Euleri graafid Hiina postiljoniprobleem

8. september 2004

Graaf G on paar (V, E), kus V on tippude hulk ja E on servade hulk. Lisaks sellele on antud *intsidentsusfunkt-sioon* \mathcal{E} , mis igale servale seab vastavusse tema otstippude hulga.

Ahel graafis G on jada

$$v_0 \stackrel{e_1}{-} v_1 \stackrel{e_2}{-} v_2 \stackrel{e_3}{-} v_3 \stackrel{e_4}{-} \dots v_{k-1} \stackrel{e_k}{-} v_k$$

 $\text{kus } v_0,\ldots,v_k\in V,\,e_1,\ldots,e_k\in E \text{ ning } \mathcal{E}(e_i)=\{v_{i-1},v_i\}.$

Ahel on kinnine, kui esimene ja viimane tipp on sama.

Lihtahel on ahel, kus iga tipp esineb ülimalt ühe korra.

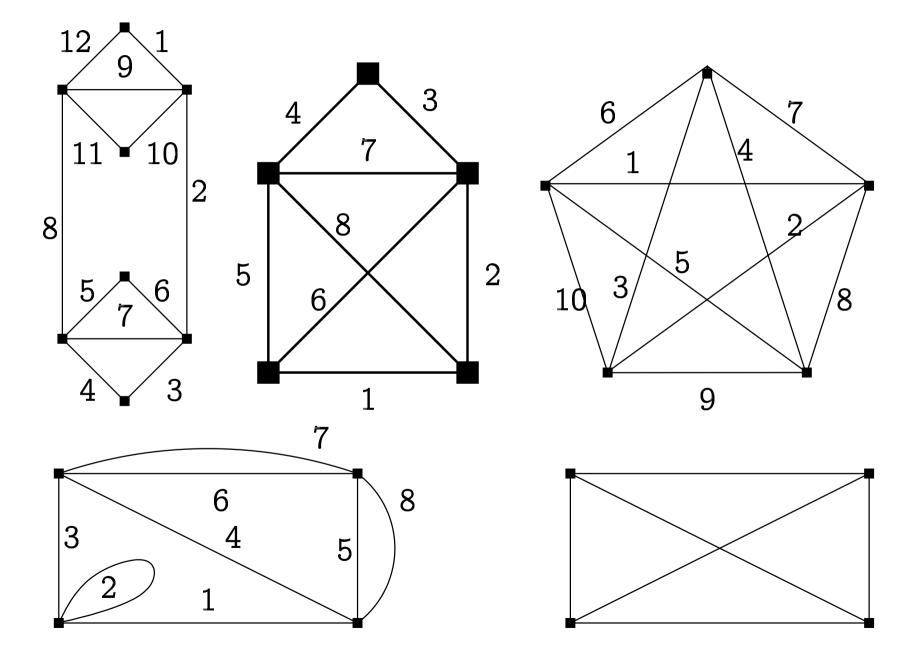
Tsükkel on kinnine lihtahel.

Euleri ahelaks graafis G = (V, E) nimetatakse kinnist ahelat, mis läbib selle graafi iga serva täpselt üks kord.

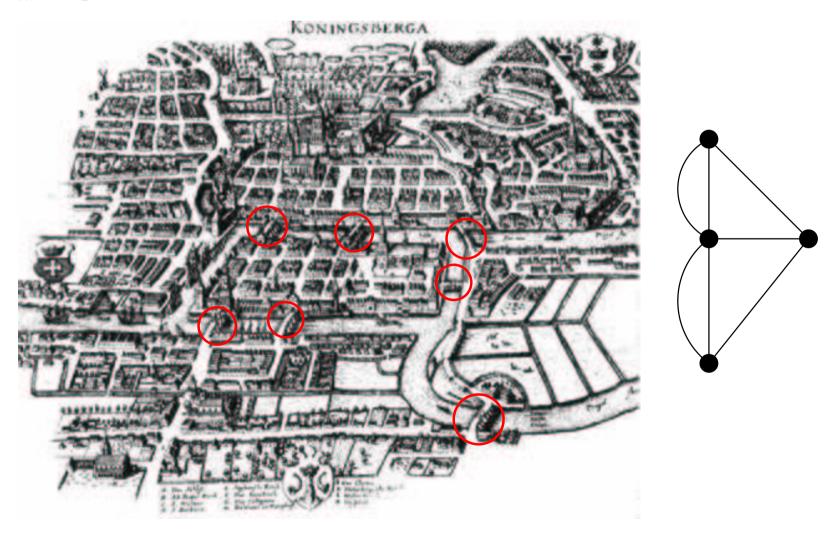
Euleri graafiks nimetatakse graafi, milles leidub Euleri ahel.

