Kooskõlad ja katted

24. oktoober 2002

28. oktoober 2003

Olgu meil hulk X. Me tahame selle hulga elemente paaridesse panna.

Kitsendus: suvalisi kahte elementi ei saa paari panna. Antud on hulk

$$P\subseteq \{\{x,y\}\mid x,y\in X, x
eq y\},$$

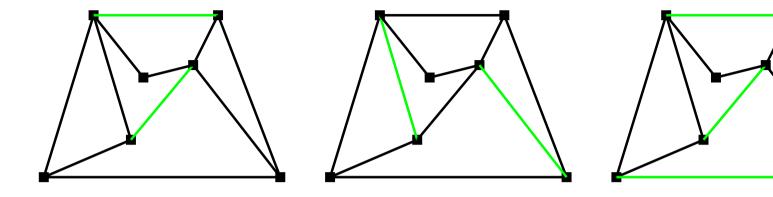
mis näitab, milliseid elemente üleüldse võib paari panna.

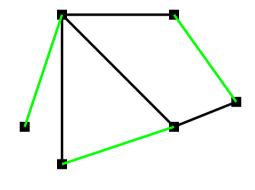
Paar (X, P) on lihtgraaf. Tänases loengus vaatamegi ainult lihtgraafe.

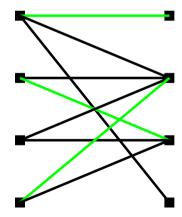
Olgu G = (V, E) lihtgraaf. $Koosk\tilde{o}la$ graafis G on selline servade hulk $M \subseteq E$, et iga $v \in V$ jaoks $\deg_M(v) \leq 1$.

Kooskõla on *maksimaalne*, kui tema võimsus on suurim võimalik.

Kooskõla M on $t\ddot{a}ielik$, kui $\deg_M(v)=1$ iga $v\in V$ jaoks.







Terminoloogiline märkus:

Ülo Kaasiku tungival soovitusel on eelmise aastaga võrreldes termineid muudetud:

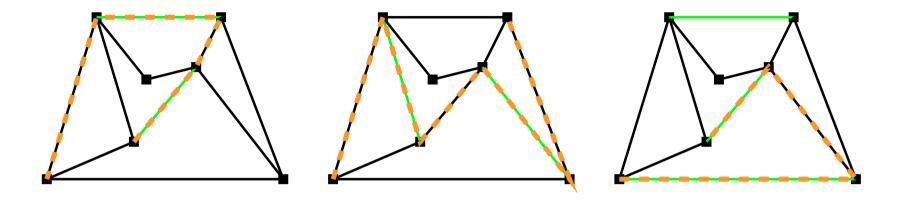
eelmisel aastal	sellel aastal
vastavus	kooskõla
kooskõla	täielik kooskõla

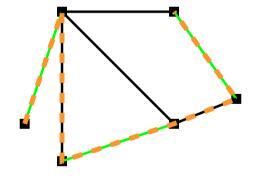
Põhjus: sõnale "vastavus" ei ole ilus täiendavaid tähendusi anda.

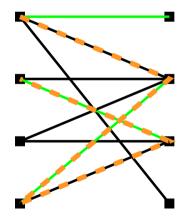
Olgu G = (V, E) lihtgraaf, olgu $M \subseteq E$ mingi kooskõla ja olgu P mingi lahtine lihtahel graafis G.

Ahel P on M-vahelduv, kui temas olevad servad kuuluvad vaheldumisi hulka M ja hulka $E \setminus M$.

Ahel P otstippudega x ja y on M-laienev, kui ta on M-vahelduv ning $\deg_M(x) = \deg_M(y) = 0$.

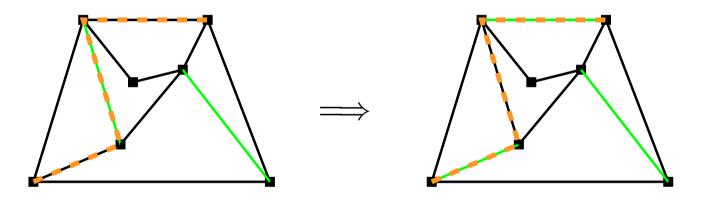






Teoreem (Berge). Kooskõla M graafis G = (V, E) on maksimaalne parajasti siis, kui G-s ei leidu M-laienevat ahelat.

Tõestus \Rightarrow . Oletame vastuväiteliselt, et graafis G leidub mingi M-laienev ahel P.



Vaatame *P*-d kui servade hulka.

