Servade värvimine

11. november 2003

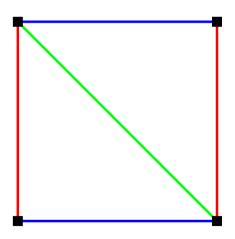
Kontrolltööd on parandatud.

Järeltöö toimub 25. novembril loengu ajal / asemel.

Novembri viimasel nädalal mind ei ole. Praktikumide toimumise kohta ei tea veel. Silmusteta graafi G=(V,E) servade (korrektne) värvimisviis k värviga on mingi funktsioon $\gamma:E\longrightarrow\{1,\ldots,k\},$ nii et

• suvalise kahe erineva serva $e_1, e_2 \in E$ jaoks, millel on ühine otspunkt, kehtib $\gamma(e_1) \neq \gamma(e_2)$.

Teisisõnu, suvalise tipu jaoks on selle tipuga intsidentsed servad kõik erinevat värvi.



Näide: olgu antud (kooli)klasside hulk X ja õpetajate hulk Y.

Iga klassi ja iga õpetaja jaoks olgu antud, mitu tundi nädalas see õpetaja sellele klassile andma peab.

Ülesanne: koostada tunniplaan.

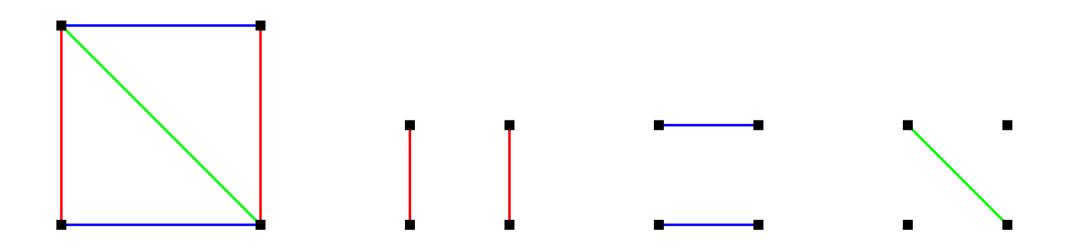
Vaatame graafi, mille tipuhulk on $X \cup Y$ ning kus $x \in X$ ja $y \in Y$ on ühendatud nii mitme servaga, kui mitu tundi nädalas õpetaja y klassile x annab.

Tunniplaan on selle graafi servade värvimisviis (ja vastupidi). Värvideks on tundide toimumise ajad.

Olgu G=(V,E) graaf, γ tema servade mingi värvimisviis ning i üks värvidest.

Servade hulk $\{e \mid e \in E, \gamma(e) = i\}$ on kooskõla.

Graafi servade värvimisviis kujutab endast servade hulga tükeldust kooskõladeks.



Olgu G = (V, E) mingi graaf. Oletame, et tal leidub servade värvimisviis k värviga, aga ei leidu servade värvimisviisi k-1 värviga.

Arvu k nimetame G kromaatiliseks arvuks servade järgi ja tähistame $\chi'(G)$.

Tähistagu $\Delta(G) = \max_{v \in V} \deg(v)$ graafi G tippude max. astet.

On ilmne, et $\chi'(G) \geq \Delta(G)$.

Näide, kus $\chi'(G) > \Delta(G)$: paarituarvulise pikkusega tsüklid.

Teoreem. Kahealuselises graafis G kehtib $\chi'(G) = \Delta(G)$. Tõestus. Kõigepealt täiendame G $\Delta(G)$ -regulaarseks.

- 1. Kui ühes aluses on vähem tippe kui teises, siis lisame sinna tippe juurde.
- 2. Kui mõne tipu aste on väiksem kui $\Delta(G)$, siis leidub ka teises aluses mingi tipp, mille aste on väiksem kui $\Delta(G)$. Ühendame need kaks tippu servaga.

Kui muudetud graafi servad on värvitavad $\Delta(G)$ värviga, siis on seda ka esialgse graafi G servad.

Nüüd võime lugeda, et meil on mingi k-regulaarne kahe-aluseline graaf G.

- 1. k-regulaarses kahealuselises graafis G leidub mingi täielik kooskõla M_1 .
- 2. Eemaldame M_1 -e kuuluvad servad. Järgi jääb mingi (k-1)-regulaarne kahealuseline graaf.
- 3. Selles graafis leidub mingi täielik kooskõla M_2 .
- 4. Eemaldame M_2 -e kuuluvad servad. Järgi jääb mingi (k-2)-regulaarne kahealuseline graaf.
- 5. jne.

Sel viisil tükeldub G servade hulk k-ks (täielikuks) kooskõlaks M_1, \ldots, M_k . Need defineerivadki G servade värvimisviisi.

