Ramsey teooria

28. november 2002

18. november 2003

Järgmisel nädalal (25. november) loengut ei toimu. Selle asemel toimub esimese kontrolltöö järeltöö.

Järeltööle ilmumisel juba tehtud töö tulemus unustatakse.

Olgu G = (V, E) graaf. Tipuhulka $S \subseteq V$ nimetatakse *klikiks*, kui suvalised kaks (erinevat) tippu $u, v \in S$ on G-s servaga ühendatud.

Teisisõnu, S on klikk, kui indutseeritud alamgraaf G[S] on täisgraaf.

Tipuhulka $S \subseteq V$ nimetatakse sõltumatuks hulgaks, kui ühegi kahe S-i kuuluva tipu vahel serva ei ole.

Teisisõnu, S on sõltumatu hulk, kui indutseeritud alamgraaf G[S] on tühigraaf.

Meenutame, et n-tipulist tühigraafi tähistasime sümboliga O_n .

Lause. Olgu G = (V, E) lihtgraaf, nii et $|V| \geq 6$. Siis leidub G-s kolmeelemendiline klikk või kolmeelemendiline sõltumatu hulk.

Tõestus. Olgu $v \in V$ mingi tipp. Olgu

- X = N(v) (tipu v naabertippude hulk);
- $Y = \overline{N}(v) = V \setminus (X \cup \{v\})$ (tipu v mitte-naabrid).

Kuna $|X|+|Y|=|X\cup Y|=|V|-1\geq 5$, siis $|X|\geq 3$ või $|Y|\geq 3$. Oletame, et $|X|\geq 3$. On kaks võimalust:

- X on sõltumatu hulk.
- Leiduvad $u, w \in X$, nii et $(u, w) \in E$. Siis $\{u, v, w\}$ on klikk.

Juht $|Y| \geq 3$ on analoogiline (G asemel \overline{G}).

Olgu r(k,l) (kui ta leidub) vähim selline täisarv, et iga lihtgraafi G=(V,E) jaoks, kus $|V|\geq r(k,l)$, kehtib

$$K_k \hookrightarrow G$$
 või $O_l \hookrightarrow G$.

Tänases loengus me näitame, et r(k, l) leidub kõigi $k, l \in \mathbb{N}$ jaoks, ning anname mõned alam- ja ülemtõkked.

Eelmine lause näitas, et r(3,3) leidub ja on ülimalt 6.

Kuna $K_3 \not\hookrightarrow C_5$ ja $O_3 \not\hookrightarrow C_5$, siis r(3,3) = 6.

Lemma. Kui r(k,l) leidub, siis leidub ka r(l,k) ja r(l,k)=r(k,l).

Tõestus. Ilmne. Vahetame ära servade olemise ja mitteolemise.

Lemma. Olgu $k, l \in \mathbb{N}$. Suurused r(k, 1) ja r(k, 2) leiduvad ning r(k, 1) = 1 ja r(k, 2) = k.

Analoogiliselt r(1, l) = 1 ja r(2, l) = l.

Tõestus. O_1 on lihtsalt ühetipuline graaf. See sisaldub igas graafis. Seega r(k, 1) = 1.

Olgu G=(V,E) lihtgraaf, olgu |V|=k. Kui $G=K_k$, siis $K_k \hookrightarrow G$. Kui $G \neq K_k$, siis olgu $u,v \in V$ sellised, et $(u,v) \not\in E$. Siis $G[\{u,v\}]=O_2$.

Oleme näidanud, et $r(k,2) \leq k$. Samas $K_k \not\hookrightarrow K_{k-1}$ ja $O_2 \not\hookrightarrow K_{k-1}$. Seega r(k,2) = k.

Teoreem. Olgu $k,l\in\mathbb{N}$, nii et $k\geq 2$ ja $l\geq 2$. Siis r(k,l) leidub. Peale selle kehtib $r(k,l)\leq r(k-1,l)+r(k,l-1)$.

Tõestus. Induktsioon üle k+l.

Baas. k + l = 4. Siis k = l = 2. Eelmine lemma annab

$$r(2,2) = 2 = 1 + 1 = r(1,2) + r(2,1)$$
.

Samm. Induktsiooni eeldusest saame, et r(k-1,l) ja r(k,l-1) leiduvad.