Graafi, milles leidub lahtine ahel, mis läbib selle graafi iga serva täpselt üks kord, nimetatakse pool-Euleri graafiks.

Levinud näidete klass: joonistada etteantud kujund pliiatsit paberilt tõstmata ja ühtegi joont mitu korda tõmbamata.



"Originaalülesanne":



Teoreem. Olgu G = (V, E) sidus graaf. Järgmised kolm väidet on samaväärsed.

- (i). G on Euleri graaf.
- (ii). G kõigi tippude aste on paarisarv.
- (iii). E esitub paarikaupa lõikumatute tsüklite ühendina.

Tõestus (i) \Rightarrow (ii). Olgu P graafi G mingi Euleri ahel ja olgu $v \in V$.

Ahel P siseneb tippu mingi arv kordi ning väljub temast sama arv kordi. Seega on ahelasse P kuuluvate tipuga v intsidentsete servade arv paarisarv.

P on Euleri ahel, seega esineb iga tipuga v intsidentne serv ahelas P täpselt ühel korral.

Tõestus (ii) \Rightarrow (iii). Induktsioon üle |E|.

Baas. |E|=0. Siis esitub E nulli tüki ühendina, igaüks neist nullist on

Samm. |E| > 0. Siis on kõigi tippude aste nullist suurem, sest G on sidus.

Vastavalt eeldusele on kõigi tippude aste vähemalt kaks.

Vastavalt teoreemile eelmisest loengust leidub G-s mingi tsükkel C.

Teoreem. Graafis, mille iga tipu aste on vähemalt 2, leidub tsükkel.

Olgu G' saadud G-st, eemaldades sealt C-sse kuuluvad servad.

Graafis G' on vähem servi kui G-s ning kõigi tippude aste on endistviisi paarisarv.

Olgu H_1, \ldots, H_k graafi G' sidususkomponendid. Induktsiooni eelduse järgi esitub neist igaühe servade hulk paarikaupa lõikumatute tsüklite ühendina.

Võttes nende esituste ühendi ja lisades sinna veel tsükli C, saame E esituse lõikumatute tsüklite ühendina.

Tõestus (iii) \Rightarrow (i). Olgu $E = C_1 \dot{\cup} C_2 \dot{\cup} \cdots \dot{\cup} C_n$, kus C_1, \ldots, C_n on tsüklid.

Üldsust kitsendamata eeldame, et tsüklil C_i , kus i > 1, on ühiseid tippe mõne tsükliga C_i , kus j < i.

Konstrueerime kinnised ahelad P_1, \ldots, P_n . Konstruktsioon tagab, et P_i läbib tsüklite C_1, \ldots, C_i iga serva täpselt üks kord ning ei läbi ühtegi ülejäänud serva.

Ahelaks P_1 võtame tsükli C_1 .

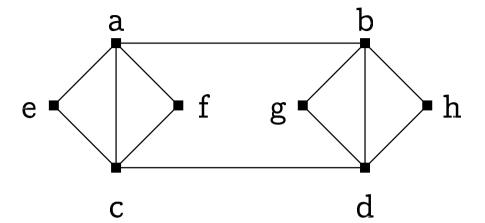
Ahela P_i saame ahelast P_{i-1} järgmisel viisil.

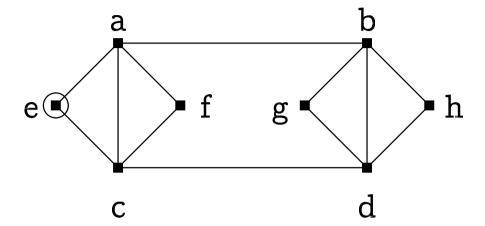
- Liigume ahelas P_{i-1} senikaua, kuni jõuame mingi tipuni v, mis esineb ka tsüklis C_i .
- Läbime tsükli C_i , alustades ja lõpetades tipus v.
- Läbime ülejäänud osa ahelast P_{i-1} .