Teoreem (Vizing). Olgu G=(V,E) <u>lihtgraaf</u>. Siis $\chi'(G) \leq \Delta(G) + 1$.

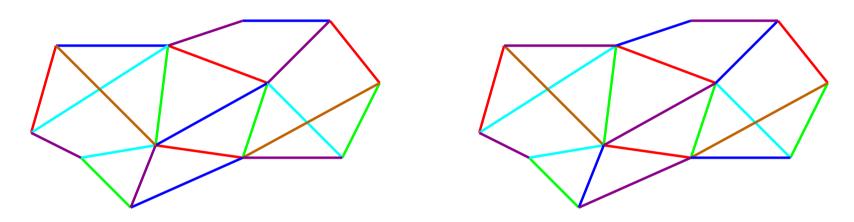
Tõestus käib induktsiooniga üle tippude arvu. Väide on ilmne, kui |V|=1.

Meil tuleks näidata, et kehtib:

Olgu G = (V, E) lihtgraaf ja olgu $k = \Delta(G) + 1$. Olgu $v \in V$ graafi G mingi tipp ja olgu graafi $G \setminus v$ servad värvitavad k värviga. Siis on graafi G servad värvitavad k värviga.

Selle väite tõestame induktsiooniga üle värvide arvu k. Me näitame pisut tugevama väite kehtivust.

Lemma. Olgu G = (V, E) graaf ja γ tema servade mingi värvimisviis. Olgu $E' \subseteq E$ servade hulk, mis on värvitud mingi teatava kahe värviga. Vaatame graafi G' = (V, E').

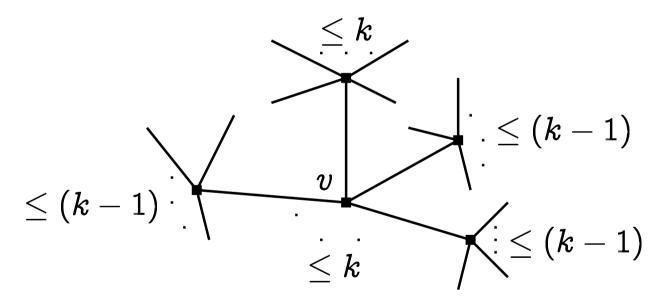


Olgu H graafi G' üks sidususkomponentidest. Kui me H-i servade värvid ära vahetame, siis on saadav värvimisviis ikkagi G servade korrektne värvimisviis.

Tõestus. Peaks vist ilmne olema.

Lemma. Olgu G=(V,E) lihtgraaf ja $k\in\mathbb{N}$. Olgu $v\in V$ selline, et

- $\deg(v) \leq k$. Kui $w \in V$ on v naaber, siis $\deg(w) \leq k$.
- Tipul v on ülimalt üks naabertipp, mille aste on täpselt k.



Olgu $G \setminus v$ servad värvitavad k värviga. Siis G servad on värvitavad k värviga.

Tõestus. Baas. k = 1.

Sel juhul deg(v) = 0 või deg(v) = 1.

Kui $\deg(v)=0$, siis on graafis G samad servad, mis graafis $G\backslash v$.

Kui $\deg(v)=1$, siis olgu u tipu v naaber. Vastavalt lemma eeldustele $\deg(u)\leq 1$, seega on u-v graafi G üks sidususkomponentidest.

G servade värvimisviisi saame $G \setminus v$ servade värvimisviisist nii, et värvime täiendavalt serva u ja v vahel ainsa värviga.

Samm. k > 1.

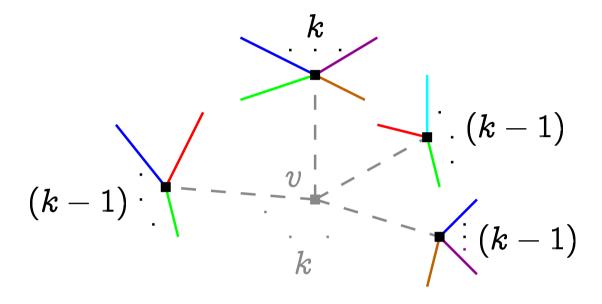
Seni kuni deg(v) < k lisame graafile G uue tipu u ning serva u - v.

Seni kuni v mõne naabri v' aste on väiksem kui k või k-1, lisame graafile G uue tipu u ja serva u-v'.

G-st saab seega graaf, kus lemma sõnastuses on võrratuste asemel võrdused.

Muudetud graaf on k värviga värvitav parajasti siis, kui esialgne graaf oli.

Olgu γ graafi $G \setminus v$ servade värvimisviis k värviga.