Olgu G=(V,E) mingi lihtgraaf, nii et |V|=r(k-1,l)+r(k,l-1).

Olgu $v \in V$ ja vaatame hulki N(v) ja $\overline{N}(v)$.

Kuna $|N(v)|+|\overline{N}(v)|=r(k-1,l)+r(k,l-1)-1$, siis kehtib vähemalt üks järgmistest väidetest:

1.
$$|N(v)| \geq r(k-1, l)$$
.

$$2. \ |\overline{N}(v)| \geq r(k,l-1).$$

Esimesel juhul vaatame graafi G[N(v)]. On kaks võimalust:

- $K_{k-1} \hookrightarrow G[N(v)]$. Olgu $S \subseteq N(v)$ (k-1)-tipuline klikk. Siis $S \cup \{v\}$ on k-tipuline klikk.
- $O_l \hookrightarrow G[N(v)]$. Siis ka $O_l \hookrightarrow G$.

Teisel juhul vaatame graafi $G[\overline{N}(v)]$. On kaks võimalust:

- $O_{kl-1} \hookrightarrow G[\overline{N}(v)]$. Olgu $S \subseteq \overline{N}(v)$ (l-1)-tipuline sõltumatu hulk. Siis $S \cup \{v\}$ on l-tipuline sõltumatu hulk.
- $K_k \hookrightarrow G[\overline{N}(v)]$. Siis ka $K_k \hookrightarrow G$.

Oleme näidanud, et suvaline (r(k-1,l)+r(k,l-1))-tipuline graaf sisaldab k-elemendilist klikki või l-elemendilist sõltumatut hulka. Seega on r(k,l) ülimalt r(k-1,l)+r(k,l-1).

 ${f J\ddot{a}reldus}.$ Kui r(k-1,l) ja r(k,l-1) on paarisarvud, siis $r(k,l) \leq r(k-1,l) + r(k,l-1) - 1.$

Tõestus. Olgu G=(V,E) lihtgraaf, kus |V|=r(k-1,l)+r(k,l-1)-1. Olgu $v\in V$ selline, et |N(v)| on paarisarv. Selline v leidub, sest |V| on paaritu.

Kuna nii |N(v)| kui ka $|\overline{N}(v)|$ on paarisarvud, siis kehtib vähemalt üks järgmistest väidetest:

- 1. $|N(v)| \ge r(k-1, l)$.
- $|2.| |\overline{N}(v)| \geq r(k,l-1).$

Tõestus jätkub identselt eelmise teoreemi tõestusega.

Lause.
$$r(k,l) \leq {k+l-2 \choose k-1}$$
.

Tõestus.
$$r(1,1) = r(1,2) = r(2,1) = 1 = \binom{0}{0} = \binom{1}{0} = \binom{1}{1}$$
.

k ja l-i ülejäänud väärtuste jaoks tõestame selle väite induktsiooniga üle k+l. Me oleme juba ära teinud baasi k+l < 3.

Samm. Olgu $k+l \geq 4$. Siis

$$r(k,l) \leq r(k-1,l) + r(k,l-1) \leq {k+l-3 \choose k-2} + {k+l-3 \choose k-1} = {k+l-2 \choose k-1}.$$

Teoreem. Kui $k \geq 2$, siis $r(k, k) \geq 2^{k/2}$.

Tõestus. Olgu $n < 2^{k/2}$ ja olgu \mathcal{G} kõigi n-tipuliste lihtgraafide hulk. Meil tuleb näidata, et leidub $G \in \mathcal{G}$, nii et $K_k \not\hookrightarrow G$ ja $O_k \not\hookrightarrow G$.

Olgu meil antud mingi hulk \mathcal{X} ja selle hulga elementide mingi omadus P. S.t. P on funktsioon hulgast \mathcal{X} hulka $\{t\tilde{o}ene, v\ddot{a}r\}$. Olgu meil tarvis näidata, et leidub $x \in \mathcal{X}$, mille korral P(x) kehtib.

Selleks piisab, kui näitame, et kui x on mingi juhuslikult valitud element hulgast X, siis P[P(x)] > 0.

Defineerimaks, mida kujutab endast hulgast \mathcal{G} juhusliku graafi valimine, tuleb meil fikseerida mingi tõenäosusjaotus hulgal \mathcal{G} .