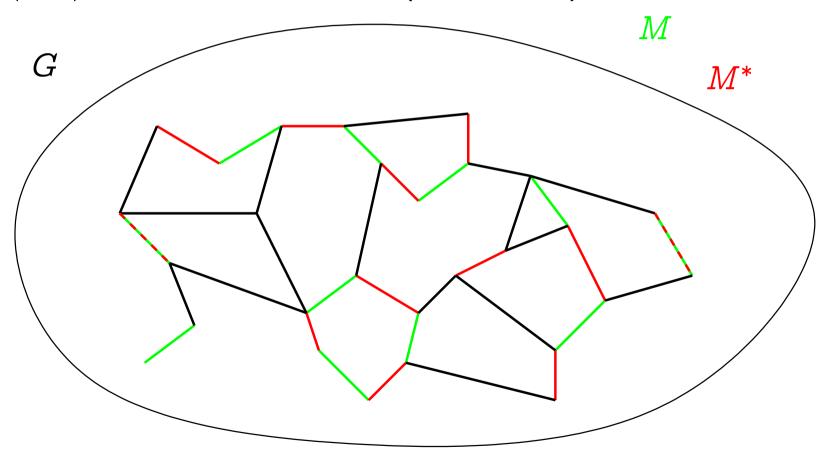
Olgu
$$M' = (M \setminus P) \cup (P \setminus M)$$
. Siis $|M'| = |M| + 1$.

Lihtne on kontrollida, et M' on kooskõla. Olgu $v \in V$, kontrollime, et $\deg_{M'}(v) \leq 1$. On kolm võimalust.

- v ei asu ahelal P. Siis $\deg_M(v) = \deg_{M'}(v)$. Tõepoolest, olgu $e \in E$ tipuga v intsidentne. Kuna $e \notin P$, siis $e \in M \Leftrightarrow e \in M'$.
- v on ahela P otstipp. Siis $\deg_{M'}(v) = \deg_M(v) + 1 = 1$.
- ullet v on ahela P mõni sisemine tipp. Siis $\deg_{M'}(v) = \deg_M(v) = 1$.

 $T\tilde{o}$ estus \Leftarrow . Meil tuleb konstrueerida mingi M-laienev ahel.

Olgu M^* mingi maksimaalne kooskõla graafis G. Siis $|M| < |M^*|$. Vaatame graafi $H = (V, M \cup M^*)$.



Iga $v \in V$ jaoks on $\deg_H(v) \leq 2$. Graafi H võimalikud sidususkomponendid on:

- Isoleeritud tipud.
- Ahelad.
 - Kinnised ehk tsüklid.
 - * M ja M* elemendid vaheldumisi.
 - Lahtised. Võimalused:
 - * Üksainus serv $e \in M \cap M^*$.
 - * M ja M* elemendid vaheldumisi. Võimalused:
 - · Ühes otsas M-i, teises M^* -i element.
 - · Mõlemas otsas M-i element.
 - · Mõlemas otsas M^* -i element.

Kuna $|M| < |M^*|$, siis peab leiduma H-i sidususkomponent, kus on M^* -i kuuluvaid servi rohkem, kui M-i kuuluvaid servi.

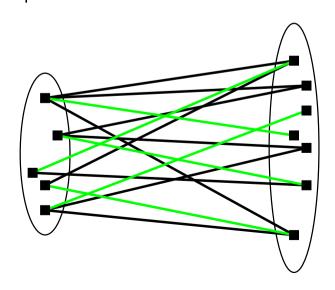
Ainsad sellised komponendid on lahtised ahelad, mis algavad ja lõppevad M^* -i elemendiga.

Need ahelad on M-laienevad.

Olgu G = (V, E) graaf ja olgu $S \subseteq V$. Tipuhulga S naab-rus on hulk

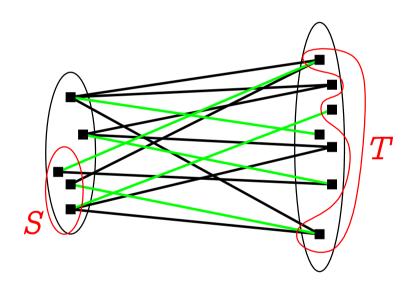
$$N(S) = \{w \mid w \in V, \exists e \in E, \exists v \in S : \mathcal{E}(e) = \{v, w\}\}$$
 .

Teoreem (Hall). Olgu G = (V, E) kahealuseline lihtgraaf alustega X ja Y. Graafis G leidub kooskõla M omadusega $\forall x \in X : \deg_M(x) = 1$ parajasti siis, kui iga $S \subseteq X$ jaoks kehtib $|N(S)| \geq |S|$.



Tõestus \Rightarrow . Olgu M mingi kooskõla etteantud omadusega. Olgu $S\subseteq X$. Vaatame hulka

$$T = \{y \mid y \in Y, \exists x \in S : (x,y) \in M\}$$
 .