Vaatame (endise) tipu v naabertippe. Iga $i \in \{1, ..., k\}$ jaoks olgu X_i nende naabertippude hulk, millega <u>ei ole</u> intsidentseid servi, mis on värvitud i-ga.

Üks tippudest kuulub täpselt ühte hulkadest X_i , ülejäänud kuuluvad täpselt kahte. Seega $\sum_{i=1}^{k} |X_i| = 2k - 1$.

Tahame, et γ oleks selline, et leiduks i, nii et $|X_i| = 1$.

S.t. i-ga värvitud servad on iga v naabertipuga, v.a. ühega, intsidentsed.

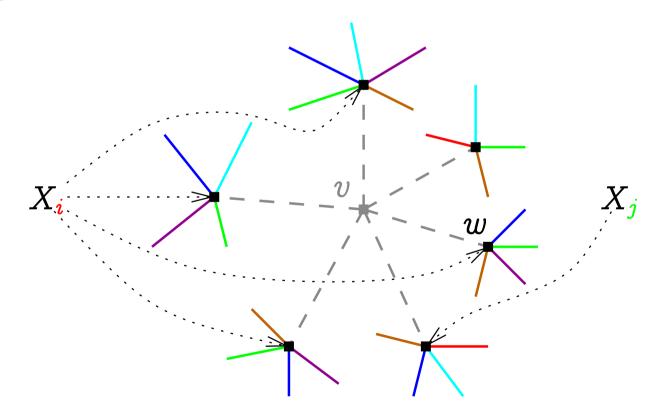
Näitame, et γ on valitav nii, et iga $i, j \in \{1, \ldots, k\}$ jaoks $||X_i| - |X_j|| \leq 2$.

Selleks näitame, et kui mõne i, j jaoks $|X_i| - |X_j| \ge 3$, siis leidub värvimisviis γ' , kus $|X_i|$ on ühe või kahe võrra väiksem ning $|X_i|$ samavõrra suurem.

Samuti näitame, et lõpliku arvu selliste sammude (γ -st γ' -ks) pärast selliseid i-d ja j-i enam ei leidu.

Olgu *i* ja *j* sellised, et $|X_i| - |X_j| \ge 3$. Olgu $w \in X_i \setminus X_j$.

S.t. tippe, millega on intsidentne serv $v\ddot{a}rvi\ j$, on vähemalt kolme võrra rohkem kui tippe, millega on intsidentne serv $v\ddot{a}rvi\ i$.

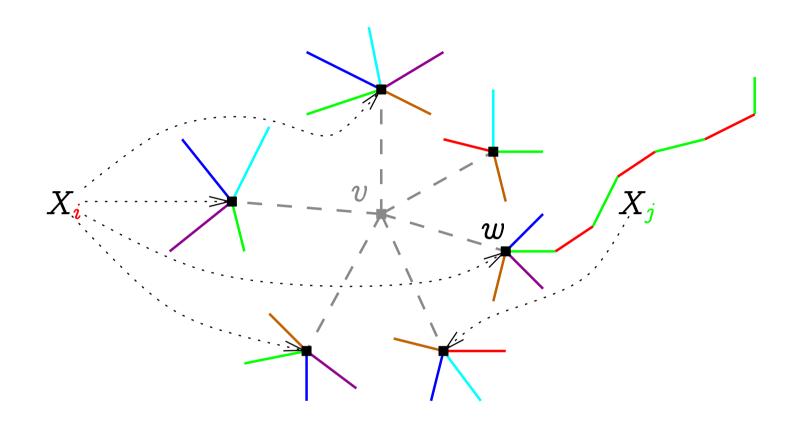


Olgu $E' \in E$ kõigi servade e hulk, kus $\gamma(e) = i$ või $\gamma(e) = j$. Vaatame graafi G' = (V, E').

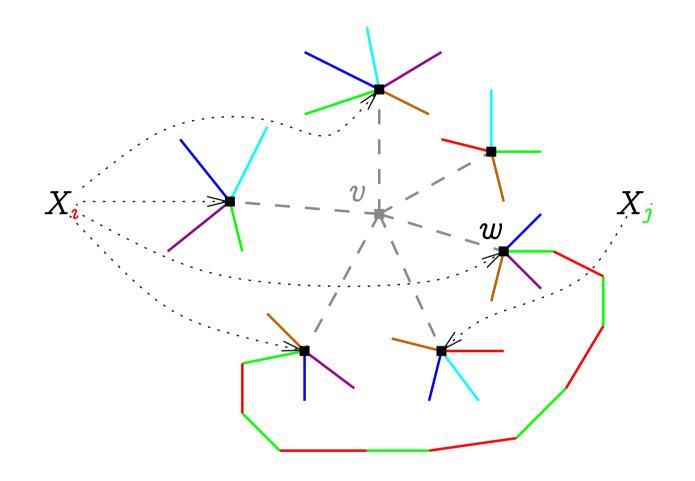
Graafis G' on kõigi tippude aste ≤ 2 . Seega on G' sidusus-komponentideks isoleeritud tipud, ahelad ja tsüklid.

