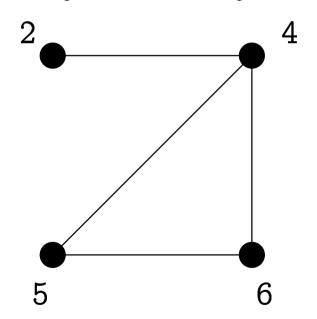
Prüferi koodid Märgendatud puude loendamine

3. oktoober 2002

30. september 2003

Olgu $M \subseteq \mathbb{N}$ lõplik hulk. Märgendatud graaf märgendite hulgaga M on kolmik $G_M = (V, E, \mu)$, kus

- G = (V, E) on graaf;
- $\mu: V \longrightarrow M$ on bijektiivne kujutus.

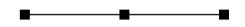


Märgendatud graaf märgendite hulgaga {2, 4, 5, 6}.

Märgendatud graafid $G_M^1=(V_1,E_1,\mu_1)$ ja $G_M^2=(V_2,E_2,\mu_2)$ on isomorfsed, kui leidub kujutus $\varphi:V_1\longrightarrow V_2$, nii et

- φ on graafide (V_1, E_1) ja (V_2, E_2) isomorfism;
- ullet iga $v \in V_1$ jaoks kehtib $\mu_1(v) = \mu_2(arphi(v)).$

Mitteisomorfsed kolmetipulised puud:



Mitteisomorfsed kolmetipulised märgendatud puud (märgenditega $\{1, 2, 3\}$):

Kui palju on neljatipulisi puid ja märgendatud puid (märgenditega {1, 2, 3, 4})?

Tänases loengus näitame, et mitteisomorfseid n-tipulisi (kus $n \geq 2$) märgendatud puid (fikseeritud märgendite hulgaga) on n^{n-2} tükki (Cayley teoreem).

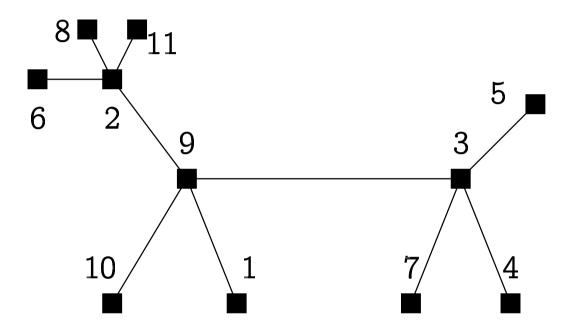
n-tipulised märgenda-tud puud märgenditega \cong (järjendid pikkusega n-2 hulgast M elementidest)

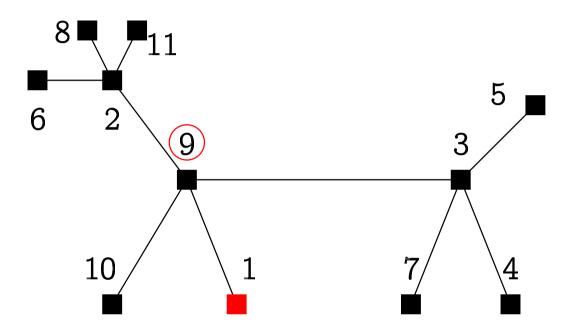
- Defineerime teatava funktsiooni (*Prüferi koodi* leidmise) esimesest hulgast teise.
- Näitame, et ta on üksühene ja peale.

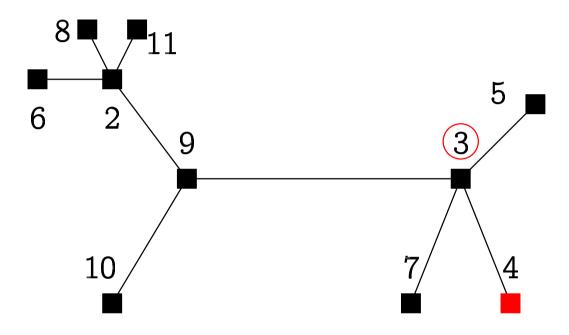
Olgu $T=(V,E,\mu)$ märgendatud puu märgendite hulgaga M. Tema $Pr\ddot{u}feri\ kood\ \wp(T)$ on defineeritud järgmiselt:

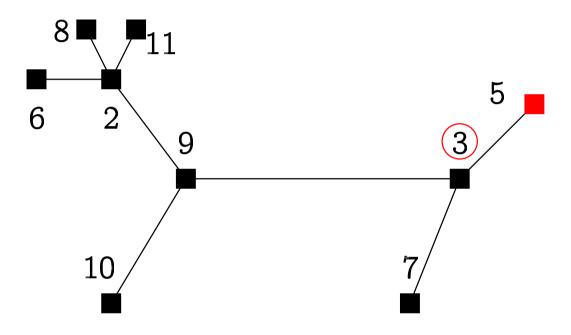
- Kui |V| = 2, siis $\wp(T) = []$ (tühi järjend).
- Muidu
 - Olgu $v \in V$ vähima märgendiga leht. Olgu w tema naabertipp.
 - Olgu $T'=(V\backslash\{v\},E\backslash\{(v,w)\},\mu|_{V\backslash\{v\}})$ märgendatud puu märgendite hulgaga $M\backslash\{\mu(v)\}.$

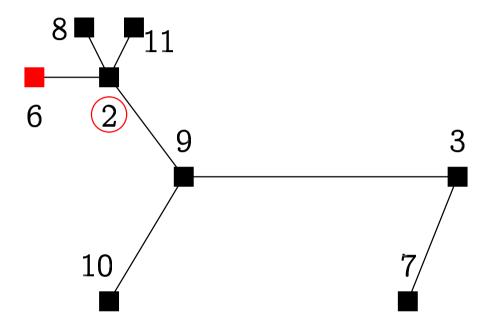
Defineerime $\wp(T) = \mu(w) \cdot \wp(T')$.

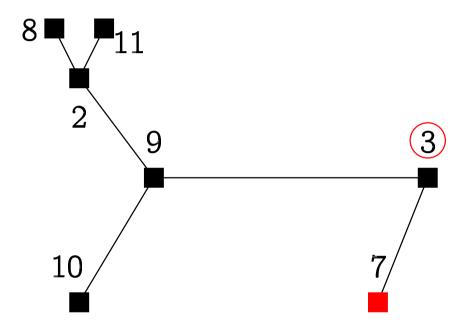


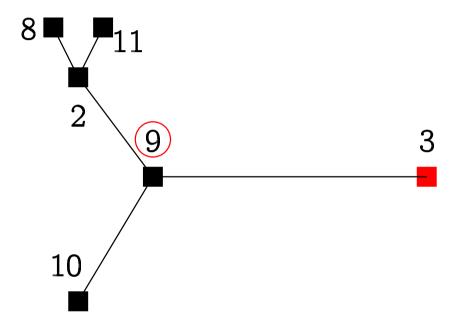


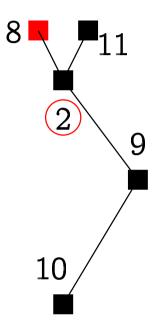


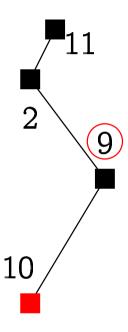


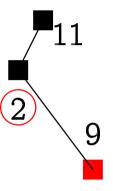


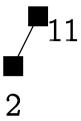












Lemma. Märgendatud puu $T=(V,E,\mu)$ tipu $v\in V$ märgend $\mu(v)$ esineb koodis $\wp(T)$ täpselt $\deg(v)-1$ korda.

Tõestus. Induktsioon üle tippude arvu.

Baas. |V|=2. Siis on kummagi tipu aste 1 ning kummagi tipu märgend esineb koodis $\wp(T)$ null korda.

Samm. |V|=n. Olgu $\wp(T)=[m_1m_2\dots m_{n-2}].$ Olgu $u\in V$ vähima märgendiga leht puus T. Olgu w tema naabertipp. Olgu T' saadud puust T, eemaldades sealt tipu u (tähistame T'=T-u).

T' on (n-1)-tipuline märgendatud puu märgendite hulgaga $M\setminus\{\mu(u)\}$. Tema Prüferi kood on $[m_2\dots m_{n-2}]$. Induktsiooni eelduse järgi esineb suvalise tipu $v\in V\setminus\{u\}$ märgend selles koodis $\deg_{T'}(v)-1$ korda.

Olgu $v \in V$. Vaatame kolme varianti:

- v=u. Siis $\deg_T(v)=1$. Märgend $\mu(u)$ ei esine koodis $\wp(T')$ ning $m_1=\mu(w)$. Seega ei esine $\mu(u)$ koodis $\wp(T)$.
- v=w. Siis $\deg_T(v)=\deg_{T'}(v)+1$. Märgend $\mu(w)$ esineb koodis $\wp(T)$ üks kord rohkem kui koodis $\wp(T')$, sest $m_1=\mu(w)$.
- v on mingi muu tipp. Siis $\deg_T(v) = \deg_{T'}(v)$. Ka v märgendi esinemiste arv koodides $\wp(T)$ ja $\wp(T')$ on sama.

