgu T_i sulupaigutusviiside arv *i* elemendi korrutamisel. Siis *n* elemendi korrutamiseks, kui viimasena korrutatakse $A_1 \cdots A_k$ ja $A_{k+1} \cdots A_n$, on $T_k T_{n-k}$ võimalust.

Seega
$$T_n = \sum_{k=1}^{n-1} T_k T_{n-k}$$
. Peale selle $T_1 = 1$.

 T_n on eksponentsiaalne n suhtes (induktsiooniga on lihtne näidata, et $T_n \ge 2^n T_1$). Kõigi sulupaigutusvõimaluste läbivaatus oleks väga kulukas. Uurime optimaalse korrutamisstrateegia struktuuri. Olguk selline indeks, et viimasena korrutatakse $A_1 \cdots A_k$ ja $A_{k+1} \cdots A_n$.

Sel juhul annab maatriksite A_1, \ldots, A_n optimaalne korrutamisstrateegia meile ka optimaalse korrutamisstrateegia maatriksite A_1, \ldots, A_k ja A_{k+1}, \ldots, A_n jaoks.

Tõepoolest, kui leiduks parem strateegia maatriksite A_1, \ldots, A_k korrutamiseks, siis võiksime $A_1 \cdots A_n$ leidmisel korrutise $A_1 \cdots A_k$ hoopis selle strateegiaga leida (ja muidu kasutada ikka $A_1 \cdots A_n$ leidmise optimaalset strateegiat). Korrutamiste arv väheneks sellest. Olgu $K_{i..j}$ minimaalne vajalik korrutamiste arv $A_i \cdots A_j$ leidmiseks (fikseeritud d_0, d_1, \ldots, d_n jaoks).

 $A_1 \cdots A_n$ leidmiseks minimaalse vajaliku korrutamiste arvu $K_{1..n}$ leidmiseks:

- Leiame $K_{1..1}, K_{1..2}, \ldots K_{1..n-1}$ ja $K_{n..n}, K_{n-1..n}, \ldots K_{2..n}$.
- Leiame, mitu korrutustehet tuleb teha $A_1 \cdots A_k$ ja $A_{k+1} \cdots A_n$ korrutamiseks (iga k jaoks). Vastus: $d_0 d_k d_n$.
- Vajalik korrutamiste arv on

$$\min_{1\leqslant k\leqslant n-1}ig(K_{1..k}+K_{k+1..n}+d_0d_kd_nig)$$
 .

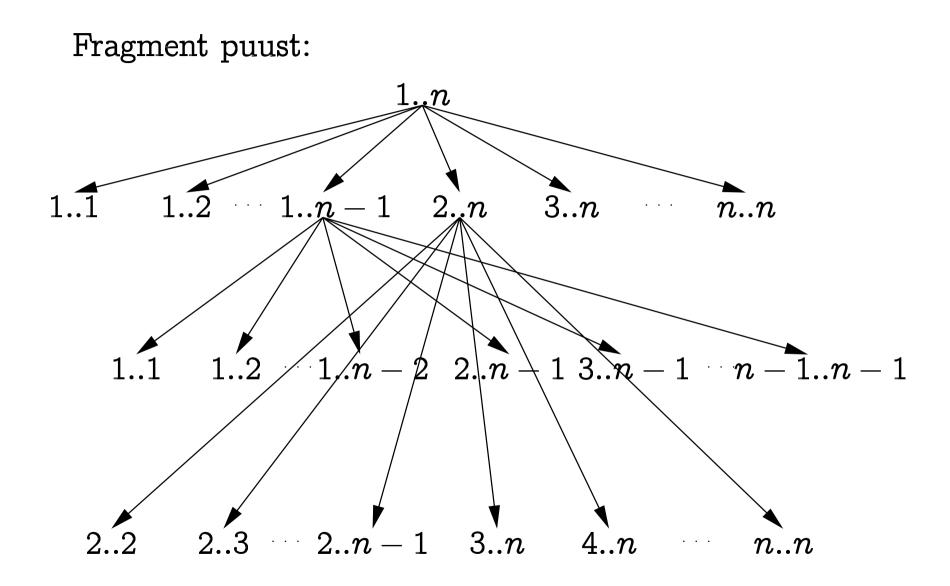
 $\begin{array}{ll} d_0, d_1, \ldots, d_n & - \text{globaalsed muutujad.} \\ \text{leiaK}_{\text{rek}}(i, j) \text{ on} \\ 1 & \text{if } i = j \text{ then return } 0 \\ 2 & tul := \infty \\ 3 & \text{for } k := i \text{ to } j - 1 \text{ do} \\ 4 & tk := \text{leiaK}_{\text{rek}}(i, k) + \text{leiaK}_{\text{rek}}(k + 1, j) + d_{i-1}d_kd_j \\ 5 & \text{if } tk < tul \text{ then } tul := tk \\ 6 & \text{return } tul \end{array}$