Tipp $w \in X_i \setminus X_j$ on mone sellise ahela otstipuks.

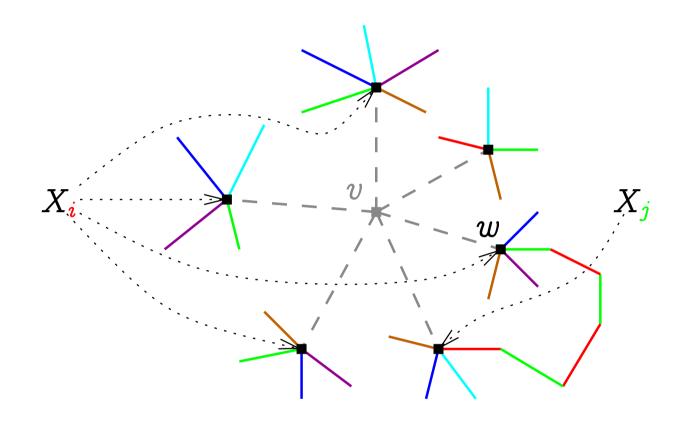
Kus võib selle ahela teine otstipp olla?



Kuskil mujal graafis G



Mõnes tipus hulgast $X_i \setminus X_j$

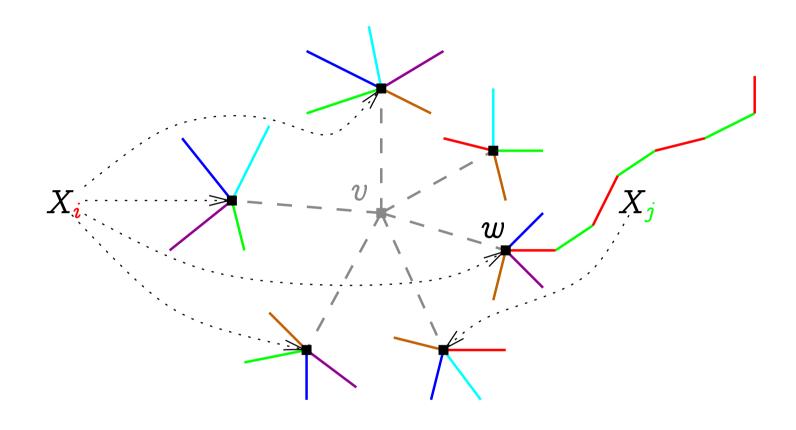


Mõnes tipus hulgast $X_j \backslash X_i$

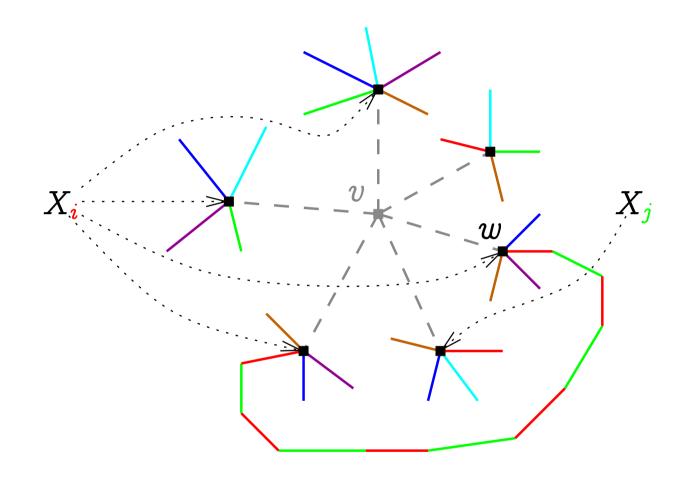
Kuna $|X_i| > |X_j|$, siis leidub selline $w \in X_i \setminus X_j$, et temast algav ahel — graafi G' sidususkomponent — lõppeb kuskil mujal kui mõnes tipus hulgast $X_i \setminus X_i$.

Sellises ahelas vahetame värvid i ja j. See defineerib meile värvimisviisi γ' .