Teoreem. Olgu $T_1=(V_1,E_1,\mu_1)$ ja $T_2=(V_2,E_2,\mu_2)$ märgendatud puud märgendite hulgaga M. Kui $\wp(T_1)=\wp(T_2)$, siis $T_1\cong T_2$.

Tõestus. Induktsioon üle tippude arvu.

Baas. |V|=2. Leidub ainult üks kahetipuline märgendatud puu märgendite hulgaga $M=\{m_1,m_2\}$: m_1 m_2

Samm. |V|=n. Olgu $\wp(T_1)=\wp(T_2)=[m_1m_2\dots m_{n-2}].$

 $\wp(T)$ -st saab leida puu T lehtede märgendid — need on need märgendid, mis $\wp(T)$ -s ei esine (\Leftarrow eelmine lemma).

Seega on puude T_1 ja T_2 lehtede märgendite hulgad võrdsed.

Olgu $m \in M$ vähim lehe märgend. Olgu $v_1 \in V_1$ ja $v_2 \in V_2$ sellised, et $\mu_1(v_1) = \mu_2(v_2) = m$.

Olgu $T_1' = T_1 - v_1$ ja $T_2' = T_2 - v_2$. Vastavalt Prüferi koodi konstruktsioonile $\wp(T_1') = \wp(T_2') = [m_2 \dots m_{n-2}]$.

Induktsiooni eelduse järgi $T_1'\cong T_2'$. Olgu $\varphi:V_1\backslash\{v_1\}\longrightarrow V_2\backslash\{v_2\}$ nendevaheline isomorfism.

Näitame, et kui me täiendavalt defineerime $\varphi(v_1) = v_2$, siis on φ märgendatud puude T_1 ja T_2 vaheline isomorfism.

 φ jätab märgendid paika: $\mu_1(v_1) = \mu_2(v_2)$. Meil tuleb veel näidata, et φ on puude T_1 ja T_2 vaheline isomorfism.

Olgu $u, u' \in V_1$. Näitame, et u ja u' on naabrid parajasti siis, kui $\varphi(u)$ ja $\varphi(u')$ on naabrid.

Kui $u \neq v_1$ ja $u' \neq v_1$, siis järeldub see sellest, et φ oli T_1' ja T_2' vaheline isomorfism.

Olgu $u=v_1$. Tipud v_1 ja v_2 on lehed. Olgu $w_1\in V_1$ ja $w_2\in V_2$ tippude v_1 ja v_2 ainsad naabrid.

Vastavalt Prüferi koodi konstruktsioonile $\mu_1(w_1) = \mu_2(w_2) = m_1$. Kuna φ on märgendatud puude T_1' ja T_2' vaheline isomorfism, siis $\varphi(w_1) = w_2$.

Seega on u' tipu $u=v_1$ naabertipp parajasti siis, kui $\varphi(u')$ on tipu $\varphi(u)=v_2$ naabertipp.

Teoreem. Olgu $M \subset \mathbb{N}$, nii et $n = |M| \geq 2$. Olgu $\mathbb{M} = [m_1 m_2 \dots m_{n-2}]$, kus $m_1, \dots, m_{n-2} \in M$. Siis leidub n-tipuline märgendatud puu $T = (V, E, \mu)$ märgendite hulgaga M, nii et $\wp(T) = \mathbb{M}$.

Tõestus. Induktsioon üle n.

Baas. n=2. Siis $\mathfrak{M}=[\,]$. Kui $M=\{m_1,m_2\}$, siis võtame T-ks puu m_1 m_2

Samm. Olgu $m \in M$ vähim selline element, mis ei esine järjendis \mathcal{M} . Olgu $M' = M \setminus \{m\}$ ja $\mathcal{M}' = [m_2 \dots m_{n-2}]$.

Vastavalt induktsiooni eeldusele leidub märgendatud puu $T' = (V', E', \mu')$ märgendite hulgaga M', nii et $\wp(T') = \mathcal{M}'$.

Olgu
$$w\in V'$$
 selline, et $\mu'(w)=m_1$. Olgu $V=V'\uplus\{v\}$ $E=E'\cup\{(v,w)\}$ $\mu=\mu'[v\mapsto m]$

ja olgu $T=(V,E,\mu)$. Siis T on märgendatud puu märgendite hulgaga M.

Leiame $\wp(T)$. Meil on tarvis leida vähima märgendiga leht puus T. Puu T lehtede märgendid on täpselt need M-i elemendid, mis ei kuulu \mathcal{M} -i. Vastavalt m-i definitsioonile on m vähim nende seas. Seega on vastavalt μ definitsioonile v vähima märgendiga leht puus T.

