Võrgud ja vood Ford-Fulkersoni algoritm

10. oktoober 2002 14. oktoober 2003 Olgu G = (V, E) suunatud graaf.

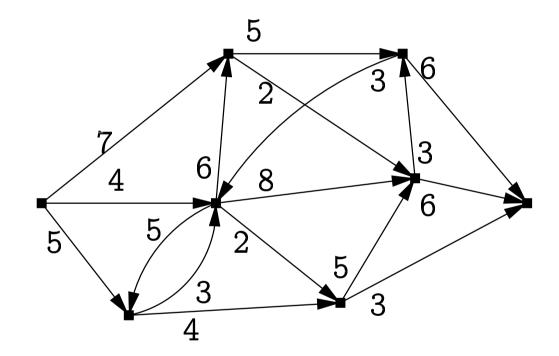
Suunatud graafi tipu $v \in V$ jaoks on defineeritud tema $\overrightarrow{sisendaste} \ \overrightarrow{\deg}(v)$ ja $\overrightarrow{valjundaste} \ \overrightarrow{\deg}(v)$.

Kui $\overrightarrow{\deg}(v) = 0$, siis on v graafi G *lähe*. Kui $\overleftarrow{\deg}(v) = 0$, siis on v graafi G *suue*.

 $egin{aligned} L\ddot{a}bilaskev \widetilde{o}ime \ G ext{-l} ext{ on mingi funktsioon } \psi: E \longrightarrow \mathbb{R}_+. \ Tipu \ v \in V \ \psi ext{-sisendaste} ext{ on } \overrightarrow{\deg_\psi}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e). \end{aligned}$

$$\psi$$
-väljundaste on $\overleftarrow{\deg_\psi}(v) = \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,u)}} \psi(e).$

 $V \tilde{o} r k$ on paar (G, ψ) , kus G on mingi suunatud graaf ja ψ mingi läbilaskevõime sellel.



Lause. Graafi G = (V, E) kõigi tippude ψ -sisendastmete summa on võrdne G kõigi tippude ψ -väljundastmete summaga.

Tõestus.

$$\sum_{v \in V} \overrightarrow{\deg_{\psi}}(v) = \sum_{v \in V} \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e) = \sum_{e \in E} \psi(e) = \sum_{v \in V} \psi(e) = \sum_{v \in V} \overleftarrow{\deg_{\psi}}(v) \ .$$

Olgu (G, ψ) võrk. Loeme, et G-l on täpselt üks lähe s ja täpselt üks suue t.

Voog võrgul (G,ψ) on mingi funktsioon $arphi:E\longrightarrow \mathbb{R}_+$, nii et

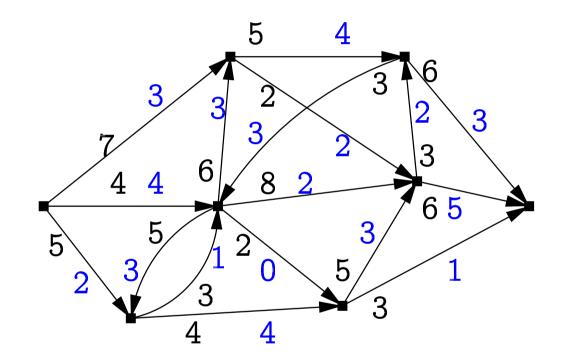
•
$$arphi(e) \leq \psi(e)$$
 iga $e \in E$ jaoks.

$$\bullet \ \overrightarrow{\deg_{\varphi}}(v) = \overleftarrow{\deg_{\varphi}}(v) \ \text{iga} \ v \in V \backslash \{s,t\} \ \text{jaoks}.$$

Eelmisest lausest järeldub $\overleftarrow{\deg_{\varphi}}(s) = \overrightarrow{\deg_{\varphi}}(t)$. Seda suurust nimetame voo φ väärtuseks ja tähistame $|\varphi|$.

Voog on *maksimaalne*, kui tema väärtus on maksimaalne võimalik.