 $|X_i|$ ja $|X_j|$ muutuvad järgmiselt:



 $|X_i|$ väheneb ühe võrra, $|X_j|$ suureneb ühe võrra



 $|X_i|$ väheneb kahe võrra, $|X_j|$ suureneb kahe võrra

Tarvis oleks leida iga $G \setminus v$ värvimisviisi γ jaoks mingi suurus, mis

- Igal sammul (γ -st γ' -ks) muutuks ühes kindlas suunas (näiteks väheneks).
- Omaks mingit alumist tõket.
- Poleks vähendatav kuitahes vähesel määral.

Selliseks suuruseks sobib näiteks $\sum_{i=1}^{k} |X_i|^2$.

Tõepoolest, olgu $n_i, n_j \in \mathbb{N}$, nii et $n_i - n_j \geq 3$. Siis

$$(n_i-1)^2+(n_j+1)^2=n_i^2+n_j^2-2(n_i-n_j)+2 \le n_i^2+n_j^2-4 \ (n_i-2)^2+(n_j+2)^2=n_i^2+n_j^2-4(n_i-n_j)+8 \le n_i^2+n_j^2-4$$

Oleme näidanud, et leidub värvimisviis γ , mille puhul hulkade X_i võimsused erinevad üksteisest ülimalt kahe võrra.

Kuna hulkade X_i keskmine võimsus on natuke alla kahe $(\frac{2k-1}{k})$, siis on X_i -de võimalikud võimsused kas $\{0, 1, 2\}$ või $\{1, 2, 3\}$.

Kui on $\{1,2,3\}$, siis peab leiduma selline i, et $|X_i|=1$, muidu oleks keskmine võimsus liiga suur.

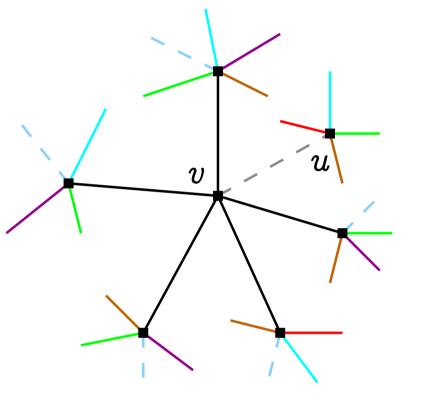
Kui on $\{0,1,2\}$, siis peab leiduma selline i, et $|X_i|=1$, sest kõigi X_i -de võimsuste summa on paaritu (2k-1).

Üldsust kitsendamata loeme, et selleks *i*-ks on k. Olgu $\{u\} = X_k$.

Olgu H saadud graafist G, kustutades seal

- kõik servad, mis γ värvib värviga k;
- serva tippude v ja u vahel.

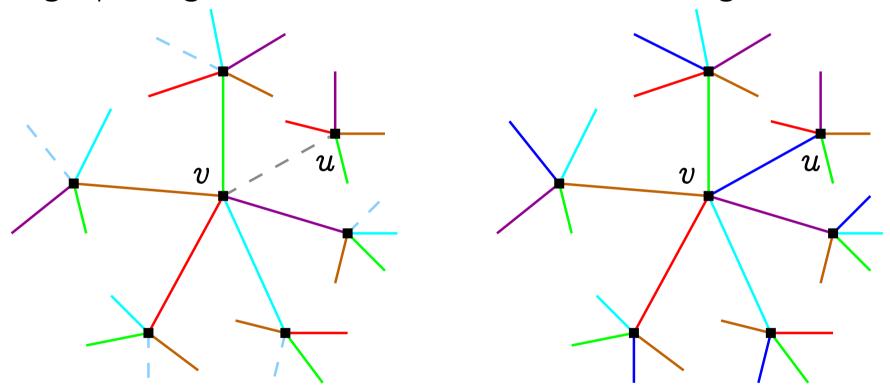
Kõik ärakustutatud servad moodustavad kooskõla graafis G.



Värvimisviis γ ilma värvita k on $H \setminus v$ servade värvimisviis (k-1) värviga.

Tipu v ja iga tema naabertipu (graafis H) aste vähenes ühe võrra.

Graafile H ja tipule v saame rakendada induktsiooni eeldust. Seega on graafi H servad värvitavad k-1 värviga. Olgu γ' mingi H servade värvimisviis k-1 värviga.



Graafi G servade värvimisviisi k värviga saame, värvides täiendavalt kõik eelnevalt kustutatud servad värviga k. \square

Graafi G servade suurimat kordsust tähistame $\mu(G)$.

Teoreem. Olgu G silmusteta graaf. Siis $\chi'(G) \leq \Delta(G) + \mu(G)$.

Kui $\gamma: E \longrightarrow \{1, \ldots, k\}$ on graafi G = (V, E) servade mingi värvimisviis (mitte tingimata korrektne; MTK), siis tähistagu $\tilde{\gamma}(v)$, kus $v \in V$, värvide arvu, mis tipu v juures esinevad.