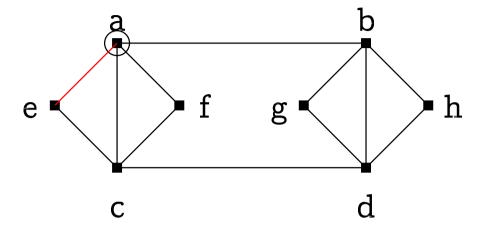
Ahel P_n on Euleri ahel graafis G.

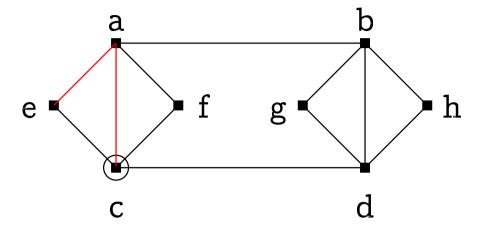
Tõestus annab algoritmi Euleri ahela leidmiseks graafis G:

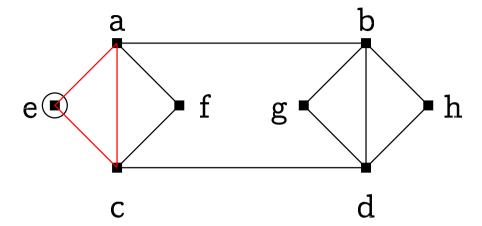
- Tükeldame G servad tsükliteks.
 - Leiame graafist G ühe tsükli, olgu see C.
 - * Liigume G-s mööda servi, kuni jõuame tippu, kus oleme juba olnud.
 - Eemaldame C servad G-st.
 - Tükeldame G (ilma C-ta) sidususkomponentide servad tsükliteks.
 - Tagastame need tsüklid ja lisaks veel tsükli C.
- Paneme tsüklitest kokku Euleri ahela (vt. eelmine slaid).