Keerukus:

$$egin{aligned} T(1) &= \Theta(1) \ T(n) &= \sum_{k=1}^{n-1} T(k) + T(n-k) + \Theta(n) \end{aligned}$$

Eksponentsiaalne (induktsiooniga on lihtne näidata, et $T(n) \ge 2^{n-1}T(1)$).

Vaatame rekursioonipuud:



Väga palju korratakse.

leiaK_rek argumentideks on i ja j, kus $1 \leq i \leq n$ ja $i \leq j \leq n$. Kokku on $\Theta(n^2)$ erinevat võimalikku sisendit leiaK_rek-le.

Idee: kogume leiaK väärtused tabelisse. Kui on tarvis leida leiaK mingil kohal, kus on juba leitud, siis ei arvuta uuesti, vaid võtame tabelist.

initsialiseeriK_memo(n) on

1 for
$$i := 1$$
 to n do
2 for $j := i$ to n do
3 $K[i, j] := -1$
--- -1 tähistab "initsialiseerimata"

$$\begin{array}{ll} \text{leiaK}_\text{memo}(i,j) \text{ on} \\ 1 & \text{if } K[i,j] \neq -1 \text{ then return } K[i,j] \\ 2 & \text{if } i = j \text{ then } K[i,j] := 0; \text{ return } 0 \\ 3 & tul := \infty \\ 4 & \text{for } k := i \text{ to } j - 1 \text{ do} \\ 5 & tk := \text{leiaK}_\text{memo}(i,k) + \\ & \quad \text{leiaK}_\text{memo}(k+1,j) + d_{i-1}d_kd_j \\ 6 & \text{if } tk < tul \text{ then } tul := tk \\ 7 & K[i,j] := tul \\ 8 & \text{return } tul \end{array}$$

Kõigepealt kutsuda initsialiseeriK_memo(n), seejärel leiaK_memo(1, n).

Keerukus: iga paari (i, j) jaoks täidetakse funktsiooni põhiosa 1 kord. Põhiosa on keerukusega $\Theta(j - i)$. Paare on $\Theta(n^2)$. Kokku on

$$\sum_{i=1}^n\sum_{j=i}^n\sum_{k=i}^{j-1}\Theta(1)=\Theta(n^3)$$
 .

Meil oli

$$K_{i..j} = \min_{i\leqslant k\leqslant j-1}ig(K_{i..k}+K_{k+1..j}+d_{i-1}d_kd_jig),$$

s.t. $K_{i..j}$ leidmiseks on vaja teada ainult selliseid $K_{k..l}$ -e, kus l - k < j - i.

Me võime tabeli K[i, j] täita j - i kasvamise järjekorras.

$$\begin{array}{ll} \text{leiaK_tabel}(n) \text{ on} \\ 1 & \text{for } i = 1 \text{ to } n \text{ do } K[i,i] := 0 \\ 2 & \text{for } vahe := 1 \text{ to } n-1 \text{ do} \\ 3 & \text{for } i := 1 \text{ to } n-vahe \text{ do} \\ 4 & j := i+vahe \\ 5 & K[i,j] := \infty \\ 6 & \text{for } k := i \text{ to } j-1 \text{ do} \\ 7 & tk := K[i,k] + K[k+1,j] + d_{i-1}d_kd_j \\ 8 & \text{if } tk < K[i,j] \text{ then } K[i,j] := tk \\ 9 & \text{return } K[1,n] \end{array}$$

Oleme leidnud, kui mitu korrutamistehet vaja läheb. Aga kuidas tegelikult korrutada? Meil oli

$$K_{i..j}=\min_{i\leqslant k\leqslant j-1}ig(K_{i..k}+K_{k+1..j}+d_{i-1}d_kd_jig),$$

seega viimasena tuleb korrutada $A_1 \cdots A_k$ ja $A_{k+1} \cdots A_n$, kus k on selline, mis realiseerib selle miinimumi.