Olgu \mathcal{G} hoopis kõigi $m \ddot{a} r g e n datud n$ -tipuliste lihtgraafide hulk (märgenditega hulgast $\{1, \ldots, n\}$). Siis $|\mathcal{G}| = 2^{\binom{n}{2}}$.

Olgu G juhuslik märgendatud graaf hulgast \mathcal{G} , kusjuures kõigil $2^{\binom{n}{2}}$ graafil olgu sama suur tõenäosus valituks saada.

Leiame ülemise tõkke suurustele $P[K_k \hookrightarrow G]$ ja $P[O_k \hookrightarrow G]$.

$$P[K_k \hookrightarrow G] =$$

 $\frac{k\text{-elemendilist klikki sisaldavate graafide arv }\mathcal{G}\text{-s}}{|\mathcal{G}|} \leq$

$$rac{1}{|\mathfrak{G}|} \cdot \sum_{1 \leq m_1 < m_2 < \cdots < m_k \leq n} ig| \{G \, | \, G = (V, E, \mu) \in \mathfrak{G},$$

$$| orall i, j \in \{1, \dots, k\} : (\mu^{-1}(m_i), \mu^{-1}(m_j)) \in E \} ig| =$$

$$\frac{1}{2^{\binom{n}{2}}} \cdot \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} = \binom{n}{k} \cdot 2^{-\binom{k}{2}} = \frac{n(n-1) \cdots (n-k+1)}{k!} \cdot 2^{-\binom{k}{2}} \leq$$

$$\frac{n^k \cdot 2^{-\binom{k}{2}}}{k!} < \frac{(2^{k/2})^k \cdot 2^{-\binom{k}{2}}}{k!} = \frac{2^{k^2/2 - k(k-1)/2}}{k!} = \frac{2^{k/2}}{k!}$$

Kui k kasvab, siis $\frac{2^{k/2}}{k!}$ kahaneb. Kui $k \geq 3$, siis $\frac{2^{k/2}}{k!} < \frac{1}{2}$.

Variant k=2 tuleb pärast eraldi läbi vaadata.

Analoogiliselt, kui $k \geq 3$, siis $P[O_k \hookrightarrow G] < 1/2$.

Meil oli $P(G) \equiv K_k \not\hookrightarrow G$ ja $O_k \not\hookrightarrow G$ ". Kui $k \geq 3$, siis

$$\mathbf{P}[K_k \not\hookrightarrow G ext{ ja } \mathcal{O}_k \not\hookrightarrow G] = 1 - \mathbf{P}[K_k \hookrightarrow G ext{ või } \mathcal{O}_k \hookrightarrow G] \geq 1 - \mathbf{P}[K_k \hookrightarrow G] - \mathbf{P}[\mathcal{O}_k \hookrightarrow G] > 1 - 1/2 - 1/2 = 0 \; .$$

Seega, kui $k \geq 3$, siis $r(k,k) \geq 2^{k/2}$.

Kui
$$k = 2$$
, siis $r(k, k) = 2 = 2^{k/2}$.

r(k,l) täpsed väärtused on teada ainult väheste paaride (k,l) jaoks. Ülevaate leiab aadressilt

http://www.combinatorics.org/Surveys/ds1.ps

Arvusid r(k, l) saab üldistada.

r(k,l) on vähim selline arv n, et kui me värvime K_n servad kahe värviga (värvimisviis ei pruugi olla korrektne), siis leidub seal alamgraafina esimest värvi K_k või teist värvi K_l .

Olgu $r(a_1, \ldots, a_k)$ vähim selline arv n, et kui me värvime K_n servad k värviga, siis leidub $i \in \{1, \ldots, k\}$ nii, et leidub alamgraaf K_{a_i} , mille kõik servad on värvi a_i .

Kehtib võrratus

$$egin{aligned} r(a_1,\ldots,a_k) &\leq \ & r(a_1-1,a_2,\ldots,a_k) + r(a_1,a_2-1,a_3,\ldots,a_k) + \cdots + \ & r(a_1,\ldots,a_{k-1},a_k-1) - (k-2) \end{aligned}$$

ning $r(\ldots,1,\ldots)=1$.

Tõestus: samasugune kui juhul k = 2.