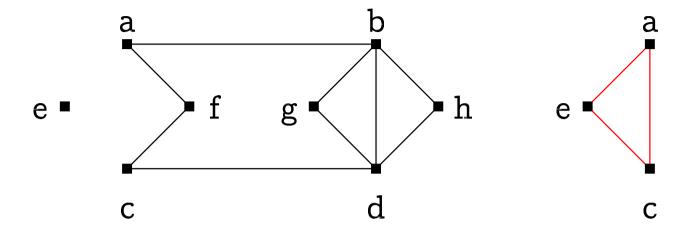


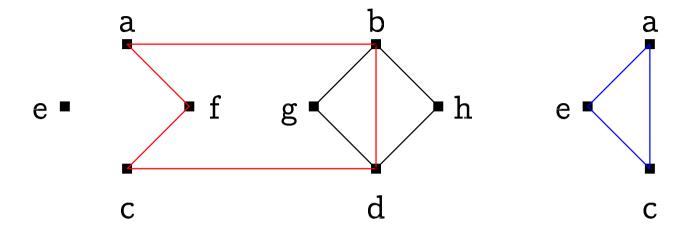


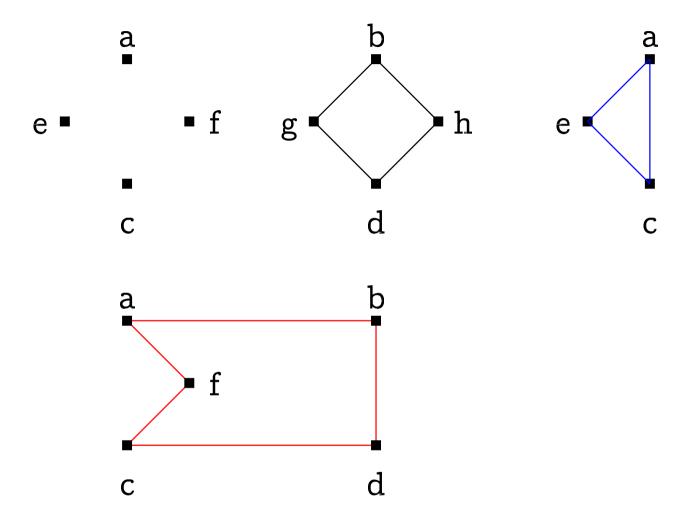


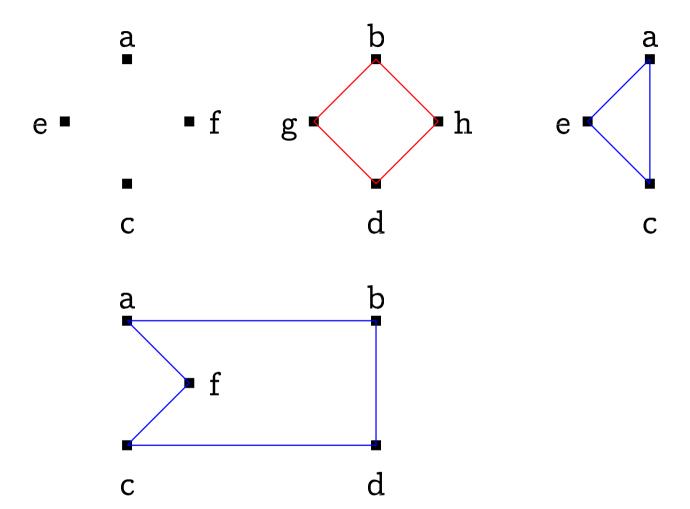


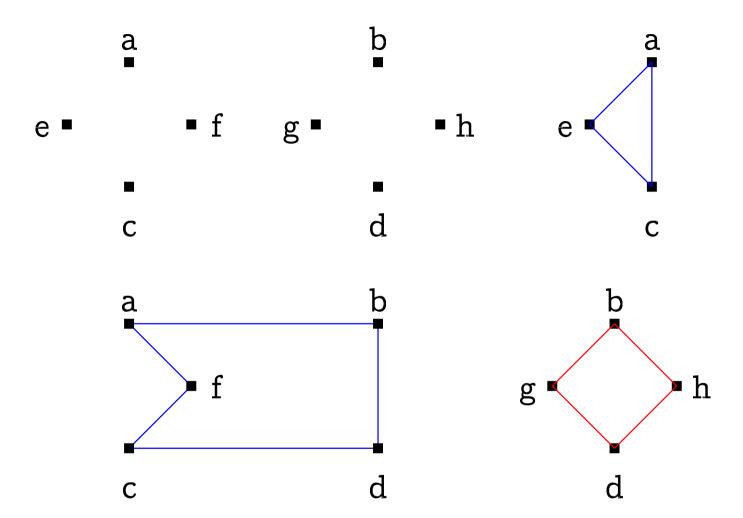


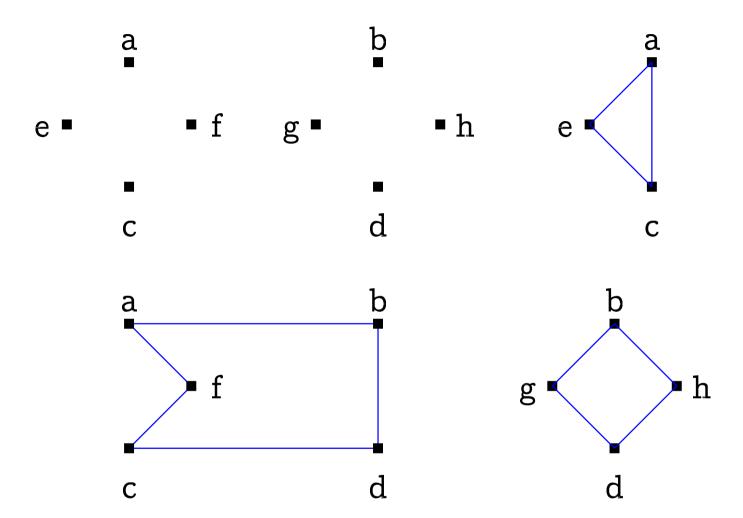


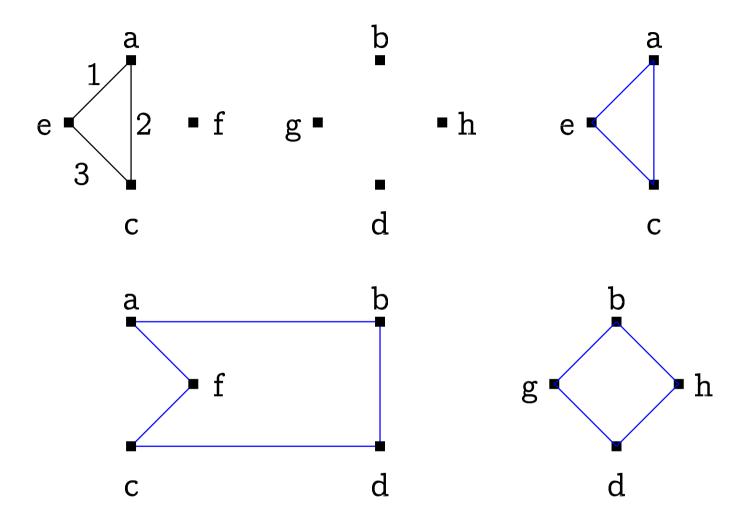


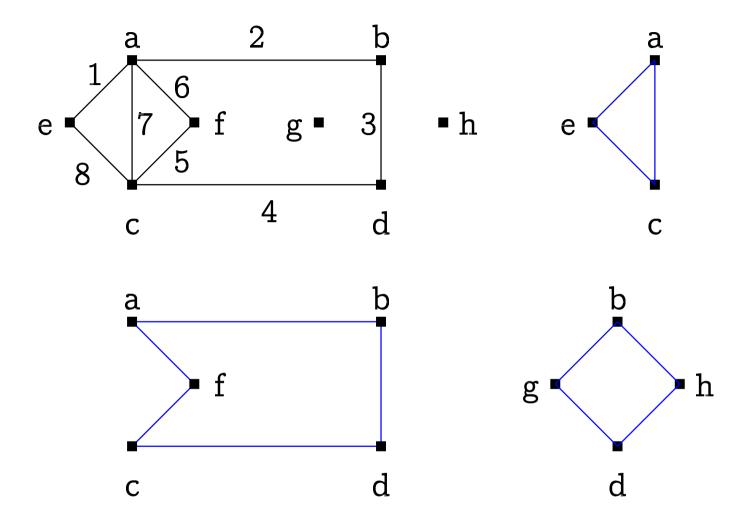


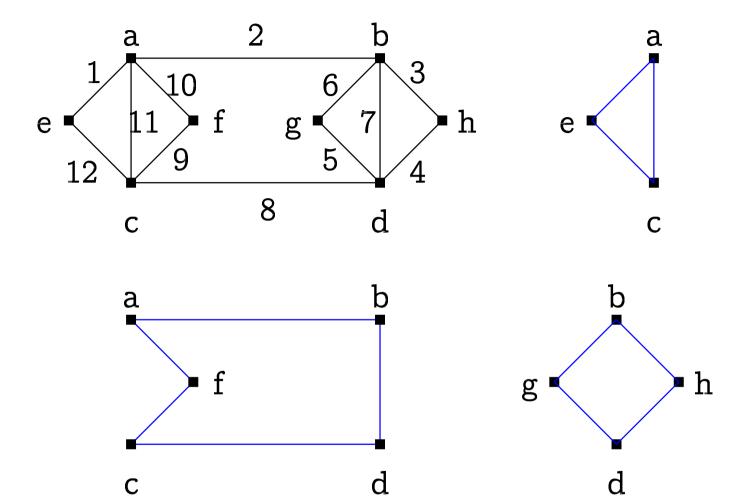












Järeldus. Sidus graaf G on pool-Euleri \Leftrightarrow graafis G on täpselt kaks paarituarvulise astmega tippu.

Tõestus \Rightarrow . Olgu $x \stackrel{P}{\leadsto} y$ ahel graafis G, mis läbib G iga serva täpselt ühe korra.

Lisame G-le täiendava serva e, nii et $\mathcal{E}(e) = \{x, y\}$.

Saadud graaf on Euleri graaf $(x \stackrel{P}{\leadsto} y \stackrel{e}{\longrightarrow} x$ on Euleri ahel), seega on seal kõigi tippude aste paarisarvuline.

Esialgses graafis on x ja y paarituarvulise ning ülejäänud tipud paarisarvulise astmega.

Tõestus \Leftarrow . Olgu x ja y graafi G paarituarvulise astmega tipud.

Lisame G-le täiendava serva e, nii et $\mathcal{E}(e) = \{x, y\}$.

Saadud graafis on kõigi tippude aste paarisarvuline, seega leidub seal mingi Euleri ahel P.

Üldsust kitsendamata eeldame, et viimane serv ahelas P on e.

Ahel P ilma servata e on ahel, mis läbib graafi G iga serva täpselt ühe korra.

Tõestus annab algoritmi pool-Euleri ahela leidmiseks:

Lisame graafi täiendava serva e ja leiame Euleri ahela.