Tänases loengus loeme, et graafis G = (V, E) pole silmuseid ja kordseid suunatud servi. Siis võime lugeda $E \subseteq V \times V$.



Lemma. Olgu (G,ψ) võrk, kus G=(V,E). Olgu $V=V_s \,\dot\cup\, V_t$, nii et $s\in V_s$ ja $t\in V_t$. Olgu

$$\Phi(V_s,V_t) = \sum_{e \in E \cap (V_s imes V_t)} arphi(e) - \sum_{e \in E \cap (V_t imes V_s)} arphi(e) \;\;.$$

Siis on $\Phi(V_s, V_t)$ võrdne φ väärtusega.

Tõestus. Induktsioon üle $|V_s|$.

Baas. $|V_s| = 1$. Siis $V_s = \{s\}$. Hulk $V_s \times V_t$ sisaldab parasjagu kõik s-st väljuvad servad ja hulk $V_t \times V_s$ on tühi.

Samm. Kehtigu lause väide mingite hulkade V_s ja V_t jaoks. Olgu $x \in V_t \setminus \{t\}, V'_s = V_s \cup \{x\}$ ja $V'_t = V_t \setminus \{x\}$. Piisab, kui näitame, et $\Phi(V_s, V_t) = \Phi(V'_s, V'_t)$.

$\Phi(V_s,V_t)$:				$\Phi(V_s',V_t')$:				
V imes V	V_s	x	V_t'		V imes V	V_s	x	V_t'
V_s		$+ \varphi$	$+ \varphi$		V_s			+ arphi
x	-arphi				x			+ arphi
V_t'	-arphi				V_t'	-arphi	-arphi	

$\Phi(V_s,V_t)-\Phi(V_s',V_t')=$								
V imes V	V_s	x	V_t'					
V_s		$+ \varphi$						
x	-arphi		-arphi					
V_t'		+ arphi						
$=\overrightarrow{\deg_{arphi}(x)}-\overleftarrow{\deg_{arphi}(x)}=0$								

Võrgu (G, ψ) , kus G = (V, E), *lõige* on mingi servade hulk $L \subseteq E$, nii et iga suunatud tee G lähtest suudmesse kasutab mõnda serva hulgast L.

Alternatiivselt: $L \subseteq E$ on lõige, kui graafis $(V, E \setminus L)$ ei leidu ühtki suunatud teed tipust *s* tippu *t*.

Lõike L läbilaskevõime on summa $\sum_{e \in L} \psi(e)$. Tähistame $\psi(L)$.

Lõige on *minimaalne*, kui tema läbilaskevõime on minimaalne võimalik. Teoreem (Ford ja Fulkerson). Võrgu maksimaalsete voogude väärtus on võrdne selle võrgu minimaalsete lõigete läbilaskevõimega.

Tõestus. Olgu (G, ψ) võrk, olgu G = (V, E). Olgu s tema lähe ja t tema suue. Näitame, et

- I. Ühegi voo väärtus pole suurem kui ühegi lõike läbilaskevõime.
- II. Maksimaalse voo jaoks leidub lõige, mille läbilaskevõime on võrdne selle voo väärtusega.

Iosa. Olgu φ mingi voog ja Lmingi lõige.

Olgu $V_s \subseteq V$ kõigi selliste tippude hulk, kuhu leidub tipust s suunatud tee, kasutamata servi hulgast L. Olgu $V_t = V \setminus V_s$. Kuna $E \cap (V_s \times V_t) \subseteq L$, siis

 $\psi(L) \geq \sum_{e \in E \cap (V_s imes V_t)} \psi(e) \geq \sum_{e \in E \cap (V_s imes V_t)} arphi(e) \geq \Phi(V_s,V_t) = |arphi| \;\;.$

II osa. Olgu φ mingi maksimaalne voog.

