Ramsey teooria Tõenäosuslikud tõestused

Olgu G=(V,E) graaf. Tipuhulka $S\subseteq V$ nimetatakse *klikiks*, kui suvalised kaks (erinevat) tippu $u,v\in S$ on G-s servaga ühendatud.

Teisisõnu, S on klikk, kui indutseeritud alamgraaf G[S] on täisgraaf.

Tipuhulka $S \subseteq V$ nimetatakse sõltumatuks hulgaks, kui ühegi kahe S-i kuuluva tipu vahel serva ei ole.

Teisisõnu, S on sõltumatu hulk, kui indutseeritud alamgraaf G[S] on tühigraaf.

Lause. Olgu G = (V, E) lihtgraaf, nii et $|V| \geq 6$. Siis leidub G-s kolmeelemendiline klikk või kolmeelemendiline sõltumatu hulk.

Tõestus. Olgu $v \in V$ mingi tipp. Olgu

- X = N(v) (tipu v naabertippude hulk);
- $Y = \overline{N}(v) = V \setminus (X \cup \{v\})$ (tipu v mitte-naabrid).

Kuna $|X| + |Y| = |X \cup Y| = |V| - 1 \ge 5$, siis $|X| \ge 3$ või $|Y| \ge 3$. Oletame, et $|X| \ge 3$. On kaks võimalust:

- X on sõltumatu hulk.
- Leiduvad $u, w \in X$, nii et $(u, w) \in E$. Siis $\{u, v, w\}$ on klikk.

Juht $|Y| \geq 3$ on analoogiline (G asemel \overline{G}).

Olgu r(k,l) (kui ta leidub) vähim selline täisarv, et iga lihtgraafi G=(V,E) jaoks, kus $|V| \geq r(k,l)$, kehtib

$$K_k \hookrightarrow G$$
 või $O_l \hookrightarrow G$.

Tänases loengus me näitame, et r(k, l) leidub kõigi $k, l \in \mathbb{N}$ jaoks, ning anname mõned alam- ja ülemtõkked.

Eelmine lause näitas, et r(3,3) leidub ja on ülimalt 6.

Kuna $K_3 \not\hookrightarrow C_5$ ja $O_3 \not\hookrightarrow C_5$, siis r(3,3) = 6.

Lemma. Kui r(k,l) leidub, siis leidub ka r(l,k) ja r(l,k)=r(k,l).

Tõestus. Ilmne. Vahetame ära servade olemise ja mitteolemise.

Lemma. Olgu $k, l \in \mathbb{N}$. Suurused r(k, 1) ja r(k, 2) leiduvad ning r(k, 1) = 1 ja r(k, 2) = k.

Analoogiliselt r(1, l) = 1 ja r(2, l) = l.

Tõestus. O_1 on lihtsalt ühetipuline graaf. See sisaldub igas graafis. Seega r(k, 1) = 1.

Olgu G=(V,E) lihtgraaf, olgu |V|=k. Kui $G=K_k$, siis $K_k \hookrightarrow G$. Kui $G \neq K_k$, siis olgu $u,v \in V$ sellised, et $(u,v) \not\in E$. Siis $G[\{u,v\}]=O_2$.

Oleme näidanud, et $r(k,2) \leq k$. Samas $K_k \not\hookrightarrow K_{k-1}$ ja $O_2 \not\hookrightarrow K_{k-1}$. Seega r(k,2) = k.

Teoreem. Olgu $k, l \in \mathbb{N}$, nii et $k \geq 2$ ja $l \geq 2$. Siis r(k, l) leidub. Peale selle kehtib $r(k, l) \leq r(k - 1, l) + r(k, l - 1)$. Tõestus. Induktsioon üle k + l.

Baas. k + l = 4. Siis k = l = 2. Eelmine lemma annab

$$r(2,2) = 2 = 1 + 1 = r(1,2) + r(2,1)$$
.

Samm. Induktsiooni eeldusest saame, et r(k-1, l) ja r(k, l-1) leiduvad.

Olgu G=(V,E) mingi lihtgraaf, nii et |V|=r(k-1,l)+r(k,l-1).

Olgu $v \in V$ ja vaatame hulki N(v) ja $\overline{N}(v)$.