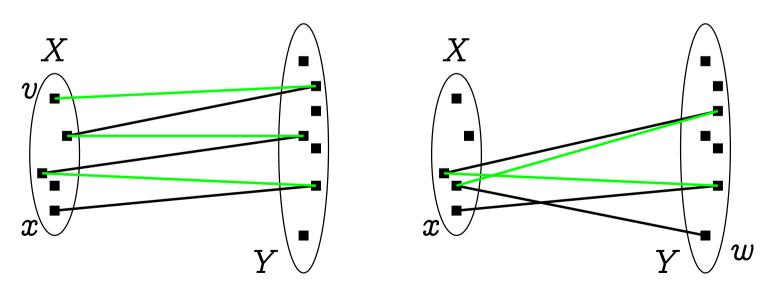


Siis |T|=|S|, sest iga $x\in S$ defineerib erineva y-i. Samas $T\subseteq N(S)$. Kokkuvõttes $|S|=|T|\leq |N(S)|$.

Tõestus \Leftarrow . Olgu M mingi maksimaalne kooskõla. Oletame vastuväiteliselt, et leidub $x \in X$, nii et $\deg_M(x) = 0$.

Olgu $S \subseteq X$ kõigi selliste tippude $v \in X$ hulk, nii et leidub M-vahelduv tee x-st v-sse. Paneme tähele, et $x \in S$.

Olgu $T \subseteq Y$ kõigi selliste tippude $w \in Y$ hulk, nii et leidub M-vahelduv tee x-st w-sse.



Me näitame, et

I.
$$N(S) = T$$
;

II.
$$|S\setminus\{x\}|=|T|$$
.

Kokkuvõttes viib see meid vastuoluni eeldustega:

$$|N(S)| = |T| = |S \setminus \{x\}| = |S| - 1 < |S|$$
.

I osa. Olgu $v \in S$. Olgu P M-vahelduv tee x-st v-sse. Paneme tähele, et viimane serv ahelas P kuulub M-i.

Olgu $w \in Y$ mõni tipu v naabertipp. On kaks võimalust:

- 1. w asub ahelal P. Siis on ahela P osa x-st w-ni M-vahelduv tee x-st w-sse. Seega $w \in T$.
- 2. w ei asu ahelal P. Jälle on kaks võimalust:
 - $(v, w) \in M$. Siis on (v, w) viimane serv ahelas P, sest ei leidu ühtki teist serva hulgas M, mis oleks v-ga intsidentne. Seega realiseerub antud juhul esimene variant.
 - $(v, w) \not\in M$. Siis on P koos täiendava servaga (v, w) M-vahelduv tee x-st w-sse. Seega $w \in T$.

II osa. Me konstrueerime bijektsiooni $S \setminus \{x\}$ ja T vahel.

Olgu $v \in S \setminus \{x\}$. Siis leidub $e \in M$, mis on intsidentne v-ga (viimane serv M-vahelduvas tees x-st v-sse). Tipule v seame vastavusse e teise otspunkti w. Eelmisel slaidil näitasime, et $w \in T$.

Olgu $w \in T$. Kui ei leiduks serva $e \in M$, mis on w-ga intsidentne, siis oleks M-vahelduv tee x-st w-sse M-laienev. Berge'i teoreem M-laienevate teede leidumist ei luba. Seega selline serv e leidub.

w-le seame vastavusse e teise otspunkti v. On ilmne, et $v \in S$. Samuti $v \neq x$, sest e teine otspunkt ei ole x, kuna $\deg_M(x) = 0$.

Järeldus. Regulaarses (s.t. kõigi tippude aste on sama) kahealuselises graafis, mis pole nullgraaf, leidub täielik kooskõla.

Tõestus. Olgu G=(V,E) kahealuseline graaf alustega X ja Y. Olgu k>0 kõigi tippude aste. Kuna

$$|X|\cdot k = \sum_{x\in X} \deg(x) = \sum_{y\in Y} \deg(y) = |Y|\cdot k,$$

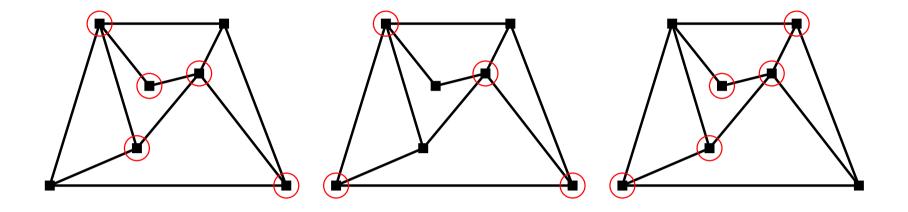
siis |X| = |Y|. Olgu $S \subseteq X$. Kuna

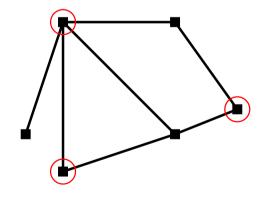
$$|S| \cdot k = \sum_{x \in S} \deg(x) \leq \sum_{y \in N(S)} \deg(y) = |N(S)| \cdot k,$$

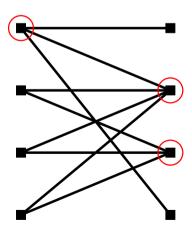
siis $|S| \leq |N(S)|$. Seega leidub kooskõla M, nii et $\deg_M(x) = 1$ iga $x \in X$ jaoks. Kuna |X| = |Y|, siis ka $\deg_M(y) = 1$ iga $y \in Y$ jaoks. \square

Olgu G = (V, E) lihtgraaf. Graafi G kate on selline tippude hulk $K \subseteq V$, et iga serv $e \in E$ on mõne K-sse kuuluva tipuga intsidentne.

Kate on *minimaalne*, kui tema võimsus on vähim võimalik.

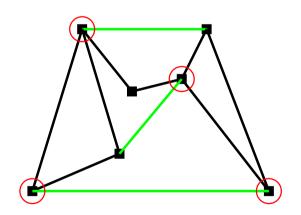






Lemma. Olgu G=(V,E) lihtgraaf, olgu M mingi tema kooskõla ja K mingi tema kate. Siis $|M| \leq |K|$.

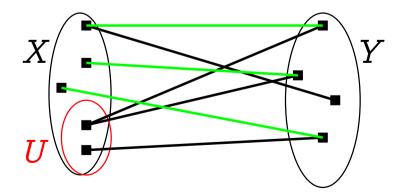
Tõestus. Iga serva $e \in M$ jaoks leidub mingi tipp $v \in K$, nii et e on intsidentne K-ga. Erinevate servade jaoks on need tipud erinevad, kuna erinevatel M-i kuuluvatel servadel pole ühiseid otstippe.



Teoreem (König). Olgu G = (V, E) kahealuseline graaf. Siis on tema maksimaalsete kooskõlade ja minimaalsete katete võimsused võrdsed.

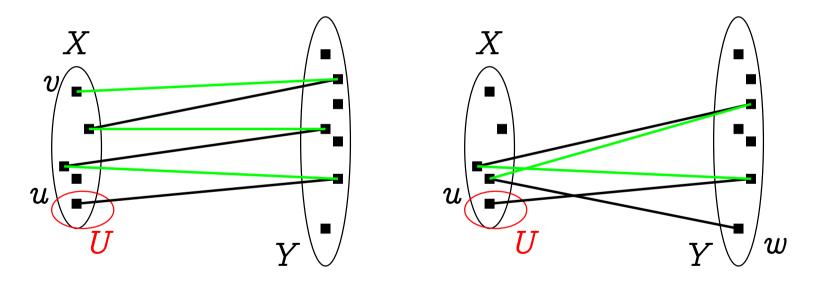
Tõestus. Olgu X ja Y graafi G alused, olgu M tema mingi maksimaalne kooskõla. Konstrueerime katte K, nii et |M| = |K|.

Olgu $U\subseteq X$ kõigi selliste tippude $u\in X$ hulk, et $\deg_M(u)=0$. Siis $|M|=|X\backslash U|$.



Olgu $S \subseteq X$ kõigi selliste tippude $v \in X$ hulk, nii et mingi $u \in U$ jaoks leidub M-vahelduv tee u-st v-sse. Siis $U \subseteq S$.

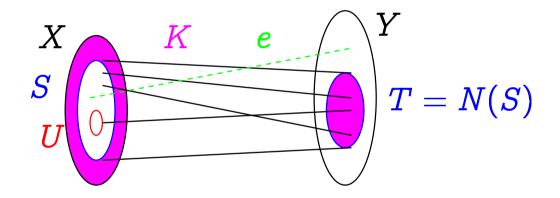
Olgu $T\subseteq Y$ kõigi selliste tippude $w\in Y$ hulk, nii et mingi $u\in U$ jaoks leidub M-vahelduv tee u-st w-sse.



Analoogiliselt Halli teoreemi tõestusega N(S) = T ja $|T| = |S \setminus U|$.

Olgu $K = T \cup (X \setminus S)$. Siis K on kate.

Tõepoolest, oletame et leidub $e \in E$, nii et e pole intsidentne ühegi K-sse kuuluva tipuga. Siis on e üks otstipp S-s ja teine $Y \setminus T$ -s. Vastuolu väitega N(S) = T.



$$|K| = |T| + |X \setminus S| = |S \setminus U| + |X \setminus S| = |X \setminus U| = |M|$$
.