Tipu v naabriks puus T on w, mille märgend on vastavalt tema definitsioonile m_1 .

Eemaldades puust T tipu v saame puu T' märgenditega hulgast M'.

Seega
$$\wp(T)=\mu(w)\cdot\wp(T')=[m_1m_2\dots m_{n-2}]={\mathfrak M}.$$

Teoreemi tõestus oli konstruktiivne, andes meile ka algoritmi märgendatud puu leidmiseks tema Prüferi koodi järgi. Olgu antud $\mathcal{M} = [m_1 m_2 \dots m_{n-2}]$.

- 1. Iga $i \in \{1, \ldots, n-2\}$ jaoks leiame järjendile $[m_i \ldots m_{n-2}]$ vastava vähima märgendiga lehe märgendi. Olgu l_i hulga $M \setminus \{l_1, \ldots, l_{i-1}\}$ vähim element, mis erineb elementidest m_i, \ldots, m_{n-2} .
- 2. Loome kahetipulise märgendatud puu märgenditega hulgast $M \setminus \{l_1, \ldots, l_{n-2}\}$.
- 3. Iga $i \in \{1, \ldots, n-2\}$ jaoks (kahanevalt):
 - Lisame puule uue tipu, märgendame ta l_i -ga.
 - Ühendame selle tipu tipuga, mis on märgendatud m_i -ga.

Kood: 7 7 7 4 5 7 4 4

Kood: 7 7 7 4 5 7 4 4

vähima märgendiga lehe märgend: 1

Kood: 7 7 7 4 5 7 4 4

vähima märgendiga lehe märgend: 1 2

Kood: 7 7 7 4 5 7 4 4

vähima märgendiga lehe märgend: 1 2 3

Kood: 7 7 7 4 5 7 4 4

vähima märgendiga lehe märgend: 1 2 3 6

Kood: 7 7 7 4 5 7 4 4

vähima märgendiga lehe märgend: 1 2 3 6 8

Kood: 7 7 7 4 5 7 4 4

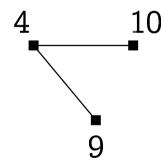
vähima märgendiga lehe märgend: 1 2 3 6 8 5

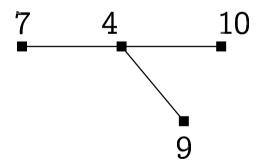
Kood: 7 7 7 4 5 7 4 4

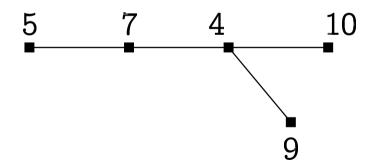
vähima märgendiga lehe märgend: 1 2 3 6 8 5 7

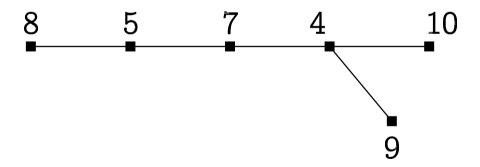
Kood: 7 7 7 4 5 7 4 4

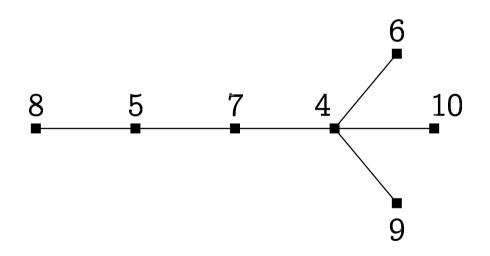
vähima märgendiga lehe märgend: 1 2 3 6 8 5 7 9

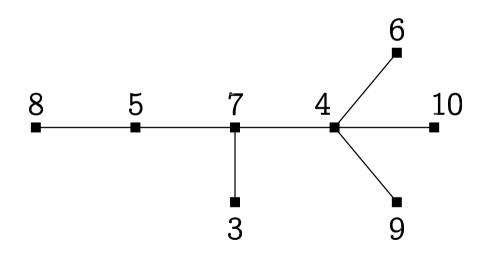


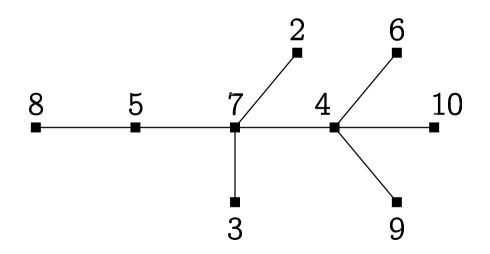












Kood:

vähima märgendiga lehe märgend:

	7	7 2	7	4	5	7	4	4
:	1	2	3	6	8	5	7	9