Fleury algoritm Euleri ahela leidmiseks Euleri graafis G = (V, E):

- 1. Ahela esimeseks tipuks vali mingi tipp $u \in V$. Olgui := 0 ja $v_0 := u$.
- 2. Vali mingi tipuga v_i intsidentne serv e, lisa see koostatavasse ahelasse ning kustuta graafist G. Tipuks v_{i+1} võta e teine otstipp. Olgu i := i + 1.
 - Seejuures võta servaks *e* mõni sild ainult viimasel võimalusel.
- 3. Korda eelmist punkti, kuni kõik servad on kustutatud.

Teoreem. Fleury algoritm on korrektne (s.t. esitatud eeskiri on igal juhul täidetav ja tulemuseks on Euleri ahel).

Tõestus. Algoritm koostab tipust u alates mingi ahela P. Mingil hetkel jõuab ta mingisse tippu v_n , kust enam edasi ei saa, sest kõik v_n -ga intsidentsed servad on kustutatud. On ilmne (tippude astmete paarsused!), et $v_n = u$.

Meil tuleb näidata, et sel hetkel on kõik servad kustutatud.

Olgu G_i graaf, mis on graafist G järel peale i-ndat sammu. Siis $G_0 = G$ ja G_{i+1} sisaldab ühe serva vähem kui G_i . Olgu H_i graafi G_i see sidususkomponent, mis sisaldab tippu u.

Paneme tähele, et G_i kõikide tippude, v.a. u ja v_i astmed on paarisarvud. Kui $u = v_i$, siis on ka deg(u) paaris. Kui $u \neq v_i$, siis on deg(u) ja $deg(v_i)$ paaritud.

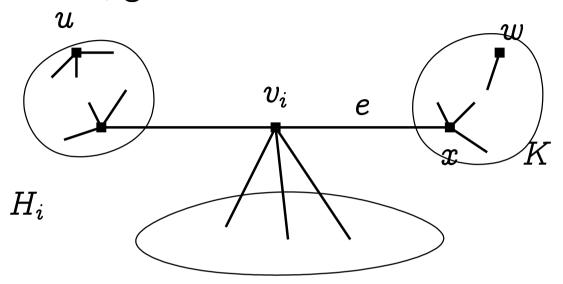
Me näitame, et G_i kõik ülejäänud sidususkomponendid on isoleeritud tipud.

Induktsioon üle i. Kui i=0, siis $G_0=G=H_0$, s.t. G_0 -l pole teisi sidususkomponente peale H_0 -i. Seega väide kehtib.

Kehtigu väide G_i jaoks. Vaatame kõigepealt juhtu $u \neq v_i$. Väite kehtivuseks G_{i+1} jaoks piisab, kui näitame, et v_i -ga on G_i -s intsidentne ülimalt üks sild.

- Tõepoolest, siis on G_{i+1} sidususkomponendid järgmised:
 - Kui kustutati serv, mis pole sild, siis sidususkomponendid ei muutu.
 - Kui kustutati sild, siis see oli viimane serv, mis oli v_i -ga intsidentne. Komponent H_i lagunes graafis G_{i+1} kaheks komponendiks $H_{i+1} = H_i \setminus v$ ja v. Teine neist on isoleeritud tipp, esimene sisaldab tippu u.

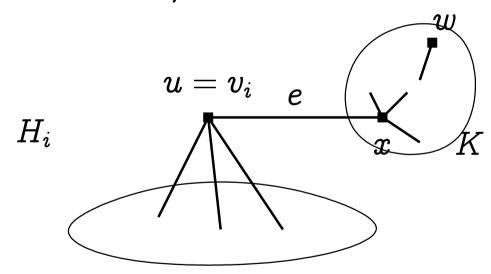
Kui v_i -ga oleks intsidentne vähemalt kaks silda, siis:



- Leidub v_i -ga intsidentne serv e, nii et graafi $H_i e$ tippu v_i mittesisaldav sidususkomponent K ei sisalda ka tippu u.
- $\deg_{H_i}(x)$ on paaris. Seega $\deg_K(x)$ on paaritu.
- K-s peab leiduma veel mõni tipp w nii, et $\deg_K(w)$ on paaritu. Kuid $\deg_K(w) = \deg_{H_i}(w)$, mis pidi olema paaris.