Piisab, kui iga K[i, j] jaoks salvestame ka k, mis miinimumi realiseeris.

leia_korrutusviis(n) on

$$\begin{array}{lll} & \text{for } i=1 \ \text{to } n \ \text{do } K[i,i]:=0 \\ 2 & \text{for } vahe:=1 \ \text{to } n-1 \ \text{do} \\ 3 & \text{for } i:=1 \ \text{to } n-vahe \ \text{do} \\ 4 & j:=i+vahe \\ 5 & K[i,j]:=\infty \\ 6 & \text{for } k:=i \ \text{to } j-1 \ \text{do} \\ 7 & tk:=K[i,k]+K[k+1,j]+d_{i-1}d_kd_j \\ 8 & \text{if } tk < K[i,j] \ \text{then} \\ 9 & K[i,j]:=tk \\ 10 & M[i,j]:=k \\ 11 & \text{return } M \end{array}$$

Olgu A_1, \ldots, A_n ja d_0, \ldots, d_n globaalsed muutujad. Siis korrutise A_1, \ldots, A_n leidmiseks:

 $korrutaM(1, n, leia_korrutusviis(n)).$

korrutaM(i, j, M) on

- 1 if i = j then return A_i
- 2 $B := \operatorname{korrutaM}(i, M[i, j], M)$
- 3 $C := \operatorname{korrutaM}(M[i, j] + 1, j, M)$
- 4 return $B \cdot C$ --- maatriksite korrutamine

Näide: olgu meil 6 maatriksit mõõtmetega 2,6,4,5,2,3,4. Siis K ja M on

i ackslash j	1	2	3	4	5	6		2	3	4	5	6
1	0	48	88	104	116	140	$i \setminus j$					
2		0	120	88	124	160	1	1	2	2	4	5
3			0	40	64	96	2		2	2	4	4
4				0	30	64	3			3	4	4
				0			4				4	4
5					0	24	5					5
6						0						<u> </u>

Kiireim korrutamisviis: $(((A_1A_2)(A_3A_4))A_5)A_6$.

Eeltoodud lahendusviisi nimetatakse *dünaamiliseks programmeerimiseks*. Sõna "programmeerimine" viitab tabelite kasutamisele optimaalse lahenduse leidmisel.

Dünaamilise programmeerimise kasutamiseks peavad ülesandel olema järgmised kaks omadust:

- Optimaalne alamstruktuur.
- Kattuvad alamülesanded.

Optimaalne alamstruktuur — ülesande optimaalne lahendus pannakse mingil viisil kokku tema alamülesannete optimaalsetest lahendustest.

Seejuures tuleb kuidagi fikseerida, millised on võimalikud alamülesanded.

• Meil oli: alamülesande määrasid i ja j, kus $1 \leq i \leq j \leq n$.

Kattuvad alamülesanded — erinevate alamülesannete alamülesanded peavad suures osas samad olema.

Kõigi võimalike alamülesannete hulk ei tohi olla suur.

• Meil oli selle hulga võimsuseks $\Theta(n^2)$.

See lubab meil kõigi alamülesannete vastused salvestada peale nende esmakordset leidmist.

Salvestamiseks nägime eespool kahte võimalust.

Olgu s sõne pikkusega m. Olgu $1 \leq i_1 < i_2 < \cdots < i_k \leq m$. Sõne $s[i_1]s[i_2] \cdots s[i_k]$ nimetame s-i osasõneks. Näiteks "abdf" on sõne "abcdefgh" osasõne. Seda, et u on s-i osasõne, tähistame $u \leq s$. Ülesanne: antud sõned s ja t. Leida nende pikim ühine osasõne.