Graafi G = (V, E) servade MTK värvimisviis k värviga γ on optimaalne, kui $\sum_{v \in V} \tilde{\gamma}(v)$ on maksimaalne võimalik (k värviga värvimisviiside seas).

Ilmselt on iga korrektne värvimisviis optimaalne.

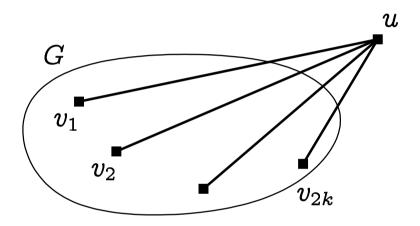
Lemma 1. Olgu G=(V,E) sidus graaf, mis ei ole paarituarvulise pikkusega tsükkel. Siis leidub tema servade selline MTK värvimisviis γ , nii et iga tipu $v \in V$ korral deg $(v) \leq 1$ või $\tilde{\gamma}(v) = 2$.

Tõestus. Vaatame kõigepealt juhtu, kus G-s leidub Euleri ahel C.

Anname servadele värvid nii, et C-s esineksid servad vahelduvate värvidega.

Kui graafis on paaritu arv servi, siis alustame (ja lõpetame) C mõnes tipus, mille aste on ≥ 3 (s.t. ≥ 4).

Kui G-s ei leidu Euleri ahelat, siis olgu G' saadud G-st täiendava tipu u lisamise ja G iga paarituarvulise astmega tipu temaga ühendamise teel.

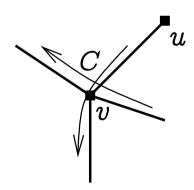


Tippe, mis u-ga ühendatakse, on paarisarv. G' on Euleri graaf.

Vaatame taas Euleri ahelat C ja värvime servad nii, et nad esineksid C-s vahelduvate värvidega. Alustame ja lõpetame C u-s.

Kui $v \in V$ on G-s paarisarvulise astmega, siis C siseneb temasse ja seejärel väljub temast, mõlemad servad kuuluvad E-sse.

Kui $v \in V$ on paarituarvulise astmega, mis on > 1, s.t. ≥ 3 , siis on tema aste G'-s ≥ 4 .



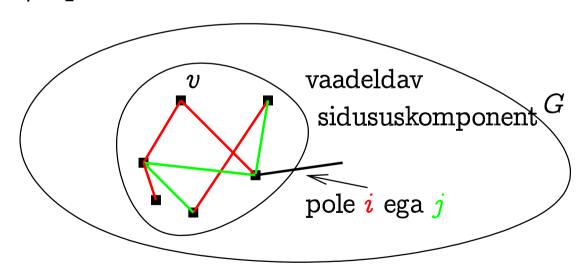
Siis C mingil korral siseneb v-sse G-st ja seejärel väljub v-st samuti G-sse.

Lemma 2. Olgu G=(V,E) mingi graaf, olgu γ tema MTK optimaalne värvimisviis k värviga. Olgu i ja j kaks värvi, olgu $v \in V$ selline, et

- v-ga on intsidentsed vähemalt kaks serva, mis on värvitud värviga i.
- v-ga pole intsidentne ükski j-ga värvitud serv.

Olgu $E' = \gamma^{-1}(\{i, j\})$. Siis graafi (V, E') sidususkomponent, mis sisaldab tippu v, on paarituarvulise pikkusega tsükkel.

Tõestus. Vastuväiteliselt. Vaatame seda (V, E') sidusus-komponenti. Kui ta pole paarituarvulise pikkusega tsükkel, siis värvime ta eelmise lemma abil ümber. Siis $\tilde{\gamma}(v)$ suureneb ja muude tippude jaoks $\tilde{\gamma}(\cdot)$ ei vähene. Seega polnud γ optimaalne.



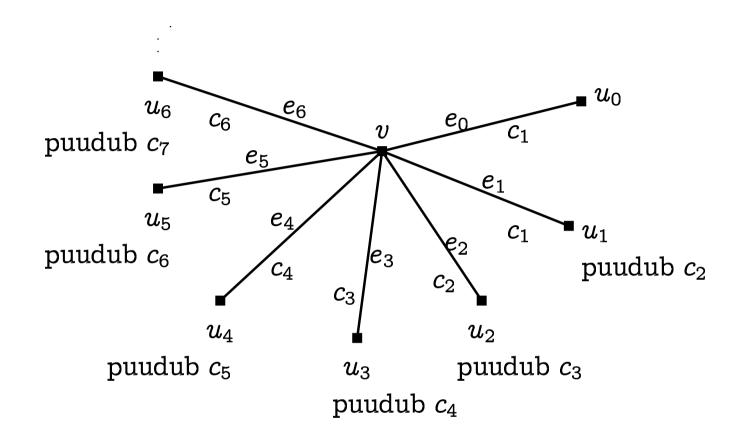
Lemma 3. Olgu G=(V,E) mingi graaf, olgu γ tema MTK optimaalne värvimisviis k värviga. Olgu $u,v\in V$ sellised, et nende vahel on kordne serv. S.t. leiduvad $e_1,e_2\in E$ nii, et $\mathcal{E}(e_1)=\mathcal{E}(e_2)=\{u,v\}$. Siis $\gamma(e_1)\neq\gamma(e_2)$.