Kui $u = v_i$, siis piisab, kui näitame, et u-ga pole ükski sild intsidentne, s.t. G_i -l ja G_{i+1} -l on samad sidususkomponendid.

Kui oleks, siis



leiduks taas tipp w, mille aste peaks paaritu olema.

Olgu antud graaf $G = (V, E, \mathcal{E})$, mille servadel on mittenegatiivsed kaalud (pikkused).

Kaalud olgu antud funktsiooniga $w: E \longrightarrow \mathbb{R}^+$.

Kui $P = \cdot \frac{e_1}{\cdot} \cdot \frac{e_2}{\cdot} \cdot \cdot \cdot \cdot \frac{e_k}{\cdot}$ on mingi ahel, siis olgu $w(P) := \sum_{i=1}^k w(k)$ tema kaal.

Hiina postiljoniprobleem (HPP): leida minimaalse pikkusega kinnine ahel, mis läbib graafi kõiki servi vähemalt üks kord.

On ilmne, et kui G on Euleri graaf, siis on HPP lahenduseks Euleri ahel.

Ülesandeid, mis taanduvad HPP-le (või selle variantidele):

- Postiljonide, prügiautode, lumesahkade jne. marsruutide paikapanek.
- Transpordivõrkude (maanteed, raudteed, elektriliinid, jne.) kontroll.
- Olekuautomaatide (näiteks kasutajaliideste) testimisstrateegiate optimeerimine.
 - Testimine koosneb kontrollist, kas olekus A mõjutuse s peale süsteem läheb olekusse B.

Nimetame kinnist ahelat, mis läbib graafi kõiki servi vähemalt üks kord, pseudo-Euleri ahelaks.

HPP otsib siis minimaalse kaaluga pseudo-Euleri ahelat.

Mingi pseudo-Euleri ahela P jaoks graafis G defineerime graafi $G_P = (V, E_P, \mathcal{E}_P)$ järgmiselt:

$$ullet E_P = \{(e,i) \, | \, 1 \leq i \leq \#_e P\},$$

•
$$\mathcal{E}_P((e,i)) = \mathcal{E}(e)$$
,

kus $\#_e P$ olgu serva e esinemiste arv ahelas P.

Lause. G_P on Euleri graaf iga graafi G ja pseudo-Euleri ahela P jaoks.

Tõestus. Asendades ahelas P serva e i-nda esinemise servaga (e, i) graafist G_P , saame Euleri ahela graafis G_P . \square

Samuti, olgu $c: E \longrightarrow \mathbb{N}$ ja olgu $G_c = (V, E_c, \mathcal{E}_c)$, defineeritud järgmiselt:

$$ullet E_c = \{(e,i) \, | \, 1 \leq i \leq c(e)\},$$

•
$$\mathcal{E}_P((e,i)) = \mathcal{E}(e)$$
,

Kui c(e) > 0 iga $e \in E$ jaoks ja G_c on Euleri graaf, siis iga Euleri ahel graafis G_c defineerib mingi pseudo-Euleri ahela graafis G.

Kõigi graafist G_c saadud pseudo-Euleri ahelate kaalud on võrdsed.

• nad võrduvad suurusega $\sum_{e \in E} c(e)w(e)$.

Lause. HPP lahenduseks olevas pseudo-Euleri ahelas ei esine ükski kaar rohkem kui kaks korda.

Tõestus. Olgu P HPP lahenduseks graafis $G=(V,E,\mathcal{E})$. Oletame vastuväiteliselt, et leidub $e\in E$ nii, et $\#_e P\geq 3$.

Olgu $c(e) = \#_e P - 2$ ja $c(e') = \#_{e'} P$, kui $e' \neq e$. Siis c(e') > 0 iga $e' \in E$ korral. G_c on Euleri graaf, sest

$$\deg_{G_c}(v) = egin{cases} \deg_{G_P}(v) - 2, & ext{ kui } v \in \mathcal{E}(e) \ \deg_{G_P}(v), & ext{ muidu} \end{cases}$$

ja G_P on Euleri graaf. Graafist G_c saadud pseudo-Euleri ahelate kaal on w(P) - 2w(e) < w(P).

Üldistus:...

Lause. Olgu P HPP lahenduseks graafis $G = (V, E, \mathcal{E})$. Olgu $c(e) = \#_e P - 1$. Siis G_c ei sisalda tsükleid.