(Rakendus: /usr/bin/diff)

Lihtne on kontrollida, kas üks sõne on teise sõne osasõne. Järgnev funktsioon kontrollib, kas u on s-i osasõne.

1
$$n := |s|; m := |u|; j := 1$$

2 for $i := 1$ to n do
3 if $s[i] = u[j]$ then $j := j + 1$
4 if $j = m + 1$ then break
5 return $j = m + 1$

See funktsioon leiab u "vasakpoolseima" esinemise s-s.

t kõigi $2^{|t|}$ osasõne jaoks kontrollimine, kas tegemist on ka s-i osasõnega, võtaks väga kaua aega.

Uurime osasõneks olemise struktuuri lähemalt. Tähistagu $P\ddot{U}(s,t)$ sõnede s ja t pikimat ühist osasõnet. Siis $P\ddot{U}(\epsilon,t) = P\ddot{U}(s,\epsilon) = \epsilon$. Kui $s_1 \sqsubset s$ ja $t_1 \sqsubset t$, siis $|P\ddot{U}(s_1,t_1)| \leq |P\ddot{U}(s,t)|$. Kui $s \neq \epsilon$, siis olgu $s' := s[1 \dots |s| - 1]$. Olgu $u = P\ddot{U}(s,t).$

Lause. Kui s[|s|] = t[|t|] (olgu selleks ühiseks täheks x), siis u[|u|] = x.

Tõestus. Oletame vastuväiteliselt, et $u[|u|] \neq x$. Kuna $u \leq s$, siis ka $u \leq s'$, sest u viimane täht ei saa vastata si viimasele tähele. Samuti $u \leq t'$. Järelikult $ux \leq s$ ja $ux \leq t$, seega pole u pikim s-i ja t ühine osasõne.

Seega, kui s[|s|] = t[|t|] = x, siis $P\ddot{U}(s,t) = P\ddot{U}(s',t')x$.

Olgu s, t, u sellised sõned, et $s[|s|] \neq t[|t|]$. Peale selle olgu

- $s[|s|] \neq u[|u|];$
- $u \leqslant s$ ja $u \leqslant t$.

Siis $u \leqslant s'$ ja $u \leqslant t$.

Seega, kui $P\ddot{U}(s,t)$ viimane täht pole s[|s|], siis $P\ddot{U}(s,t) = P\ddot{U}(s',t)$.

Analoogiliselt, kui $P\ddot{U}(s,t)$ viimane täht pole t[|t|], siis $P\ddot{U}(s,t) = P\ddot{U}(s,t')$.

Vähemalt üks neist kahest variandist peab esinema.

$$P\ddot{U}(s,t) = egin{cases} \epsilon, & ext{kui } s = \epsilon ext{ või } t = \epsilon \ P\ddot{U}(s',t')s[|s|], & ext{kui } s
eq \epsilon, t
eq \epsilon, s[|s|] = t[|t|] \ P\ddot{U}(s',t), & ext{kui } s
eq \epsilon, t
eq \epsilon, s[|s|]
eq t[|t|], \ |P\ddot{U}(s',t)| \geqslant |P\ddot{U}(s,t')| \ P\ddot{U}(s,t')| & ext{kui } s
eq \epsilon, t
eq \epsilon, s[|s|]
eq t[|t|], \ |P\ddot{U}(s',t)| < |P\ddot{U}(s,t')| \ \end{cases}$$

 $egin{aligned} |P\ddot{U}(s,t)| \ ext{leidmiseks} \ ext{leiame} \ |P\ddot{U}(s[1\dots i],t[1\dots j])| \ ext{kõigi} \ i \in \{0,\dots,|s|\} \ ext{ja} \ j \in \{0,\dots,|t|\} \ ext{jaoks}. \ ext{Keerukus:} \ \Theta(mn), \ ext{kus} \ m = |s| \ ext{ja} \ n = |t|. \end{aligned}$

Kui P on massiiv, kus $P[i, j] = |P\ddot{U}(s[1...i], t[1...j])|$, siis leia_ $P\ddot{U}(m, n)$ leiab $P\ddot{U}(s, t)$. leia_ $P\ddot{U}(i, j)$ on