Olgu $V_s \subseteq V$ kõigi selliste tippude v hulk, et: Leidub *suunamata* tee $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = v$, nii et

• Kui $e_i = (v_{i-1}, v_i)$, siis $\varphi(e_i) < \psi(e_i)$.

• Kui
$$e_i = (v_i, v_{i-1})$$
, siis $\varphi(e_i) > 0$.

Ütleme, et tippude v_{i-1} ja v_i vahel on voog küllastamata.

Sellist teed nimetame *suurendavaks*.

Olgu $V_t = V \setminus V_s$. Näitame, et $t \in V_t$. Tõepoolest, kui $t \in V_s$, siis pole φ maksimaalne:

Olgu $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ mingi suurendav tee. Defineerime positiivsed reaalarvud δ_i järgmiselt:

$$\delta_i = egin{cases} \psi(e_i) - arphi(e_i), & ext{kui} \; e_i = (v_{i-1}, v_i) \ arphi(e_i), & ext{kui} \; e_i = (v_i, v_{i-1}) \ . \end{cases}$$

Olgu $\varepsilon = \min_i \delta_i$. Olgu φ' järgmine voog:

$$arphi'(e) = egin{cases} arphi(e), & ext{kui} \ e
ot\in \{e_1,\ldots,e_m\} \ arphi(e) + arepsilon, & ext{kui} \ e = e_i = (v_{i-1},v_i) \ arphi(e) - arepsilon, & ext{kui} \ e = e_i = (v_i,v_{i-1}) \end{array}$$

Siis φ' on voog ja $|\varphi'| = |\varphi| + \varepsilon$.

Hulkade V_s ja V_t konstruktsioon annab:

- Kui $e \in E \cap (V_s \times V_t)$, siis $\varphi(e) = \psi(e)$.
- Kui $e \in E \cap (V_t \times V_s)$, siis $\varphi(e) = 0$.

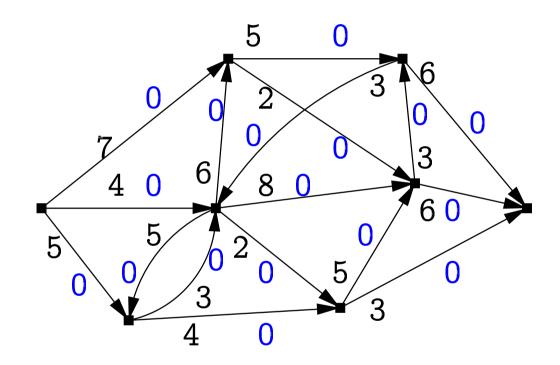
Olgu $L = E \cap (V_s \times V_t)$. Siis L on lõige ja $\psi(L) = |\varphi|$. \Box

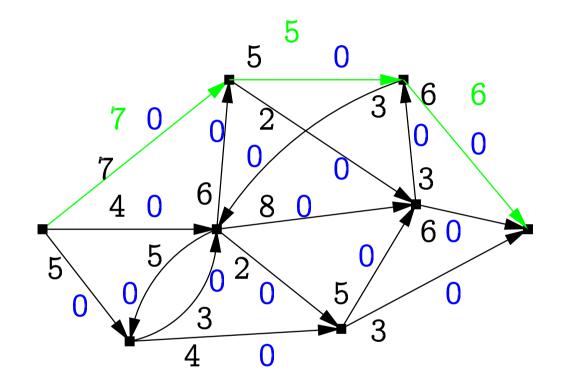
Algoritm max. voo leidmiseks (Ford-Fulkerson). Olgu (G, ψ) võrk, kus G = (V, E).