Tõestus. Värvime e_2 ümber mõne värviga, mis u juures ei esine. Siis $\tilde{\gamma}(v)$ ei vähene ja $\tilde{\gamma}(u)$ suureneb. Teiste tippude jaoks samuti $\tilde{\gamma}(\cdot)$ ei muutu. Järelikult polnud γ optimaalne.

Teoreemi tõestus. Olgu γ graafi G = (V, E) mingi optimaalne värvimisviis $\Delta(G) + \mu(G)$ värviga, oletame vastuväiteliselt, et ta ei ole korrektne.

Olgu siis $v \in V$ mõni tipp, mille juures värv c_1 esineb vähemalt kaks korda. Olgu e_0 ja e_1 v-ga intsidentsed servad, nii et $\gamma(e_0) = \gamma(e_1) = c_1$.

Olgu u_0 ja u_1 servade e_0 ja e_1 teised otsad. Vastavalt eelmisele lemmale siis $u_0 \neq u_1$.



Osad tipud võivad kokku langeda. Värvid (ja seega ka servad) on kõik erinevad.

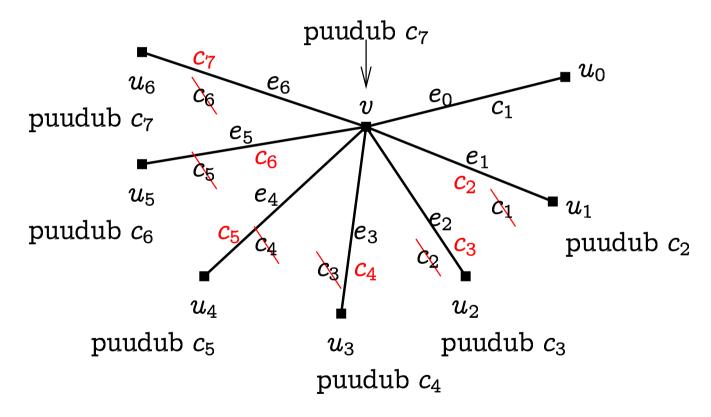
Värvid c_2, c_3, \ldots ja tipud u_2, u_3, \ldots valitakse järgnevalt:

- Värv c_{i+1} on mõni värvidest, mis tipu u_i juures ei esine. Kui tipp u_i on meil juba varem esinenud tippudena u_{j_1}, \ldots, u_{j_k} , siis valime c_{i+1} erineva värvidest $c_{j_1+1}, \ldots, c_{j_k+1}$.
 - Me saame ta valida erineva värvidest $c_{j_1+1}, \ldots, c_{j_k+1}$, sest tipuni u_i jõuame me ülimalt $\mu(G)$ korda ja iga tipu juures ei esine vähemalt $\mu(G)$ värvi.
- u_{i+1} on mõni selline tipp, mis on ühendatud tipuga v servaga, mille värv on c_{i+1} .

Me lõpetame värvide c ja tippude u valiku järgmisel kahel juhul:

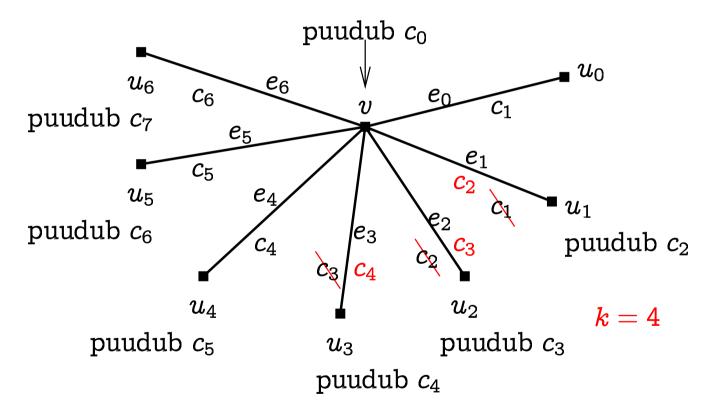
- Kui valitud c_{i+1} on võrdne mõne varemvalitud värviga c_k .
 - Siis $u_k \neq u_i$, sest $c_k = c_{i+1}$ esineb u_k juures ja ei esine u_i juures.
- Kui värv c_{i+1} ei esine v juures (siis ei saa tippu u_{i+1} valida).