1 if
$$i = 0$$
 or $j = 0$ then return ϵ

2 if
$$s[i] = t[j]$$
 then

3 return leia_
$$P\ddot{\mathrm{U}}(i-1,j-1)s[i]$$

4 if
$$P[i-1,j] \ge P[i,j-1]$$
 then

5 return leia_
$$PU(i-1,j)$$

6 else

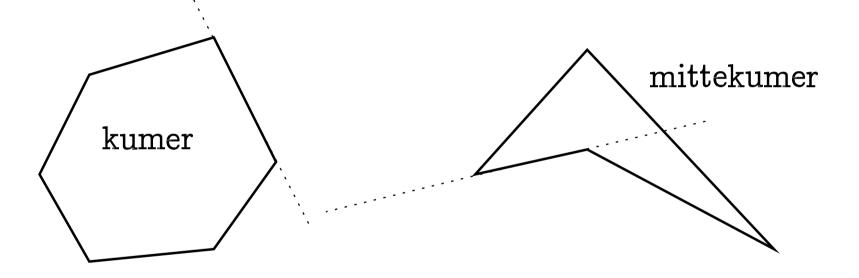
7 return leia_
$$P\ddot{U}(i, j-1)$$

S.t. vaatame, millist varianti (eelmiselt kilelt) kasutati $P\ddot{U}(s[1...i], t[1...j])$ leidmiseks.

Massiivi P täitmiseks: 1 m := |s|; n := |t|2 for i := 0 to m do 3 for j := 0 to n do if i = 0 or j = 0 then 4 5 P[i, j] := 0else if s[i] = t[j] then 6 P[i, j] := P[i - 1, j - 1] + 17 8 else 9 $P[i, j] := \max(P[i-1, j], P[i, j-1])$

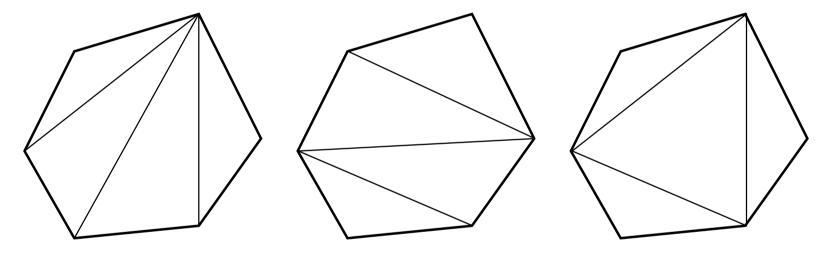
Näide: Olgu $s =$ "abcbdab" ja $t =$ "bdcaba". Siis P on											
	i ackslash j	0	1	2	3	4	5	6			
			b	d	С	a	b	а			
	0	0	0	0	0	0	0	0	$\ddot{P}\ddot{U}(s,t)=,$,bcba"		
	1 a	0	0	0	0	1	1	1	$v\tilde{o}i$		
	2 b	0	1	1	1	1	2	2	$P\ddot{U}(s,t)=$ "bcab"		
	3 c	0	1	1	2	2	2	2	või		
	4 b	0	1	1	2	2	3	3	$P\ddot{U}(s,t)=,,\mathrm{bdab}^{\prime\prime}$		
	5 d	0	1	2	2	2	3	3			
	6 a	0	1	2	2	3	3	4			
	7 b	0	1	2	2	3	4	4	- -		

Olgu tasandil antud kumer hulknurk $A_1A_2 \cdots A_n$. Olgu A_i koordinaadid (x_i, y_i) .



Hulknurk on kumer, kui ta jääb iga oma küljega määratud sirgest ühele poole.

Hulknurga *triangulatsioon* on tema tükeldus sellisteks kolmnurkadeks, mille tippudeks on selle hulknurga tipud.



n-nurga triangulatsioon koosneb (n-2)-st kolmnurgast.

Olgu iga kolmnurga, mille tippudeks on mingid kolm tippudest A_1, \ldots, A_n , jaoks defineeritud tema *kaal*.