Kuna $|N(v)| + |\overline{N}(v)| = r(k-1,l) + r(k,l-1) - 1$, siis kehtib vähemalt üks järgmistest väidetest:

1.
$$|N(v)| \geq r(k-1, l)$$
.

$$2. |\overline{N}(v)| \geq r(k, l-1).$$

Esimesel juhul vaatame graafi G[N(v)]. On kaks võimalust:

- $K_{k-1} \hookrightarrow G[N(v)]$. Olgu $S \subseteq N(v)$ (k-1)-tipuline klikk. Siis $S \cup \{v\}$ on k-tipuline klikk.
- $O_l \hookrightarrow G[N(v)]$. Siis ka $O_l \hookrightarrow G$.

Teisel juhul vaatame graafi $G[\overline{N}(v)]$. On kaks võimalust:

- $O_{kl-1} \hookrightarrow G[\overline{N}(v)]$. Olgu $S \subseteq \overline{N}(v)$ (l-1)-tipuline sõltumatu hulk. Siis $S \cup \{v\}$ on l-tipuline sõltumatu hulk.
- $K_k \hookrightarrow G[\overline{N}(v)]$. Siis ka $K_k \hookrightarrow G$.

Oleme näidanud, et suvaline (r(k-1,l)+r(k,l-1))-tipuline graaf sisaldab k-elemendilist klikki või l-elemendilist sõltumatut hulka. Seega on r(k,l) ülimalt r(k-1,l)+r(k,l-1).

 ${f J\ddot{a}reldus}.$ Kui r(k-1,l) ja r(k,l-1) on paarisarvud, siis $r(k,l) \leq r(k-1,l) + r(k,l-1) - 1.$

Tõestus. Olgu G=(V,E) lihtgraaf, kus |V|=r(k-1,l)+r(k,l-1)-1. Olgu $v\in V$ selline, et |N(v)| on paarisarv. Selline v leidub, sest |V| on paaritu.

Kuna nii |N(v)| kui ka $|\overline{N}(v)|$ on paarisarvud, siis kehtib vähemalt üks järgmistest väidetest:

- 1. $|N(v)| \geq r(k-1, l)$.
- $|2.| |\overline{N}(v)| \geq r(k, l-1).$

Tõestus jätkub identselt eelmise teoreemi tõestusega.

Lause.
$$r(k,l) \leq {k+l-2 \choose k-1}$$
.

Tõestus.
$$r(1,1) = r(1,2) = r(2,1) = 1 = \binom{0}{0} = \binom{1}{0} = \binom{1}{1}$$
.

k ja l-i ülejäänud väärtuste jaoks tõestame selle väite induktsiooniga üle k+l. Me oleme juba ära teinud baasi k+l < 3.

Samm. Olgu $k+l \geq 4$. Siis

$$r(k,l) \leq r(k-1,l) + r(k,l-1) \leq {k+l-3 \choose k-2} + {k+l-3 \choose k-1} = {k+l-2 \choose k-1}.$$

Arvusid r(k, l) saab üldistada.

r(k,l) on vähim selline arv n, et kui me värvime K_n servad kahe värviga (värvimisviis ei pruugi olla korrektne), siis leidub seal alamgraafina esimest värvi K_k või teist värvi K_l .

Olgu $r(a_1, \ldots, a_k)$ vähim selline arv n, et kui me värvime K_n servad k värviga, siis leidub $i \in \{1, \ldots, k\}$ nii, et leidub alamgraaf K_{a_i} , mille kõik servad on värvi a_i .

Kehtib võrratus

$$egin{aligned} r(a_1,\ldots,a_k) &\leq \ & r(a_1-1,a_2,\ldots,a_k) + r(a_1,a_2-1,a_3,\ldots,a_k) + \cdots + \ & r(a_1,\ldots,a_{k-1},a_k-1) - (k-2) \end{aligned}$$

ning $r(\ldots, 1, \ldots) = 1$.

Tõestus: samasugune kui juhul k = 2.

Teoreem. Kui $k \geq 2$, siis $r(k, k) \geq 2^{k/2}$.

Tõestus. Olgu $n < 2^{k/2}$ ja olgu G_n kõigi n-tipuliste lihtgraafide hulk. Meil tuleb näidata, et leidub $G \in G_n$, nii et $K_k \not\hookrightarrow G$ ja $O_k \not\hookrightarrow G$.

Olgu meil antud mingi hulk \mathcal{X} ja selle hulga elementide mingi omadus P. S.t. P on funktsioon hulgast \mathcal{X} hulka $\{t\tilde{o}ene, v\ddot{a}r\}$. Olgu meil tarvis näidata, et leidub $x \in \mathcal{X}$, mille korral P(x) kehtib.

Selleks piisab, kui näitame, et kui x on mingi juhuslikult valitud element hulgast X, siis P[P(x)] > 0.

Defineerimaks, mida kujutab endast hulgast G_n juhusliku graafi valimine, tuleb meil fikseerida mingi tõenäosusjaotus hulgal G_n .

Olgu G_n hoopis kõigi $m \ddot{a} r g e n datud n$ -tipuliste lihtgraafide hulk (märgenditega hulgast $\{1, \ldots, n\}$). Siis $|G_n| = 2^{\binom{n}{2}}$.

Olgu $G \in \mathbf{G}_n$ tipuhulk $\{v_1, \ldots, v_n\}$, kus v_i märgendiks on i.

Olgu G juhuslik märgendatud graaf hulgast G_n , kusjuures kõigil $2^{\binom{n}{2}}$ graafil olgu sama suur tõenäosus valituks saada.

Leiame ülemise tõkke suurustele $P[K_k \hookrightarrow G]$ ja $P[O_k \hookrightarrow G]$.

$$P[K_k \hookrightarrow G] =$$

 $rac{k ext{-elemendilist klikki sisaldavate graafide arv }\mathbf{G}_n ext{-s}}{|\mathbf{G}_n|} \leq$

$$rac{1}{|\mathbf{G}_n|} \cdot \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} ig| \{G \in \mathbf{G}_n \, | \, G[\{v_{i_1}, \ldots, v_{i_k}\}] \cong K_k\} ig| =$$

$$\frac{1}{2^{\binom{n}{2}}} \cdot \binom{n}{k} \cdot 2^{\binom{n}{2} - \binom{k}{2}} = \binom{n}{k} \cdot 2^{-\binom{k}{2}} = \frac{n(n-1) \cdots (n-k+1)}{k!} \cdot 2^{-\binom{k}{2}} \le$$

$$\frac{n^k \cdot 2^{-\binom{k}{2}}}{k!} < \frac{(2^{k/2})^k \cdot 2^{-\binom{k}{2}}}{k!} = \frac{2^{\frac{k^2}{2} - \frac{k(k-1)}{2}}}{k!} = \frac{2^{k/2}}{k!}$$

Kui k kasvab, siis $\frac{2^{k/2}}{k!}$ kahaneb. Kui $k \geq 3$, siis $\frac{2^{k/2}}{k!} < \frac{1}{2}$.

Variant k=2 tuleb pärast eraldi läbi vaadata.

Analoogiliselt, kui $k \geq 3$, siis $P[O_k \hookrightarrow G] < 1/2$.

Meil oli $P(G) \equiv K_k \not\hookrightarrow G$ ja $O_k \not\hookrightarrow G$ ". Kui $k \geq 3$, siis

$$\mathbf{P}[K_k \not\hookrightarrow G \text{ ja } O_k \not\hookrightarrow G] = 1 - \mathbf{P}[K_k \hookrightarrow G \text{ või } O_k \hookrightarrow G] \ge 1 - \mathbf{P}[K_k \hookrightarrow G] - \mathbf{P}[O_k \hookrightarrow G] > 1 - 1/2 - 1/2 = 0$$
.

Seega, kui $k \geq 3$, siis $r(k, k) \geq 2^{k/2}$.

Kui
$$k = 2$$
, siis $r(k, k) = 2 = 2^{k/2}$.

r(k,l) täpsed väärtused on teada ainult väheste paaride (k,l) jaoks. Ülevaate leiab aadressilt

http://www.combinatorics.org/Surveys/ds1.ps

Näitame, et iga $n \in \mathbb{N}$ jaoks leidub graaf G, nii et $\chi(G) \geq n$ ja $g(G) \geq n$.

Tõenäosusjaotus hulgal X on mingi funktsioon $\mu: X \longrightarrow [0,1]$, nii et $\sum_{x \in X} \mu(x) = 1$.

(loeme, et X on lõplik)

Sündmus hulgal X on mingi $A \subseteq X$.

Olgu μ fikseeritud. Siis $\mathbf{P}(A) = \sum_{x \in A} \mu(x)$.

Kui $A, B \subseteq X$, siis $P(A \cup B) \leq P(A) + P(B)$.

Olgu $F: \mathbf{X} \longrightarrow \mathbb{R}^+$. Siis F-i võib vaadata kui juhuslikku muutujat jaotusel μ .

$$F$$
-i keskväärtus on $\mathrm{E}(F) = \sum_{x \in \mathbf{X}} \mu(x) F(x)$.

E on lineaarne: E(F+F')=E(F)+E(F'). Seda isegi juhul, kui F ja F' pole sõltumatud.

Kui
$$F(X) \subseteq \{0, 1\}$$
, siis $E(F) = P(F = 1)$.

Kui $A \subseteq X$, siis χ_A olgu tema karakteristlik funktsioon. Siis $E(\chi_A) = P(A)$.

Kui
$$F(X) \subseteq \mathbb{N}$$
, siis $E(F) \ge P(F > 0)$.

Lemma (Markovi võrratus). Olgu F mingi juhuslik muutuja ja a>0. Siis

$$P(F \ge a) \le E(F)/a$$
.

Tõestus.

$$egin{aligned} \mathbf{E}(F) &= \sum_{x \in \mathbf{X}} \mu(x) F(x) \geq \sum_{\substack{x \in \mathbf{X} \ F(x) \geq a}} \mu(x) F(x) \ &\geq \sum_{\substack{x \in \mathbf{X} \ F(x) > a}} \mu(x) \cdot a = \mathbf{P}(F \geq a) \cdot a \quad . \end{aligned}$$

See võrratus sobib näitamiseks, et P(F < a) on suur.

Olgu $p \in [0, 1]$. Defineerime n-tipuliste märgendatud graafide hulgal G_n järgmise tõenäosusjaotuse $\mathfrak{G}(n, p)$:

G valimine jaotuse $\mathfrak{G}(n,p)$ järgi (tähistame $G \leftarrow \mathfrak{G}(n,p)$) käib järgmiselt:

- $V(G) := \{v_1, \ldots, v_n\}$. Olgu $E(G) := \emptyset$.
- Iga $i \in \{1, \ldots, n-1\}$ ja $j \in \{i+1, \ldots, n\}$ jaoks:
 - Viskame kulli ja kirja mündiga, millel kulli tulemise tõenäosus on p.
 - Kui tuli kull, siis $E(G) := E(G) \cup \{(v_i, v_j)\}.$
 - Mündivisked peavad olema <u>üksteisest sõltumatud</u>.

Edaspidistes näidetes olgu q = 1 - p.

(Märgendamata) graafi jaotuse $\mathcal{G}(3, p)$ järgi valides saame järgmised graafid järgmise tõenäosusega:

$$E(\Delta) = 3pq^2 + 6p^2q + p^3$$
. Kui $p = q = 1/2$, siis $E(\Delta) = 5/4$.

Olgu $G \leftarrow \mathcal{G}(n,p)$. Olgu H mingi $n' \leq n$ -tipuline ja m'-servaline graaf.

Kui $\psi: V(H) \longrightarrow V(G)$ on mingi *injektiivne* funktsioon, siis tõenäosus, et $H \leq G$, kusjuures mingile tipule $v \in V(H)$ vastab tipp $\psi(v) \in V(G)$, on $p^{m'}$.

Tõenäosus, et $H \hookrightarrow G$, kusjuures samasugune vastavus kehtib, on $p^{m'}q^{\binom{n'}{2}-m'}$.

Üldiselt,
$$\mathbf{P}(H \hookrightarrow G) \leq \sum_{\substack{U \subseteq V(G) \\ |U| = n'}} \mathbf{P}(H \cong G[U]).$$

Indutseeritud alamgraafiH keskmine esinemiste arvG on just täpselt $\sum_{U\subseteq V(G)}\mathbf{P}(H\cong G[U]).$

Lause. Olgu $G \leftarrow \mathcal{G}(n,p)$. Tõenäosus, et G-s leidub k-tipuline sõltumatu hulk, on ülimalt $\binom{n}{k}q^{\binom{k}{2}}$.

Tõestus. Tõenäosus, et mingi konkreetne $U \subseteq V(G)$, |U| = k, on sõltumatu hulk, on $q^{\binom{k}{2}}$. Selliseid hulkasid U on $\binom{n}{k}$ tükki.

Lause. Olgu $G \leftarrow \mathcal{G}(n,p)$. Tõenäosus, et G-s leidub k-tipuline klikk, on ülimalt $\binom{n}{k} p^{\binom{k}{2}}$.

G-s leidub keskmiselt $\binom{n}{k}q^{\binom{k}{2}}$ sõltumatut hulka ja $\binom{n}{k}p^{\binom{k}{2}}$ klikki suurusega k.

Tähistame

$$(n)_k := n(n-1)(n-2)\cdots(n-k+1)$$
.

Lemma. Olgu $G \leftarrow \mathcal{G}(n,p)$, olgu $k \in \mathbb{N}$. Siis graafis G leidub keskmiselt $p^k(n)_k/2k$ tsüklit pikkusega k.

Tõestus. n-elemendilisest hulgast V(G) on võimalik k-elemendiline järjend $J=(v_1,\ldots,v_k)$, kus v_1,\ldots,v_k on kõik erinevad, välja valida $(n)_k$ erineval viisil.

Tõenäosus, et G-s on servad $(v_1, v_2), (v_2, v_3), \ldots, (v_k, v_1),$ on p^k .

Ühele tsüklile vastab 2k erinevat järjendit J.

Teoreem. Iga k jaoks leidub graaf, mille vööümbermõõt ja kromaatiline arv on mõlemad suuremad kui k.

Tõestus. Nimetame $l\ddot{u}hikeseks$ tsüklit pikkusega ülimalt k. Mingi graafi G jaoks nimetame suureks tipuhulka võimsusega vähemalt |V(G)|/k. Me tahame leida graafi, kus pole lühikesi tsükleid ega suuri sõltumatuid hulki.

Tuleb välja, et võimatu on valida p-d nii, et $\mathbf{P}(g \leq k) < 1/2$ ja $\mathbf{P}(\alpha \geq n/k) < 1/2$.

Valime p nii, et $P(\alpha \ge n/k)$ oleks väike ning lühikeste tsüklite keskmine arv oleks ka väike.

Lemma. Olgu $k \in \mathbb{N}$ ja olgu p funktsioon n-st, nii et $p \ge (6k \ln n)/n$ (kõigi küllalt suurte n-de jaoks).

Siis
$$\lim_{n\to\infty} \mathbf{P}(\alpha \geq n/2k) = 0$$
.

Tõestus. Olgu $n \geq r \geq n/2k$. Siis

$$egin{aligned} \mathbf{P}(lpha \geq r) & \leq inom{n}{r} q^{rac{r}{2}} \leq n^r q^{rac{r(r-1)}{2}} = (nq^{(r-1)/2})^r \leq (ne^{-p(r-1)/2})^r \ & = (ne^{-pr/2+p/2})^r \leq (ne^{-(3/2)\ln n + p/2})^r \leq (nn^{-3/2}e^{1/2})^r \ & = \left(rac{e}{n}
ight)^{r/2} \xrightarrow[n o \infty]{} 0 \ . \end{aligned}$$

$$1 - p \le e^{-p}$$
, kui $0 \le p \le 1$.

Lemma on tõestatud.

Teoreemi tõestus:

Fikseerime ε -i nii, et $0 < \varepsilon < 1/k$ ning olgu $p = n^{\varepsilon - 1}$.

Olgu X(G) lühikeste (s.t. pikkusega $\leq k$) tsüklite arv graafis X. Siis

$$\mathrm{E}(X) = \sum_{i=3}^k rac{(n)_i}{2i} p^i \leq rac{1}{2} \sum_{i=3}^k n^i p^i \leq rac{(k-2)n^k p^k}{2},$$

sest $(np)^i \leq (np)^k$, sest $np = n^{\varepsilon} \geq 1$.

 $n^{\varepsilon} \geq 6k \ln n$, seega $n^{\varepsilon-1} \geq (6k \ln n)/n$ kõigi küllalt suurte n-de jaoks. Järelikult $\lim_{n \to \infty} \mathbf{P}(\alpha \geq n/2k) = 0$.

$$\mathrm{P}(X \geq n/2) \leq \mathrm{E}(X)/(n/2) \leq (k-2)n^{k-1}p^k = (k-2)n^{karepsilon-1},$$

kuna $k\varepsilon < 1$, siis $\lim_{n \to \infty} \mathbf{P}(X \ge n/2) = 0$.

Olgu *n* piisavalt suur, nii et

$$P(X \ge n/2) < 1/2$$

$$P(\alpha \ge n/2k) < 1/2$$

ning olgu $G \in \mathbf{G}_n$ selline, et X(G) < n/2 ja $\alpha(G) < n/2k$.

Graafis G on vähem kui n/2 tsüklit pikkusega $\leq k$. Kustutame igast lühikesest tsüklist ühe tipu, saame graafi H, kus on rohkem kui n/2 tippu ning g(H) > k.

 $\alpha(H) \leq \alpha(G) \leq n/2k$. Seega $\alpha(H) < |V(H)|/k$ ning H-i värvimiseks on tarvis rohkem kui k värvi.