Teisel juhul värvime servad e_1, \ldots, e_i ümber. Serva e_j värviks võtame c_{j+1} . Siis $\tilde{\gamma}(v)$ suureneb ja $\tilde{\gamma}(u_i)$ ei vähene. Seega polnud γ optimaalne, vastuolu.



Olgu uus värvimisviis γ'' .

Esimesel juhul värvime servad e_1, \ldots, e_{k-1} ümber. Serva e_j värviks võtame c_{j+1} . Siis $\tilde{\gamma}(\cdot)$ ei vähene ühegi tipu jaoks. Olgu c_0 mõni värv, mis v juures ei esine.

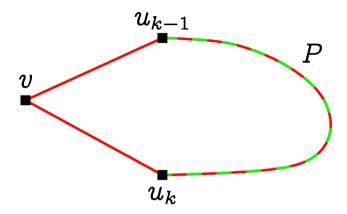


Saadud värvimisviisi nimetame γ' -ks. Ta on optimaalne.

Tähelepanek: $u_k \neq u_{k-1}$.

- Kui k > 1, siis värvimisviisis γ värv c_k ei esinenud u_{k-1} juures, kuid esines u_k juures.
- Kui k=1, siis $u_0 \neq u_1$ vastavalt arutelule teoreemi tõestuse alguses.

Vaatame G alamgraafi $(V, \gamma'^{-1}(c_0, c_k))$.

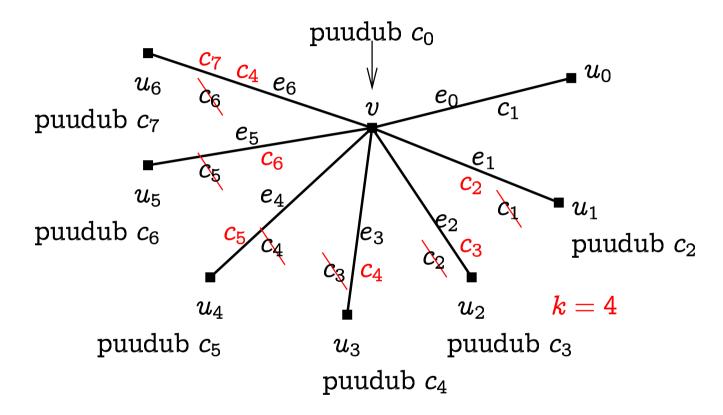


Vastavalt lemmale 2 on selle graafi v-d sisaldav sidusus-komponent paarituarvulise pikkusega tsükkel.

S.t. leidub tee $P: u_{k-1} \rightsquigarrow u_k$, mis ei läbi v-d ja kasutab ainult servi värviga c_0 ja c_k .

Sama tee leidub ka γ järgi, sest γ' saamiseks muudeti ainult v-ga intsidentseid servi.

Vaatame ka värvimisviisi γ'' .



 γ'' on optimaalne. Tee P leidub ka γ'' järgi värvitud graafis.

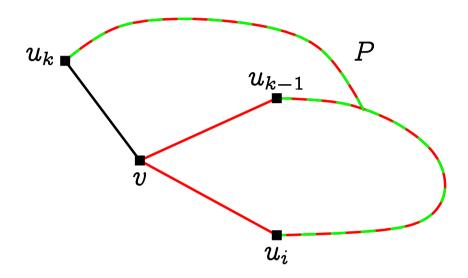
Tähelepanek: $u_{k-1} \neq u_i$.

- Kui k=1, siis $c_k=c_{i+1}$ ei esine u_i juures, kuid $c_k=c_1$ esineb u_0 juures.
- Kui k > 1, siis: Meil on $c_k = c_{i+1}$. Kui u_{k-1} ja u_i oleks sama tipp, siis tähendanuks see, et me valisime sama tipu juures kaks korda sama värvi.
 - Ennist me spetsifitseerisime, et seda me ei tee.

Sellel slaidil vaatasime värvimisviisi γ .

Me oleme leidnud, et u_{k-1} , u_k ja u_i on kõik erinevad.

Vaatame G alamgraafi $(V, \gamma''^{-1}(c_0, c_k))$.



Taas peab v-d sisaldav sidususkomponent olema paaritu tsükkel. Kuid ka u_k kuulub sellesse sidususkomponenti, ent tema aste graafis $(V, \gamma''^{-1}(c_0, c_k))$ on 1. Vastuolu.