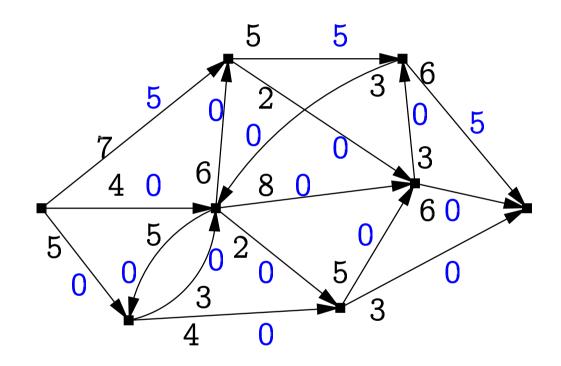
Olgu φ mingi voog võrgul (G, ψ) , näiteks $\forall e : \varphi(e) = 0$. Korda:

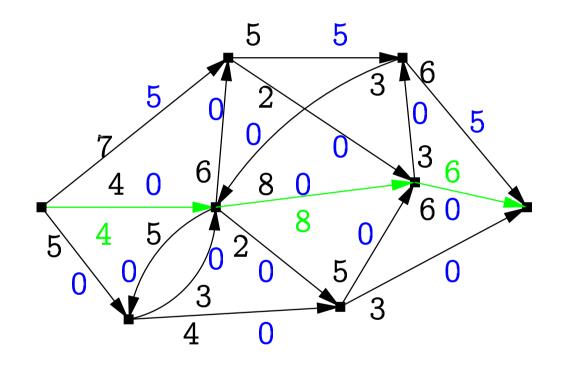
- 1. Leia mingi suurendav tee $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. Kui sellist teed ei leidu, siis lõpeta ja väljasta φ .
- 2. Konstrueeri φ' nagu kujutatud 2 slaidi tagasi.
- 3. Omista $\varphi := \varphi'$.

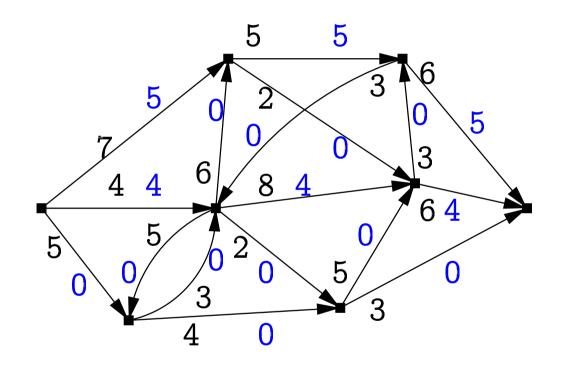
Mingi suurendav tee leitakse graafi mingil viisil läbides.

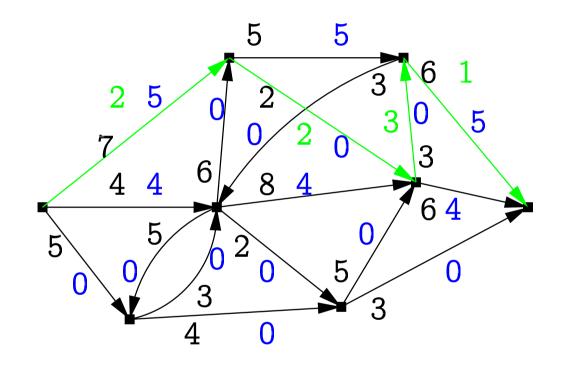


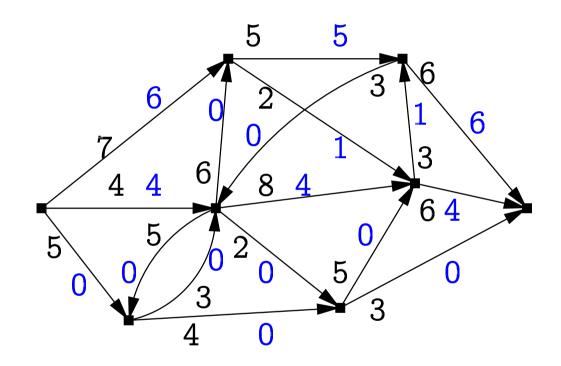


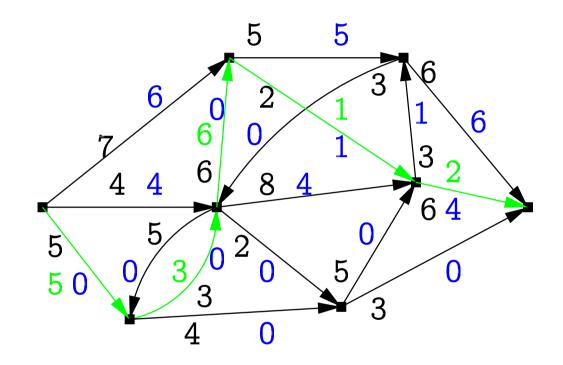


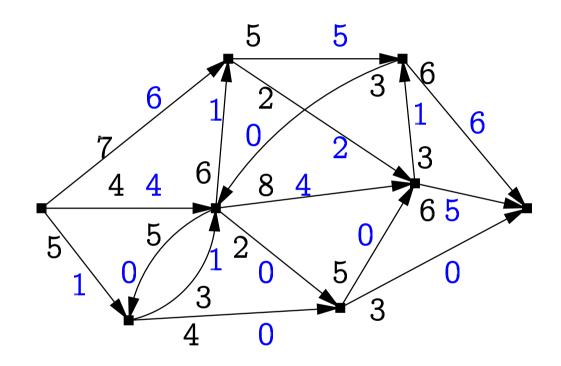


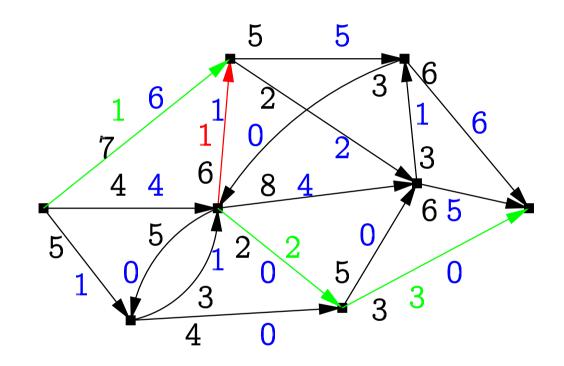


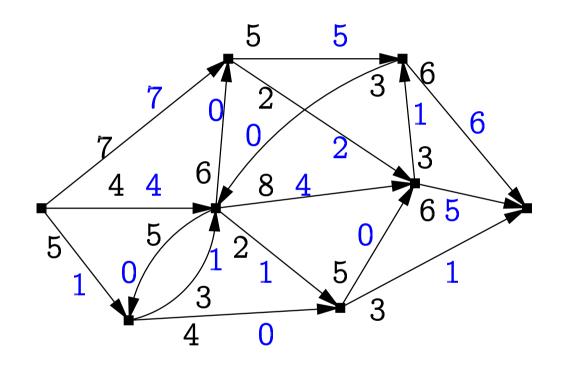


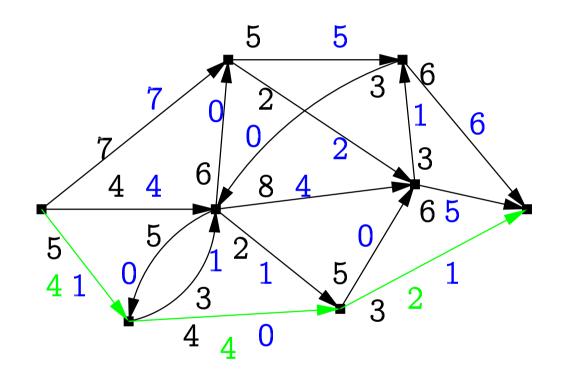


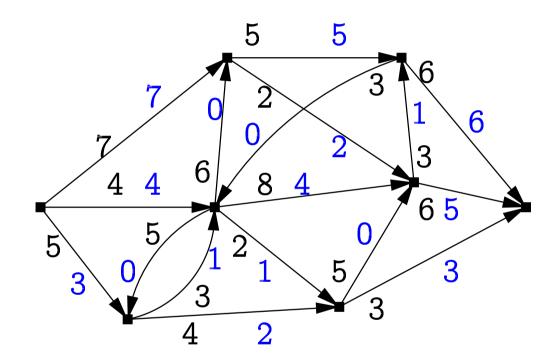


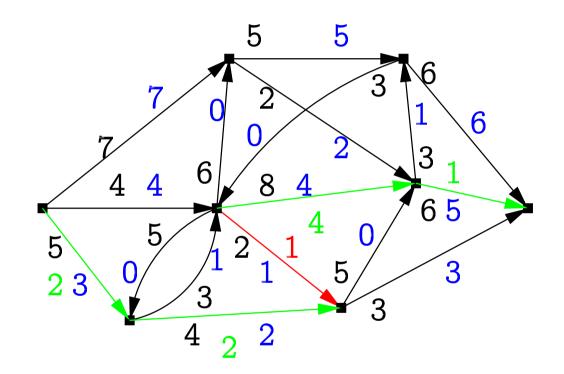


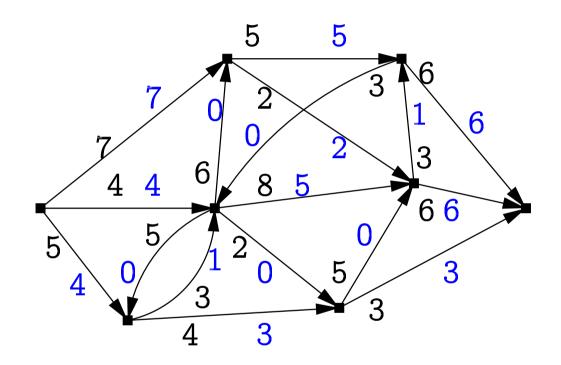












Suurendava tee leidmine:

Olgu $V_s = \{s\}, W = \{s\}.$

Korda, seni kuni $W \neq \emptyset$ ja $t \notin V_s$.

- 1. Vali mingil viisil $v \in W$. Eemalda ta hulgast W.
- 2. Iga $e \in E$ jaoks, mille üks otspunkt on v: kui v ja serva e teise otspunkti w vahel on voog küllastamata ning kui $w \notin V_s$, siis
 - (a) lisa w hulkadesse V_s ja W.
 - (b) Jäta meelde, et w-le "eelnev tipp" on v.

Kui $t \notin V_s$, siis ei leidu suurendavat teed. Kui $t \in V_s$, siis konstrueeri suurendav tee, liikudes *t*-st mööda "eelnevaid tippe" tippu *s*.

Lause. Kui võrgu kõigi servade läbilaskevõimed on täisarvulised, siis täidetakse max. voo leidmise algoritmis tsüklit ülimalt $|\varphi|$ korda, kus φ on mingi maksimaalne voog.

Tõestus. Igal iteratsioonil suureneb juba leitud voo väärtus. Kuna murdarvud ei saa mitte kuskilt sisse tulla, siis suureneb ta iga kord vähemalt 1 võrra. \Box

Loeme nüüd, et suurendav tee lähtest suudmesse leitakse graafi laiuti läbides (Edmonds-Karpi täiendus).

Siis on leitud suurendaval teel $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ järgmine omadus:

Iga *i* jaoks on $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_i}{\longrightarrow} v_i$ lühima pikkusega suurendav tee lähtest tippu v_i .

Kui (G, ψ) , kus G = (V, E) on mingi võrk ja φ mingi voog sellel, siis tähistagu $\delta_{\varphi}(v)$, kus $v \in V$, lühima suurendava tee pikkust lähtest tippu v. Lemma. Olgu $\varphi_0, \varphi_1, \varphi_2, \ldots$ voogude jada, mis tekivad max. voo leidmise algoritmi järjestikustel iteratsioonidel. Siis on suvalise $v \in V$ jaoks jada $\delta_{\varphi_i}(v)$ mittekahanev.

Tõestus. Vaatame mingeid vooge φ_n ja φ_{n+1} selles voogude jadas, olgu $B = \{v \mid \delta_{\varphi_{n+1}}(v) < \delta_{\varphi_n}(v)\}$. Oletame vastuväiteliselt, et B pole tühi. Olgu $v \in B$ selline, mille jaoks $\delta_{\varphi_{n+1}}(v)$ on minimaalne.

Olgu P' lühim suurendav tee lähtest tippu v voo φ_{n+1} järgi. Olgu u selle tee eelviimane tipp. Kuna $\delta_{\varphi_{n+1}}(u) < \delta_{\varphi_{n+1}}(v)$, siis $u \notin B$.

Vaatame voogu φ_n tippude u ja v vahel.

Kui φ_n on tippude u ja v vahel küllastamata, siis

$$\delta_{arphi_n}(v) \leq \delta_{arphi_n}(u) + 1 \leq \delta_{arphi_{n+1}}(u) + 1 = \delta_{arphi_{n+1}}(v)$$

ja seega $v \notin B$, vastuolu.

Kui φ_n on tippude u ja v vahel küllastatud, siis olgu P_n suurendav tee lähtest suudmesse, nii et φ_{n+1} on konstrueeritud φ_n -st, lisades talle täiendava voo läbi tee P_n .

Kuna lisamisel muutub voog u ja v vahel küllastamatuks, siis leidub tees P_n serv $\cdots = v = u = \cdots$. Vastavalt P_n omadustele $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) - 1$. Saame

$$\delta_{arphi_n}(v)=\delta_{arphi_n}(u){-}1\leq \delta_{arphi_{n+1}}(u){-}1=\delta_{arphi_{n+1}}(v){-}2<\delta_{arphi_{n+1}}(v)$$

ja seega $v \notin B$, vastuolu.

Teoreem. Max. voo leidmise algoritm teeb ülimalt $(|V|-2) \cdot |E|$ iteratsiooni.

Tõestus. Vaatame algoritmi mingit iteratsiooni (olgu ta järjekorranumber n). Sel iteratsioonil konstrueeritakse suurendav tee $P_n : s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. Ütleme, et tipupaar (v_{i-1}, v_i) on kriitiline, kui talle vastav suurus δ_i (mis näitab, kui palju tuleb voogu tippude v_{i-1} ja v_i vahel suurendada, et ta küllastuks) on minimaalne (s.t. $\delta_i = \varepsilon$). Igal iteratsioonil on vähemalt üks kriitiline tipupaar. Järg-

misel iteratsioonil on see tipupaar küllastatud.

Loeme, mitmel iteratsioonil korda saab mingi tipupaar (u, v)kriitiline olla. Kui ta on kriitiline *n*-ndal iteratsioonil, siis $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) + 1.$ Et (u, v) saaks kunagi hiljem jälle kriitiline olla, peab millalgi olema iteratsioon nr. n' > n, millel leitav suurendav tee $P_{n'}$ sisaldab serva $\cdots - v - u - \cdots$. Siis

$$\delta_{arphi_{n'}}(u) = \delta_{arphi_{n'}}(v) + 1 \geq \delta_{arphi_n}(v) + 1 = \delta_{arphi_n}(u) + 2$$

seega iga kord, kui (u, v) saab kriitiliseks, on $\delta_{\varphi}(u)$ eelmise korraga võrreldes vähemalt kahe võrra suurem.

Suurus $\delta_{\varphi}(u)$ ei saa olla suurem kui |V| - 2 (kui (u, v) on kriitiline). Seega on (u, v) kriitiline ülimalt $\frac{|V|-2}{2}$ korral. Meid huvitavaid paare (u, v) on ülimalt $2 \cdot |E|$ tükki. \Box

Järgmise loengu ajal toimub kontrolltöö. Ta katab esimeses viies loengus (ja praktikumides) räägitu. Töö ajal on matejalide kasutamine lubatud.