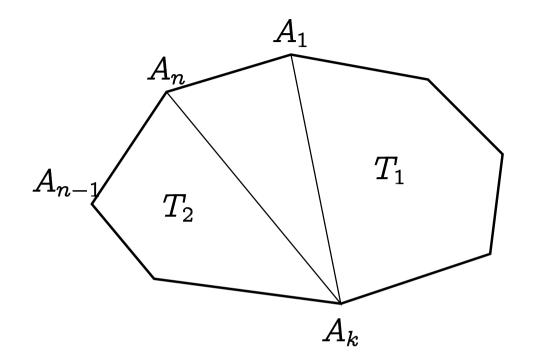
S.t. olgu antud funktsioon W, mis võtab kolm argumenti vahemikust 1 kuni n ja tagastab mingi reaalarvu.

Olgu triangulatsiooni kaal temasse kuuluvate kolmnurkade kaalude summa.

Ülesanne: leida minimaalse kaaluga triangulatsioon.

- Vaatame mingit minimaalse kaaluga triangulatsiooni T. Tema kaalu tähistame w(T).
- Vaatame hulknurga külge A_nA_1 . See külg on triangulatsioonis mingi kolmnurga küljeks.

Olgu selle kolmnurga kolmas tipp A_k .



Siis defineerib T ka hulknurga $A_1A_2 \cdots A_k$ mingi triangulatsiooni T_1 ja hulknurga $A_kA_{k+1} \cdots A_n$ mingi triangulatsiooni T_2 .

See juures $w(T) = W(1, k, n) + w(T_1) + w(T_2)$.

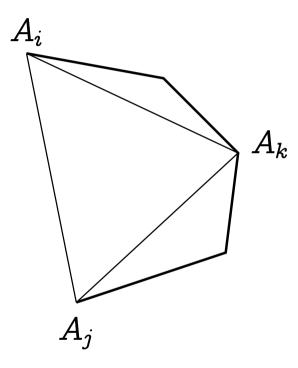
Seega on T_1 ja T_2 minimaalse kaaluga.

Leidmaks $A_1A_2 \cdots A_n$ minimaalse kaaluga triangulatsiooni, tuleb meil leida hulknurkade $A_1A_2 \cdots A_k$ ja $A_kA_{k+1} \cdots A_n$ triangulatsioonid. Seejuures $k \in \{3, \ldots, n-2\}$ ning

$$egin{aligned} &w(A_1A_2\cdots A_n)=\minig(W(1,2,n)+w(A_2A_3\cdots A_n),\ &\min\{W(1,k,n)\!+\!w(A_1A_2\cdots A_k)\!+\!w(A_kA_{k+1}\cdots A_n)\,\colon\,3\leqslant k\leqslant n\!-\!2\},\ &W(1,n-1,n)+w(A_1A_2\cdots A_{n-1})ig), \end{aligned}$$

kus w, rakendatuna hulknurgale, tähistab tema min. kaaluga triangulatsiooni kaalu.

Leidmaks triangulatsiooni ennast, tuleb meeles pidada, millise koha pealt miinimum saadi. Üldjuhul, $A_i A_{i+1} \cdots A_j$ min. kaaluga triangulatsiooni kaalu leidmine käib järgmiselt (siin $1 \leq i < j \leq n$ ja $j - i \geq 2$):



 $egin{aligned} &w(A_iA_{i+1}\cdots A_j) = \minig(W(i,i{+}1,j){+}w(A_{i+1}A_{i+2}\cdots A_j),\ &\min\{W(i,k,j){+}w(A_iA_{i+1}\cdots A_k){+}w(A_kA_{k+1}\cdots A_j)\,\colon\,i{+}2\leqslant k\leqslant j{-}2\},\ &W(i,j-1,j){+}w(A_iA_{i+1}\cdots A_{j-1})ig) \end{aligned}$

Leidmaks $w(A_1A_2\cdots A_n)$ -i, tuleb järelikult leida suurused w[i,j], kus $1 \leq i < j \leq n, j-i \geq 2$ ja w[i,j] tähistab suurust $w(A_iA_{i+1}\cdots A_j)$.

Leidmine käib sarnaselt optimaalse maatriksitekorrutusviisi leidmisele.