Tõestus. Vastuväiteliselt oletame, et graafis G_c leidub tsükkel C. Olgu $c'(e) = \#_e P - \#_e C$. Siis c'(e) > 0 iga $e \in E$ jaoks.

 $G_{c'}$ on Euleri graaf, millest saadud pseudo-Euleri ahelate kaal on w(P) - w(C).

Teoreem. Olgu $G = (V, E, \mathcal{E})$ mingi graaf ja olgu $V^- \subseteq V$ graafi G paarituarvuliste astmetega tippude hulk. Siis leidub V^- tükeldus paarideks

$$ullet$$
 s.t. $V^- = \{u_1, v_1\} \ \dot{\cup} \ \{u_2, v_2\} \ \dot{\cup} \cdots \ \dot{\cup} \ \{u_n, v_n\};$

- olgu P_i minimaalse pikkusega ahel u_i -st v_i -sse.

nii, et HPP lahenduses P graafi G jaoks esinevad kaks korda täpselt need servad, mis kuuluvad mõnele ahelatest P_1, \ldots, P_n .

S.t. graafi G_c (eelmise lause sõnastusest) servadeks on täpselt P_1, \ldots, P_n servad.

Tõestus. Vaatame graafi G_c , mis on defineeritud nagu eelmise lause sõnastuses.

Siis iga $v \in V$ jaoks $\deg_G(v) \equiv \deg_{G_c}(v) \pmod 2$, sest $\deg_{G_c}(v) = \deg_{G_P}(v) - \deg_G(v)$.

Olgu $G_0=G_c$. Iga $i\in\{1,\ldots,n\}$ jaoks, kus $|V^-|=2n,$ olgu

- $u_i, v_i \in V$ mingid kaks paaritu astmega tippu graafis G_{i-1} ;
- P_i mingi ahel tippude u_i ja v_i vahel graafis G_{i-1} ;
- G_i graaf, mis on saadud G_{i-1} -st P_i -sse kuuluvate servade eemaldamisel.

Graafis G_i on tippude u_i ja v_i aste paaris ja muude tippude astmete paarsus ei muutunud.

Graafis G_n on kõigil tippudel paarisarvuline aste.

Vaatame G_n -i mõnda sidususkomponenti. Kui see pole isoleeritud tipp, siis leidub seal tsükkel. Sama tsükkel leiduks ka G_c -s. See oleks vastuolus viimase lausega. Seega graafis G_n pole servi.

Oleme tükeldanud G_c servad n-ks ahelaks.

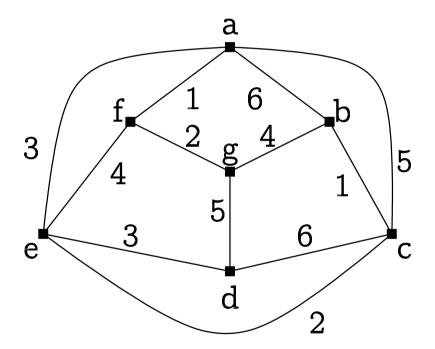
Kuna P on HPP lahend, siis need ahelad on minimaalse võimaliku pikkusega ahelad oma otstippude vahel.

Algoritm HPP lahendamiseks graafis $G = (V, E, \mathcal{E})$:

- 1. Leia kõigi hulka $V^- \subseteq V$ kuuluvate tippude paarikaupa kaugused.
 - Mõttekas on leida kõigi tippude paarikaupa kaugused ning ka vastavad lühimad ahelad.
 - Seda võib teha näiteks Floyd-Warshalli algoritmiga.
- 2. Jaga V^- tipud niimoodi paarideks $\{u_i, v_i\}$, et paaridesse kuuluvate tippude vahekauguste summa tuleks võimalikult väike.
 - Kuidas seda algoritmiliselt teha, vaatame kunagi edaspidi.

3. Lisa graafile G teine koopia servadest, mis asuvad mõnesse paari $\{u_i, v_i\}$ kuuluvaid tippe ühendaval minimaalse pikkusega ahelal ning leia saadud graafis Euleri ahel.

Näide:



Paarituarvuliste astmetega tippude vahelised kaugused:

	b	d	f	g
b	X	6	6	4
d	6	X	7	5
f	6	7	X	2
g	4	5	2	X

Vähim summaarne kaugus paarides {b,d} ja {f,g}.

HPP lahenduse annab Euleri ahel järgmises graafis:

