Algoritmid maksimaalse kooskõla ja minimaalse hinnaga täieliku kooskõla leidmiseks

Maksimaalse kooskõla leidmiseks graafis G = (V, E) alustame lihtsalt mingist kooskõlast M.

Järgnevas anname algoritmi, mille abil konstrueerida kooskõla M', kus on ühe võrra rohkem servi. (kui selline M' leidub)

M võib olla \emptyset , võib ka olla ahne algoritmiga koostatud:

- Olgu $M := \emptyset$.
- Iga $e \in E$ jaoks
 - kui M ei kata e kumbagi otstippu, siis lisa e hulka
 M.

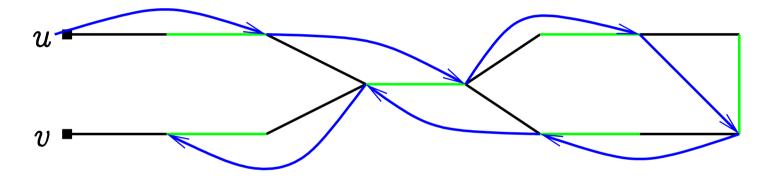
Kooskõla M suurendamiseks tuleb meil leida M-laienev tee.

Selle hõlbustamiseks defineerime suunatud graafi $\overrightarrow{G_M}$:

$$egin{aligned} V(\overrightarrow{G_M}) &= V \ E(\overrightarrow{G_M}) &= \{(u,w) \,|\, \exists v \in V : (u,v) \in E ackslash M, (v,w) \in M \} \end{aligned}.$$

Kui $\deg_M(u) = \deg_M(v) = 0$, siis G-s leidub M-laienev $mitte\ tingimata\ lihtne\ (MTL)$ tee u-st v-sse parajasti siis, kui $\overrightarrow{G_M}$ -s leidub (suunatud) ahel u-st N(v)-sse. $(\dots s.t.\ mingisse\ tippu\ w \in N(v))$

M-laienev mittelihtne tee u-st v-sse:



Olgu $W \subseteq V$ kõigi selliste tippude hulk, mida M ei kata.

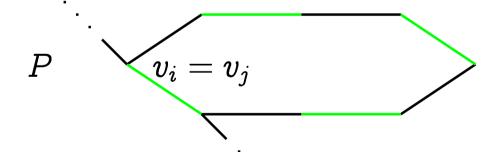
Lemma. Olgu $P = v_0 - v_1 - \cdots - v_m$ minimaalse pikkusega M-vahelduv MTL tee W-st (s.t. $v_0 \in W$) mingisse tippu $v = v_m$. Siis kehtib üks järgmistest väidetest:

- P on lihtne.
- P ei ole lihtne, leiduvad sellised i, j, et
 - (i) $0 \leqslant i < j \leqslant m$;
 - (ii) $v_i = v_j$;
 - (iii) i on paaris, j on paaritu;
 - s.t. servad $v_i v_{i+1}$ ja $v_{j-1} v_j$ ei kuulu M-i;
- (iv) v_0, \ldots, v_{j-1} on kõik erinevad.

Tõestus. Kui P on lihtne, siis pole midagi tõestada.

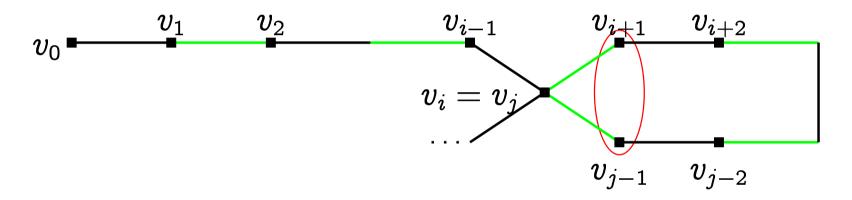
Oletame, et P ei ole lihtne, olgu $j \in \{1, ..., m\}$ vähim selline, et leidub i < j nii, et $v_i = v_j$. Selline i ja j valik rahuldab triviaalselt tingimusi (i), (ii), ja (iv).

Kui j - i oleks paaris, siis. . .



poleks P minimaalse pikkusega.

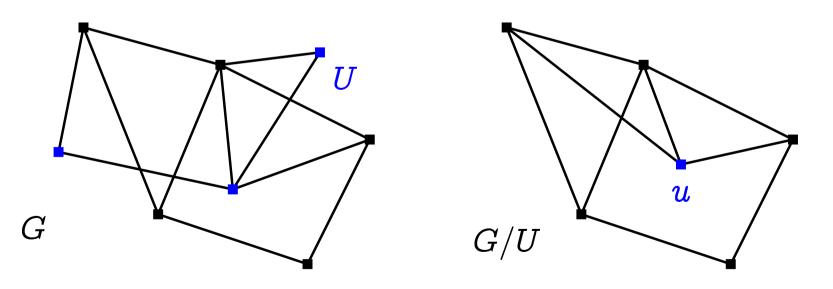
Kui j oleks paaris (ja i paaritu), siis...



oleks juba v_{j-1} mingi varasema tipuga võrdne $(v_{i+1}$ -ga). \square

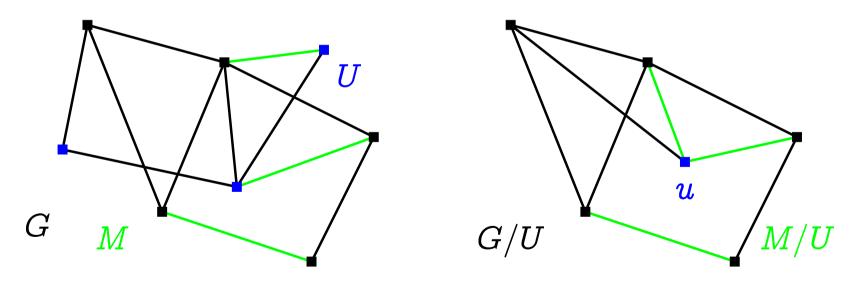
Olgu G=(V,E) mingi lihtgraaf ja olgu $U\subseteq V$. Tipuhulga U kokkutõmbamine G-s annab lihtgraafi G/U, kus

- kõik U-sse kuuluvad tipud on kustutatud, nende asemel on graafi lisatud üks uus tipp u;
- u on ühendatud kõigi tippudega $N_G(U)\backslash U$ -st.



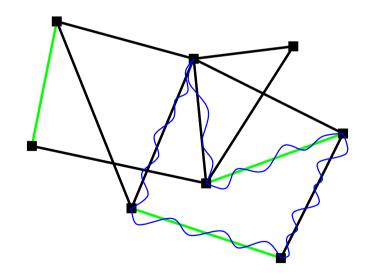
Defineerime veel:

- Kui $H \leqslant G$, siis G/H = G/V(H).
- Kui $M \subseteq E(G)$ ja $U \subseteq V(G)$, siis M/U on graafi (V(G),M)/U servade hulk.



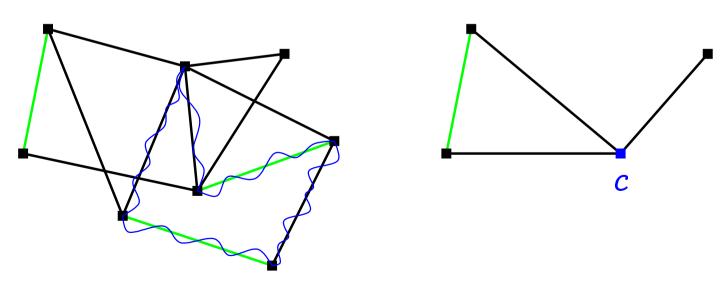
Olgu G=(V,E) ja olgu M mingi kooskõla G-s. Tsükkel $C\subseteq G$ on M- $\~ois$, kui

- |C| = 2k + 1 mingi $k \in \mathbb{N}$ jaoks;
- $|C \cap M| = k$.
- C sisaldab tippu, mida M ei kata.



Teoreem. Olgu G=(V,E) ja olgu M mingi kooskõla G-s. Olgu C mingi M-õis. Siis M on maksimaalne kooskõla G-s parajasti siis, kui M/C on maksimaalne kooskõla G/C-s.

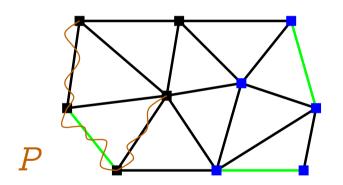
Tõestus. Olgu $c \in V(G/C)$ tipp, milleks C kokku tõmmati. Paneme tähele, et kui C on M-õis, siis M/C ei kata c-d, sest ükski M-i kuuluv serv pole C-sse kuuluva ja mittekuuluva tipu vahel.

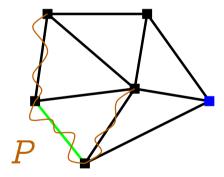


Tõestame pöördvastandteoreemi.

M pole maksimaalne $\Rightarrow M/C$ pole maksimaalne.

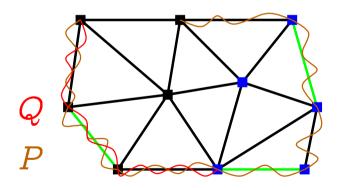
Olgu P M-laienev tee graafis G. Kui P ei sisalda C tippe, siis on ta ka M/C-laienev tee G/C-s.

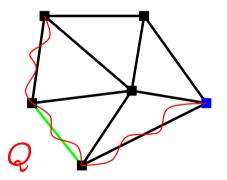




Kui P sisaldab C tippe, siis vähemalt üks tema otstippudest ei kuulu C-sse (sest C-s on üksainus M-i poolt katmata tipp).

Olgu Q P alamahel tema C-s mitteolevast otstipust kuni esimese C-s oleva tipuni. Siis Q on M/C-laienev G/C-s.

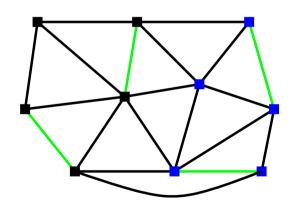


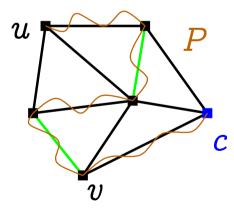


M/C pole maksimaalne $\Rightarrow M$ pole maksimaalne.

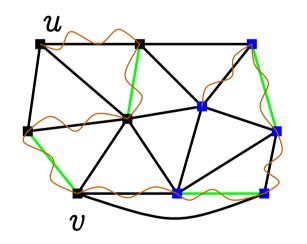
Olgu P M/C-lainenev tee graafis G/C. Kui ta ei sisalda tippu c (milleks C kokku tõmmati), siis on ta ka M-laienev G-s.

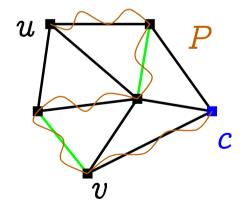
Kui P sisaldab c-d, siis on c üks tema otstippudest. Olgu v tipu c naabertipp P-l ja olgu u P teine otstipp.

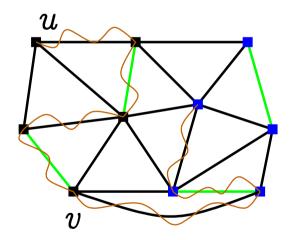




M-laieneva tee graafis G saame, liikudes tipust u mööda teed P tippu v, sealt mõnele tsüklis C asuvale tipule ja edasi mööda tsüklit M-i poolt katmata tipuni.



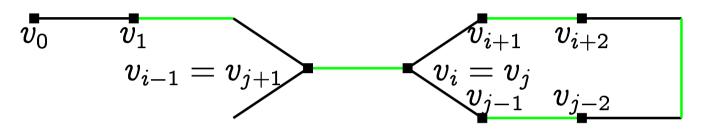




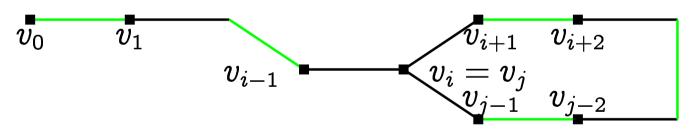
Algoritm kooskõla M graafis G suurendamiseks ühe serva võrra (kui M pole veel maksimaalne):

- 1. Leia lühim M-vahelduv MTL tee P W-st W-sse.
 - Leia lühim suunatud tee W-st N(W)-sse graafis $\overrightarrow{G_M}$.
 - See leitakse $\overrightarrow{G_M}$ -i laiuti läbides.
- 2. Kui sellist P-d ei leidunud, siis ei leidu ka M-laienevaid teid. Tagasta "M on maksimaalne".
- 3. Kui P on lihtne, siis on ta M-laienev tee. Tagasta $M \triangle E(P)$.
 - \triangle sümmeetriline vahe.

4. Kui $P = v_0 - v_1 - \cdots - v_m$ pole lihtne, siis olgu j vähim selline, et leidub i < j nii, et $v_i = v_j$.



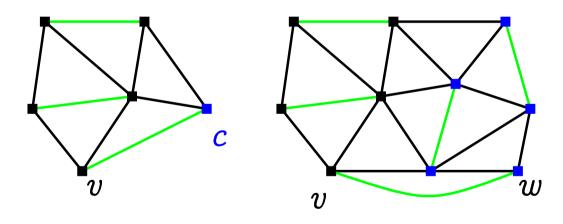
5. Olgu $M := M \triangle \{v_0 - v_1, v_1 - v_2, \dots, v_{i-1} - v_i\}.$



Siis M on ikka kooskõla (suurenes ainult $\deg_M(v_0)$, mis ennem oli 0) ja $C = v_i - v_{i+1} - \cdots - v_j$ on M-õis.

- 6. Kutsu algoritm rekursiivselt välja M/C ja G/C jaoks.
- 7. Kui M/C oli maksimaalne, tagasta "M on maksimaalne".
- 8. Kui tagastati kooskõla N, siis
 - Kui N ei kata tippu c, milleks C kokku tõmmati, siis tagasta $(N \cap E(G \setminus C)) \cup (M \cap E(C))$.

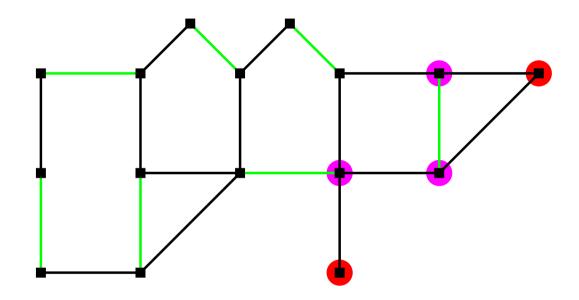
• Kui N katab tippu c, siis olgu v tipu c paariline N järgi ning $w \in V(C)$ mingi tipu v naabertipp graafis G. Tagasta $(N \cap E(G \setminus C)) \cup \{v - w\} \cup M_C^w$, kus M_C^w on maksimaalne kooskõla C-l, mis w katmata jätab.



Keerukus:

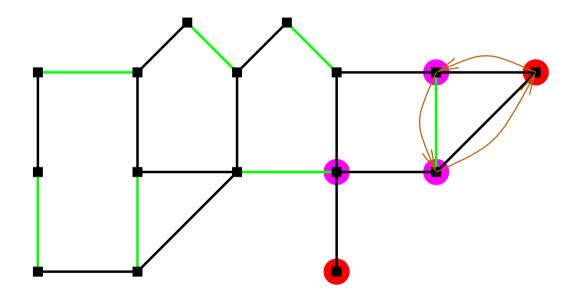
- Maksimaalse kooskõla leidmiseks tuleb eelnevat algoritmi välja kutsuda kuni |V|/2 korda.
- Ühel väljakutsel:
 - Tee P on leitav ajas O(|E|). Samuti on M-i parandamine tehtav ajas O(|E|).
 - Rekursiooni sügavus on O(|V|).
 - Kokku kulub aega $O(|V| \cdot |E|)$.
- Maksimaalne kooskõla on leitav ajas $O(|V|^2 \cdot |E|)$.

G M W N(W)



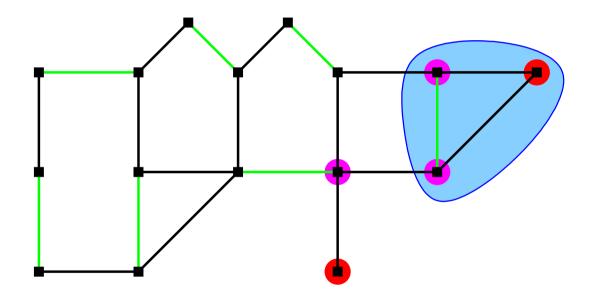
 $G \qquad M \qquad W \qquad N(W)$

Lühim M-laienev MTL tee

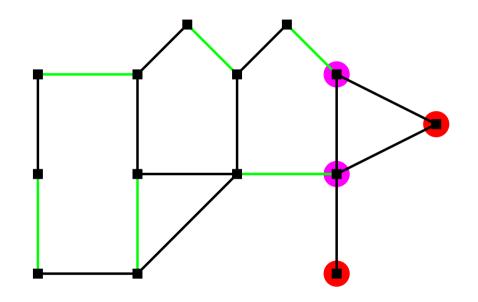


G M W N(W)

M-õis

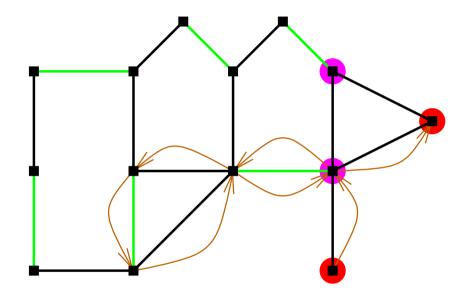


G/C M/C W N(W)



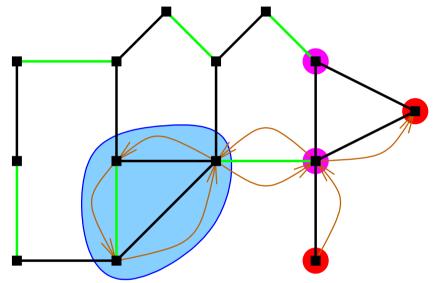
G M W N(W)

Lühim M-laienev MTL tee



$G \qquad M \qquad W \qquad N(W)$

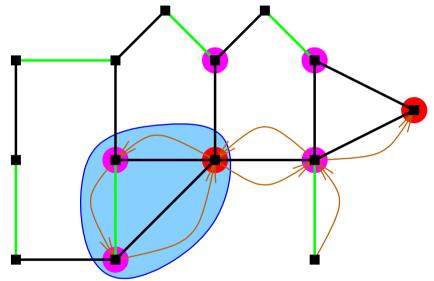
Lühim M-laienev MTL tee tsükkel M-laieneval teel



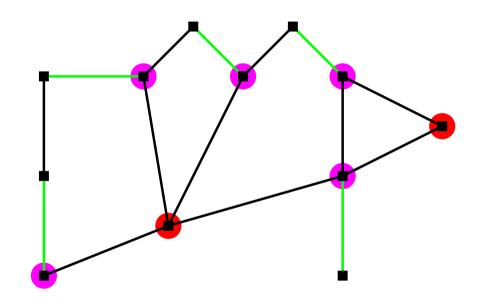
 $G \hspace{0.4cm} M \hspace{0.4cm} W \hspace{0.4cm} N(W)$

Lühim M-laienev MTL tee

M-õis

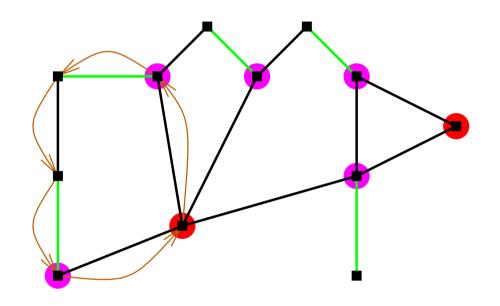


G/C M/C W N(W)



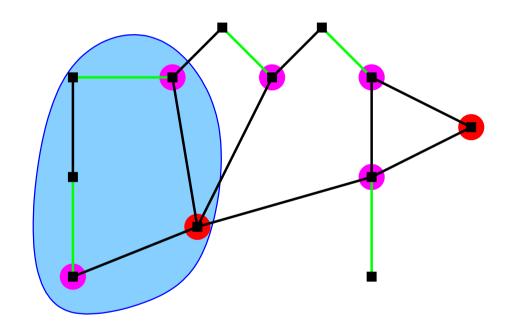
 $G \qquad M \qquad W \qquad N(W)$

Lühim M-laienev MTL tee

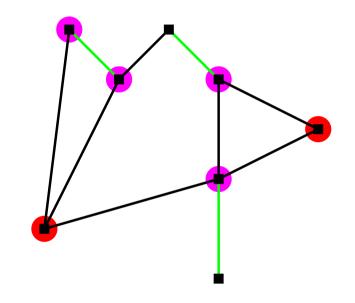


 $G \qquad M \qquad W \qquad N(W)$

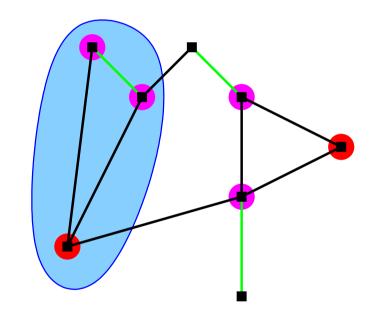
M-õis



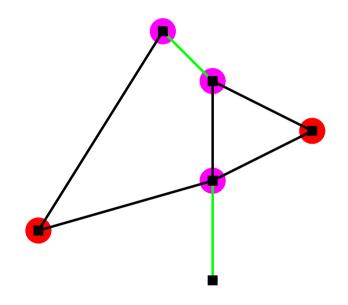
G/C M/C W N(W)



 $G \hspace{0.2cm} M \hspace{0.2cm} W \hspace{0.2cm} N(W)$ $M ext{-} ilde{ ilde{o}} ilde{ ilde{o}} ilde{ ilde{o}}$

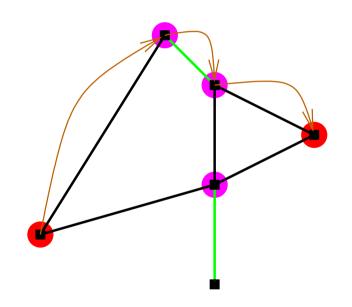


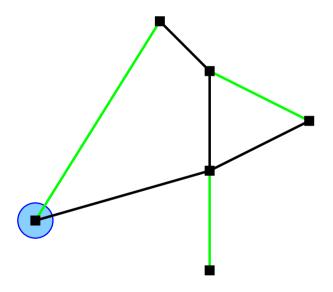
G/C M/C W N(W)

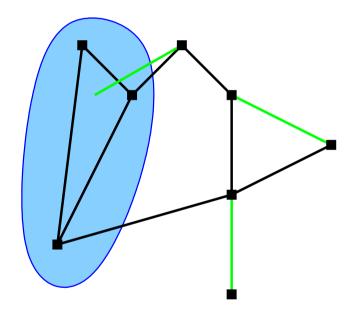


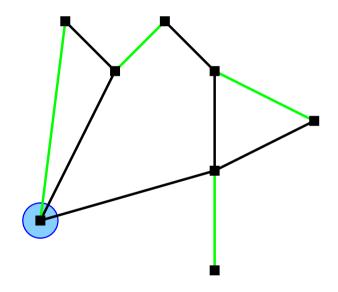
 $G \qquad M \qquad W \qquad N(W)$

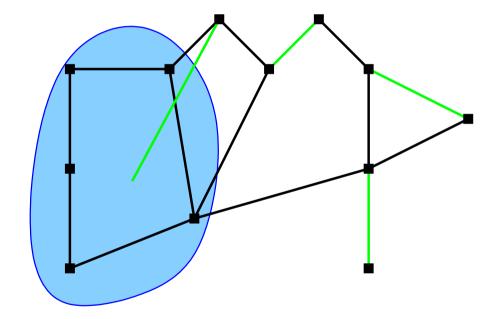
Lühim M-laienev tee

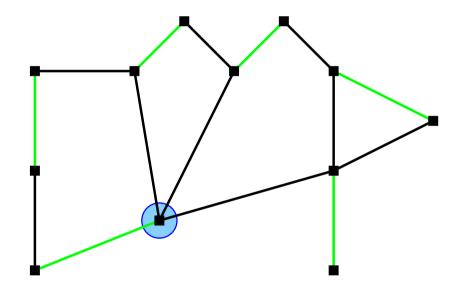


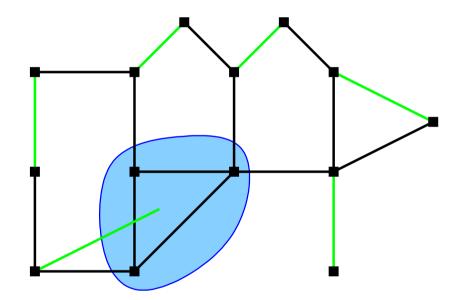




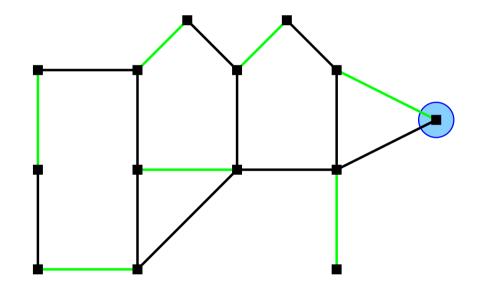


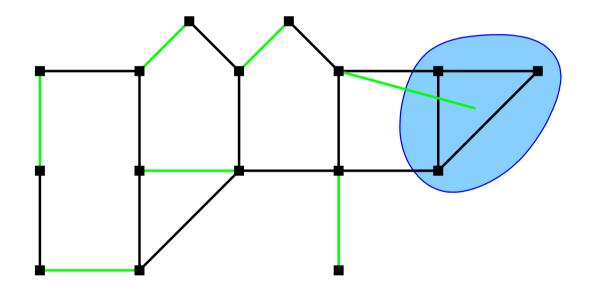




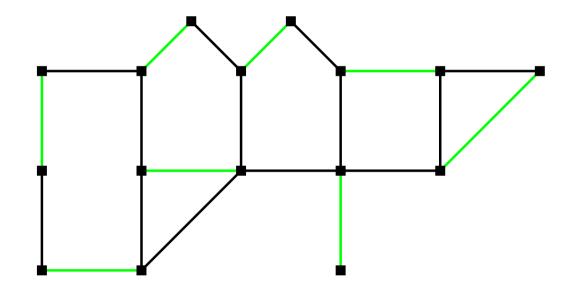


G M





G M



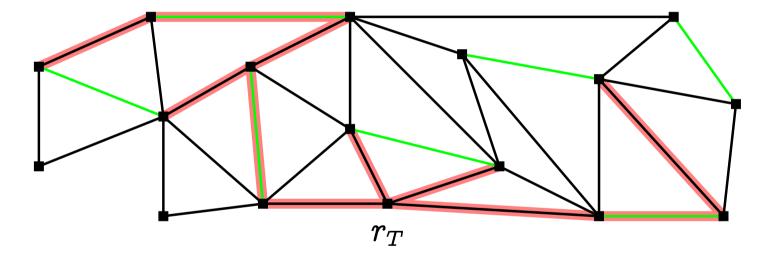
Vaatame nüüd järgmist ülesannet:

Antud graaf G = (V, E) ja servade kaalud $w : E \longrightarrow \mathbb{R}$. Leida selline täielik kooskõla M, et $\sum_{e \in M} w(e)$ oleks minimaalne võimalik.

Eeldame, et G-s leidub täielik kooskõla.

Eeldame, et iga $e \in E$ jaoks $w(e) \geqslant 0$. Kui nii ei ole, siis liidame kõigi servade kaaludele mingi küllalt suure konstandi c. Sellega suurenevad kõigi täielike kooskõlade kaalud c|V|/2 võrra, s.t. minimaalse kaaluga täielikud kooskõlad jäävad samaks.

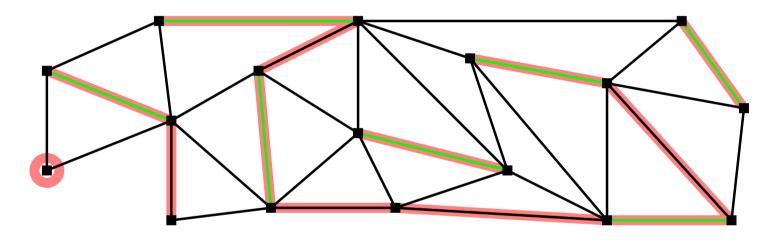
Olgu G = (V, E) ja M kooskõla G-l. Siis $T \leqslant G$ on M
laienev puu, kui T on juurega puu, mille juurt r_T M ei kata (aga kõiki teisi tippe katab), ja kõik juurest algavad lihtahelad T-s on M-vahelduvad.



Olgu

- $ullet V^+(T)=\{v\in V(T)\,|\,d(r_T,v) ext{ on paaris}\};$
- $V^-(T) = \{v \in V(T) \mid d(r_T, v) \text{ on paaritu}\};$

 $F \leqslant G$ on M-laienev mets, kui V(F) = V, $M \subseteq E(F)$ ja F-i iga sidususkomponent on kas M-laienev puu või M-i kuuluv serv.



 $V^+(F)$ ja $V^-(F)$ olgu F-i kuuluvate M-laienevate puude T vastavate hulkade ühendid.

Kui M ei kata v-d, siis $v \in V^+(F)$.

Tähistame:

- $\wp(X)$ on hulga X kõigi alamhulkade hulk.
- Olgu G = (V, E) mingi graaf. Kui $U \subseteq V$, siis olgu $\delta(U) \subseteq E$ nende servade hulk, mille üks otstipp on U-s ja teine $V \setminus U$ -s.

Algoritm kasutab abistruktuurina paari (Ω, π) , kus $\Omega \subseteq \wp(V)$ ja $\pi: \Omega \longrightarrow \mathbb{R}$. Nad rahuldavad järgmisi omadusi:

- Ω on alamhulkade *pesastatud* hulk.
- \bullet Ω kõik elemendid on paarituarvulise võimsusega.
- Kui $U \in \Omega$ ja $|U| \geqslant 3$, siis $\pi(U) \geqslant 0$.
- ullet Iga $e \in E$ jaoks $\sum_{\substack{U \in \Omega \ e \in \delta(U)}} \pi(U) \leqslant w(e).$

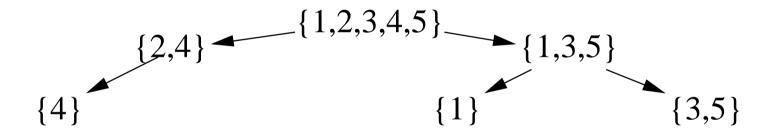
Hulk $\Xi \subseteq \wp(X)$ on *pesastatud*, kui iga $Y, Z \in \Xi$ jaoks kas $Y \subset Z, Z \subset Y$ või $Y \cap Z = \emptyset$.

Näide: Kui $X = \{1, ..., 5\}$, siis $\{\{1\}, \{4\}, \{2, 4\}, \{3, 5\}, \{1, 3, 5\}, \{1, 2, 3, 4, 5\}\}$ on pesastatud hulk.

Lause. Kui $\Xi \subseteq \wp(X)$ on pesastatud ja $\emptyset \not\in \Xi$, siis $|\Xi| \leqslant 2|X|-1$.

Tõestus. Vaatame graafi T_{Ξ} , mille tippudeks on Ξ elemendid ning milles on kaar $Y \to Z$ parajasti siis, kui $Y \supset Z$ ning ei leidu sellist elementi $W \in \Xi$, et $Y \supset W \supset Z$.

Näide:



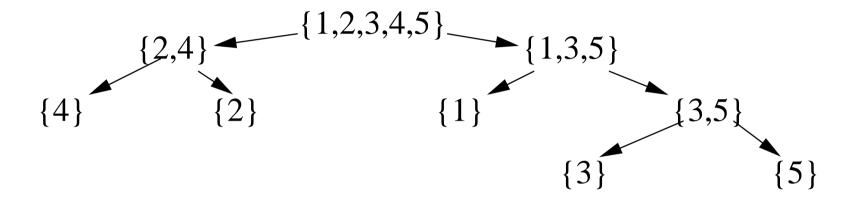
Siis T_{Ξ} on mets, tema igal sidususkomponendil on juur — suurim element selles komponendis.

Täiendame hulka Ξ (ja ka metsa T_{Ξ}) järgmiselt:

- Lisame elemendi X hulka Ξ (kui seda seal veel ei ole). Siis T_{Ξ} -st saab puu juurega X.
- Iga $x \in X$ jaoks lisame $\{x\}$ hulka Ξ . Neist saavad puu T_{Ξ} lehed.
- Seni kuni mingil elemendil $Y \in \Xi$ on puus T_{Ξ} vähemalt kolm alluvat Z_1, \ldots, Z_k , lisame Ξ -sse elemendi $Z_1 \cap Z_2$.

Need täiendused ei muuda Ξ -d mittepesastatuks.

Näide:



Nüüd on T_{Ξ} -s |X| lehte ja iga sisemise tipu aste on 2. Kokku on tippe seega 2|X|-1.

Algoritm kasutab hulka Ω , et meeles pidada, millised tsüklid on kokku tõmmatud.

Suvalise täieliku kooskõla $M \subseteq E$ jaoks kehtib

$$egin{aligned} w(M) &= \sum_{e \in M} w(e) \geqslant \sum_{e \in M} \sum_{\substack{U \in \Omega \ e \in \delta(U)}} \pi(U) = \ &\sum_{U \in \Omega} \sum_{\substack{e \in M \ e \in \delta(U)}} \pi(U) = \sum_{U \in \Omega} \pi(U) \sum_{\substack{e \in M \ e \in \delta(U)}} 1 = \ &\sum_{U \in \Omega} \pi(U) \cdot |M \cap \delta(U)| \geqslant \sum_{U \in \Omega} \pi(U) \ . \end{aligned}$$

Seega kui Ω , π ja M on sellised, et

$$ullet$$
 iga $e \in M$ jaoks $w(e) = \sum_{\substack{U \in \Omega \ e \in \delta(U)}} \pi(U);$

• iga $U \in \Omega$ jaoks $|M \cap \delta(U)| = 1$;

siis $w(M) = \sum_{U \in \Omega} \pi(U)$ ja seega M on minimaalse kaaluga täielik kooskõla.

Tähistame:
$$w_{\pi}(e) = \sum_{\substack{U \in \Omega \\ e \in \delta(U)}} \pi(U).$$

Algoritm peab töö käigus meeles ka senini leitud kooskõla M. Sinna kooskõlla võtab ta ainult selliseid servi e, mille jaoks $w(e) = w_{\pi}(e)$.

Kui $U \in \Omega$, siis olgu $\Omega[U] = \{U' \in \Omega \mid U' \subset U\}$.

 G/Ω tähistagu graafi G, kus Ω kõik maksimaalsed elemendid on kokku tõmmatud.

 Ω elemendid vastavad tsüklitele — kui $U \in \Omega$ ja $|U| \geqslant 3$, siis graafis $G[U]/\Omega[U]$ leidub Hamiltoni tsükkel sellistest servadest e, kus $w(e) = w_{\pi}(e)$.

(algoritm rahuldab sellist invarianti)

Min. hinnaga täieliku kooskõla leidmise algoritm on iteratiivne. Tema olek koosneb järgmistest osadest:

- $\bullet \Omega;$
 - iga $U \in \Omega$ jaoks, kus $|U| \geqslant 3$: eelmisel slaidil mainitud Hamiltoni tsükkel
- π , need rahuldavad eeltoodud omadusi;
- M mingi kooskõla graafil G/Ω ;
- F mingi M-laienev mets graafil G/Ω
 - -M ja F kasutavad ainult selliseid servi e, kus $w(e)=w_{\pi}(e).$

Algseis:

- $\bullet \ \Omega = \big\{\{v\} \,|\, v \in V\big\};$
- $\pi(\{v\}) = 0$ iga $v \in V$ jaoks;
- $F = \emptyset$ (F kui servade hulk);
- \bullet $M=\emptyset$.

Itereerime seni, kuni M pole täielik kooskõla G/Ω -l.

Iteratsioon:...

Iga $e \in E$ jaoks olgu

- $\varepsilon_e = w(e) w_{\pi}(e)$, kui e üks otstipp (graafis G/Ω) on $V^+(F)$ -s ja teine väljaspool $V^+(F) \cup V^-(F)$ -i;
- ullet $arepsilon_e=(w(e)-w_\pi(e))/2,$ kui e mõlemad otstipud on $V^+(F)$ -s;
- $\varepsilon_e = \infty$ muudel juhtudel.

Leidub selline e, et $\varepsilon_e < \infty$, sest $|V^+(F)| > |V^-(F)|$ (nende vahe on võrdne tippude arvuga, mida M ei kata).

Olgu

$$arepsilon = \min ig(\min_{e \in E} arepsilon_e, \min_{U \in \Omega \cap V^-(F), |U| \geqslant 3} \pi(U) ig)$$
 .

Muudame π -d:

- Kui $U \in \Omega \cap V^+(F)$, siis $\pi(U) := \pi(U) + \varepsilon$.
- Kui $U \in \Omega \cap V^-(F)$, siis $\pi(U) := \pi(U) \varepsilon$.

Kõik invariandid jäävad kehtima:

- $\pi(U) \geqslant 0$, kui $|U| \geqslant 3$;
- $w_{\pi}(e) \leqslant w(e)$;
- Hamiltoni tsükkel $G[U]/\Omega[U]$ -s...

 ε oli maksimaalne, mis π sellisel muutmisel need invariandid kehtima jättis.

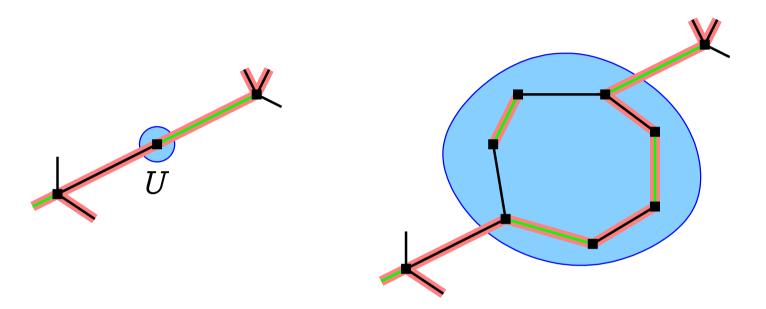
Peab leiduma vähemalt üks järgmistest objektidest:

- (i) $e \in E$, nii et $w_{\pi}(e) = w(e)$. Seejuures e mõni otstipp graafis G/Ω on $V^+(F)$ -s ja kumbki pole $V^-(F)$ -s.
- (ii) $U \in \Omega \cap V^{-}(F)$, $|U| \geqslant 3$, $\pi(U)=0$.

Juht (i). Lisa e metsale F.

- Kui e üks otstipp kuulus $V^+(F)$ -i ja teine ei kuulunud, siis F lihtsalt suurenes.
- Kui e mõlemad otstipud kuulusid $V^+(F)$ -i, siis e lisamine ühendas F-i kaks M-laienevast puust sidususkomponenti või tekitas ühes komponendis tsükli.
 - Kui ühendati kaks sidususkomponenti, siis tekkis M-laienev tee P. Defineeri $M := M \triangle P$ ja F := M.
 - Kui tekkis tsükkel U, siis lisa U Ω -sse, defineeri $\pi(U):=0,\ M:=M/U,\ F:=F/U.$ Edasi töötame graafiga G/U.

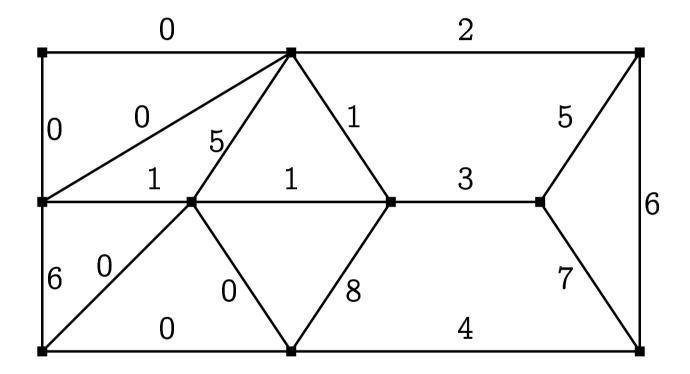
Juht (ii). Võta kokkutõmmatud tsükkel U tagasi lahti.

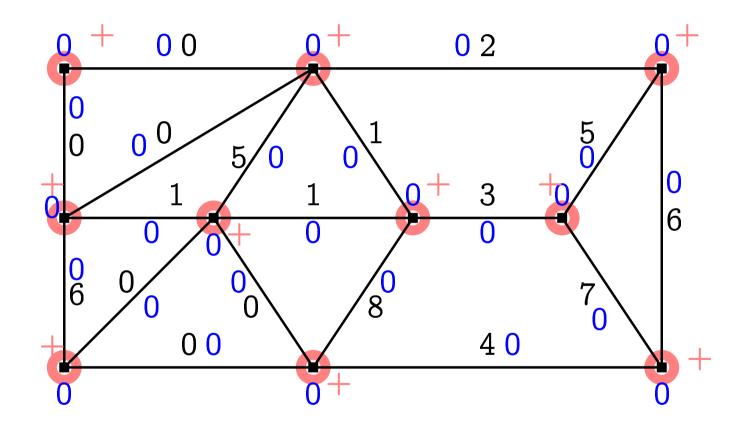


Eemalda U Ω -st, lisa M-i tsükli U servad nii, et kõik U tipud kaetud saaksid (kasutades servi e, kus $w(e) = w_{\pi}(e)$), lisa üks pool tsüklist F-i (nii, et $V^+(F)$ ja $V^-(F)$ väljaspool U-d ei muutuks), lisa tsükli teisest poolest F-i servad, mis kuuluvad M-i.

Kui oleme G/Ω -s jõudnud täieliku kooskõlani, siis võtame kokkutõmmatud tsüklid tagasi lahti.

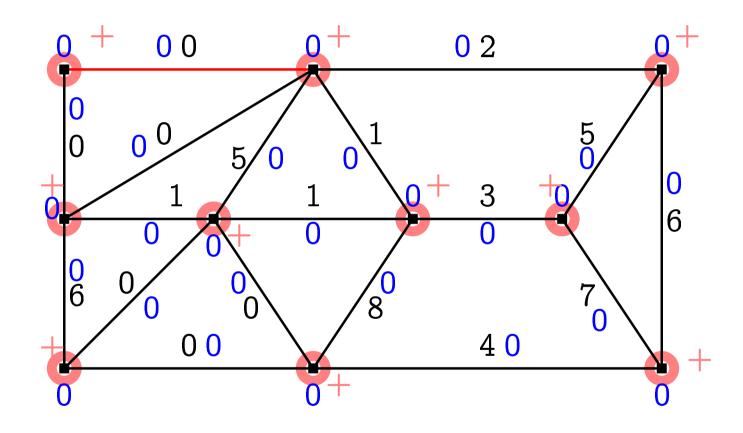
- Tsüklid leiame Ω -st.
- Alustame Ω suurematest elementidest.





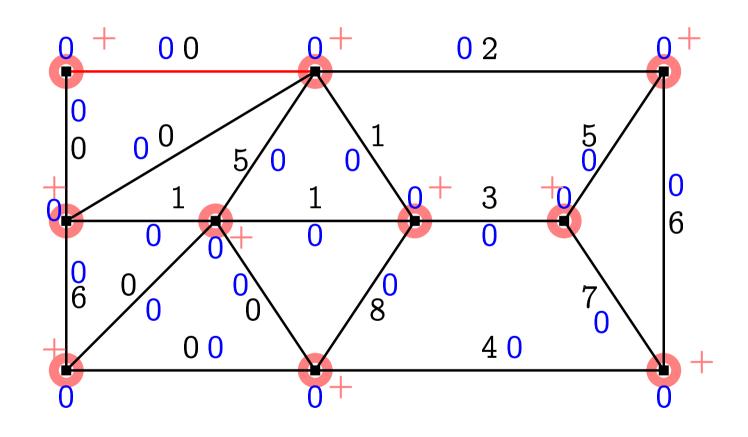
 Ω π M F w w_{π} $V^?(F)$

Valime e või U

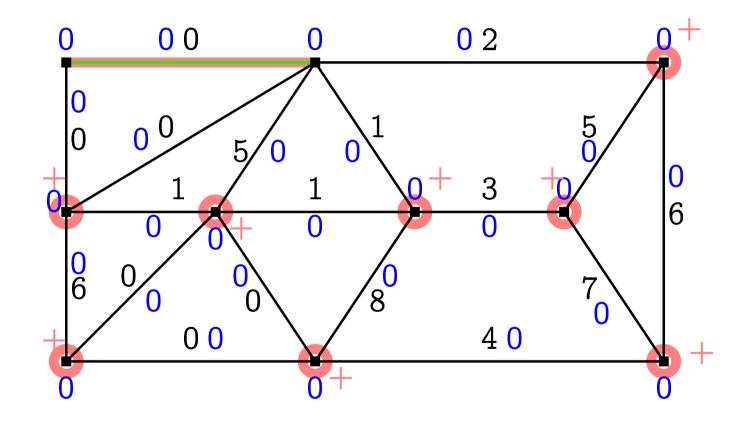


$$\Omega$$
 π M F w w_{π} $V^?(F)$

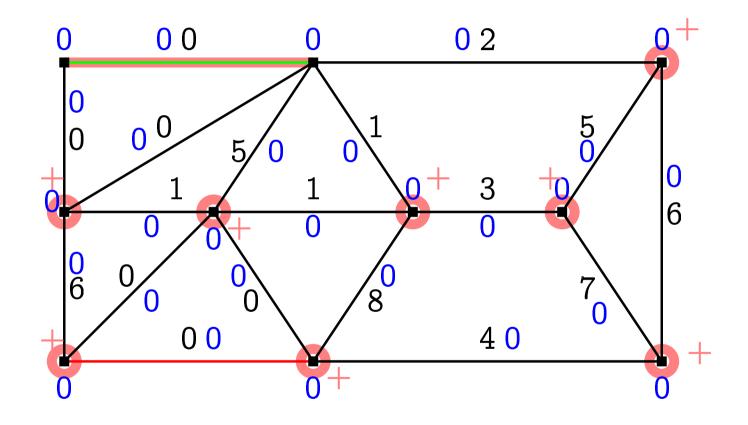
Saame M-laieneva tee



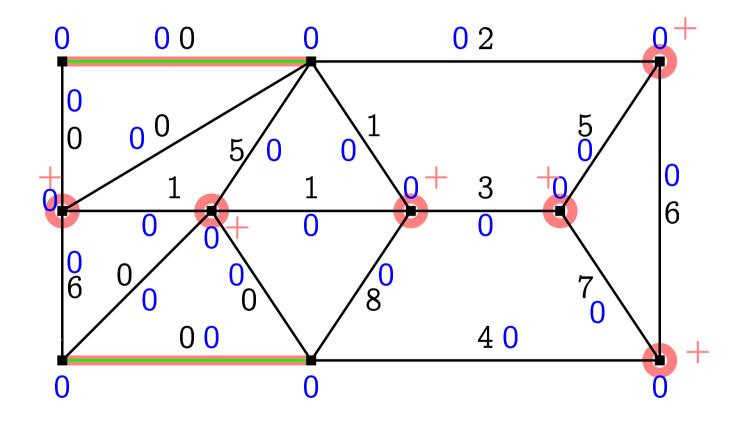
$$\Omega$$
 π M F w w_{π} $V^?(F)$



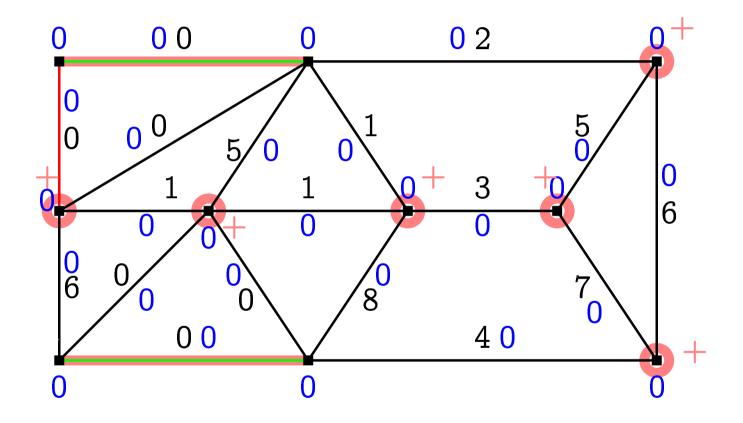
 Ω π M F w w_{π} $V^?(F)$



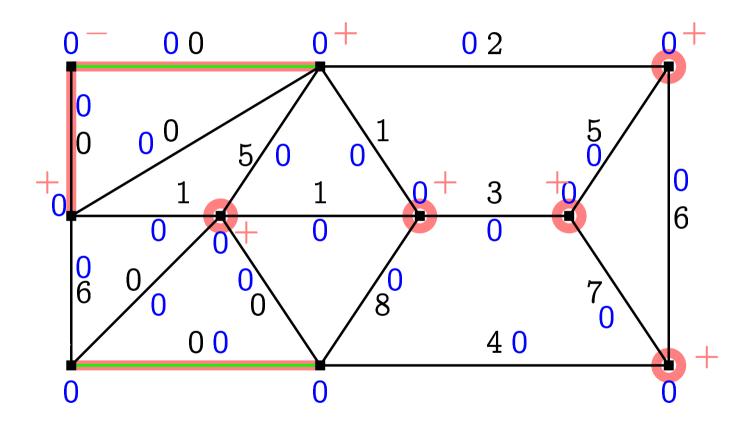
 Ω π M F w w_{π} $V^?(F)$



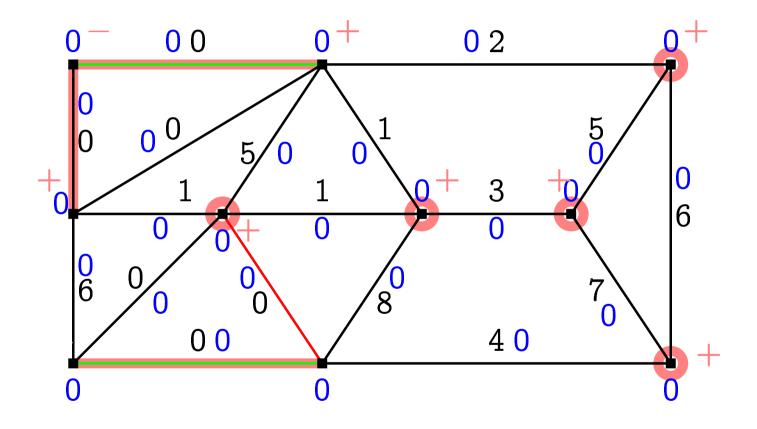
$$\Omega$$
 π M F w w_{π} $V^?(F)$

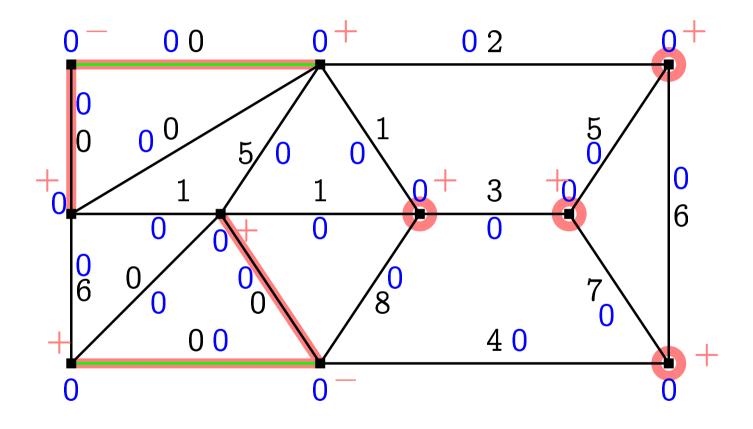


$$\Omega$$
 π M F w w_{π} $V^?(F)$



$$\Omega$$
 π M F w w_{π} $V^?(F)$



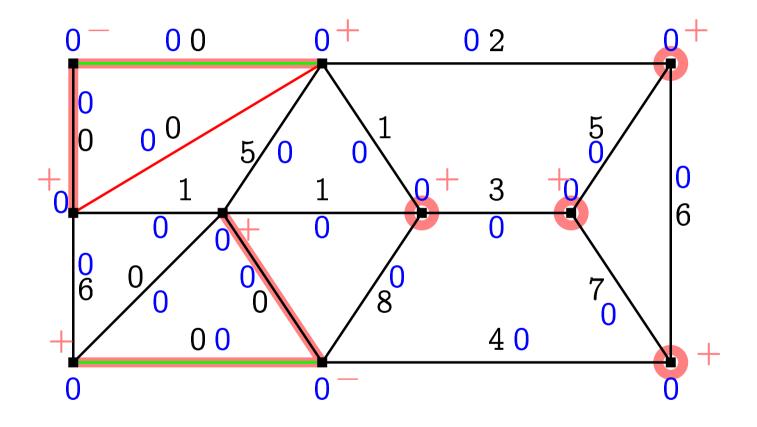


Ω π M

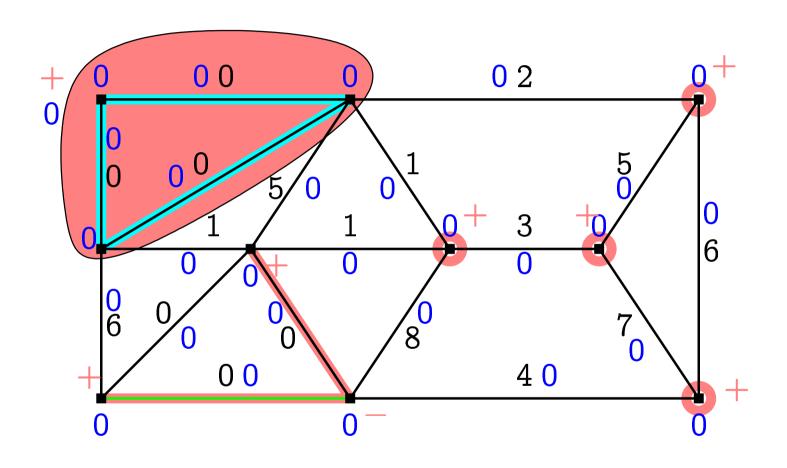
F'

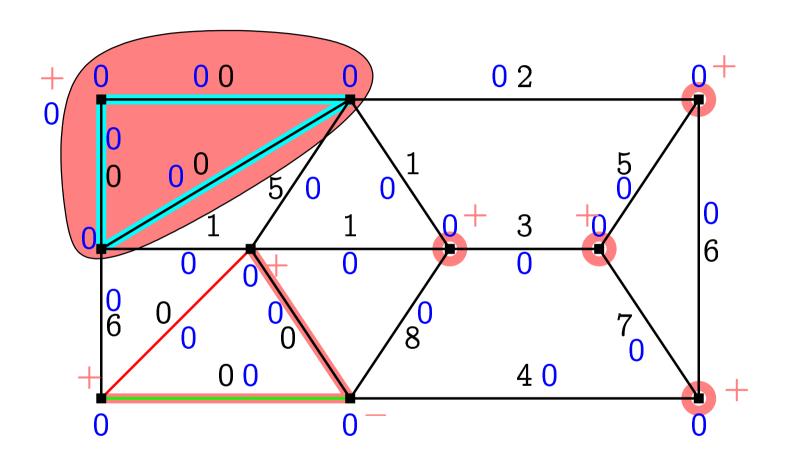
w

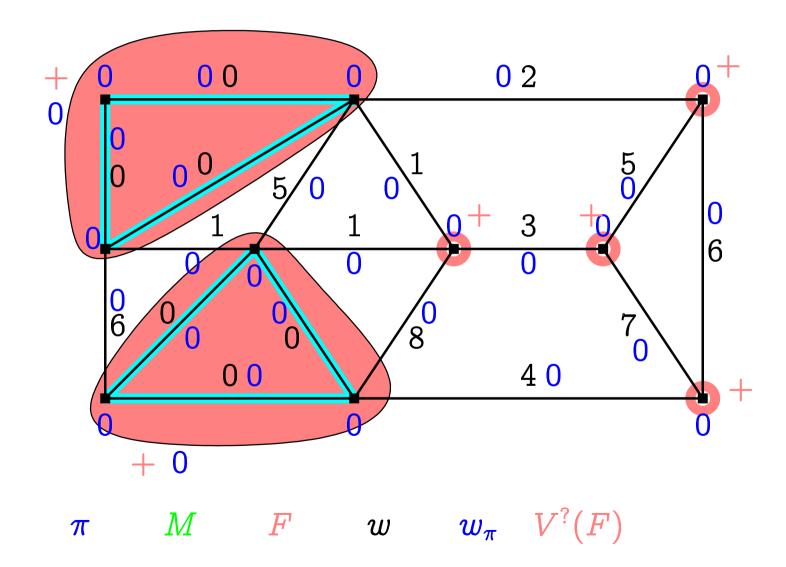
 $oldsymbol{w_{\pi}} \quad V^?(F)$



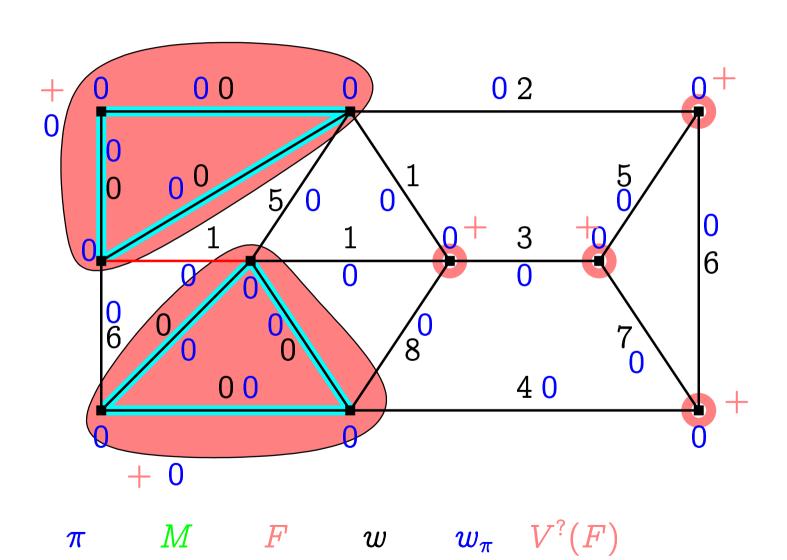
$$\Omega$$
 π M F w w_{π} $V^?(F)$



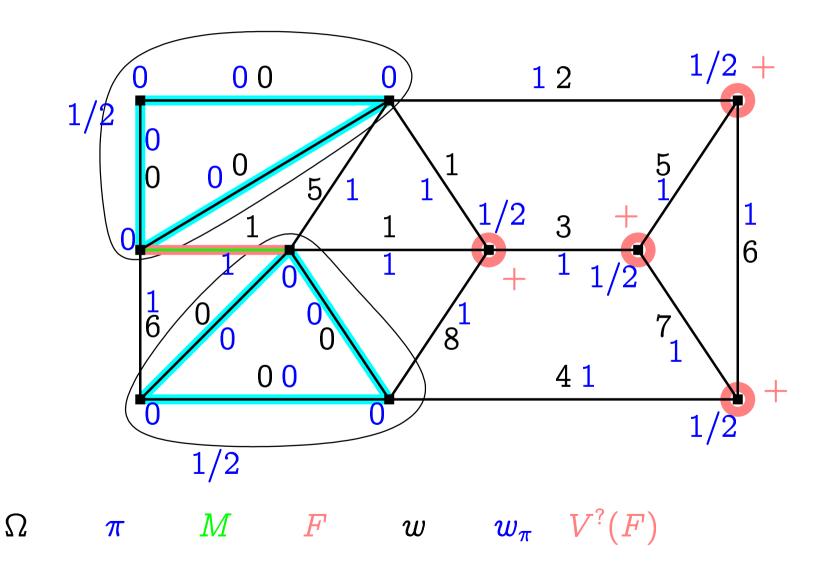


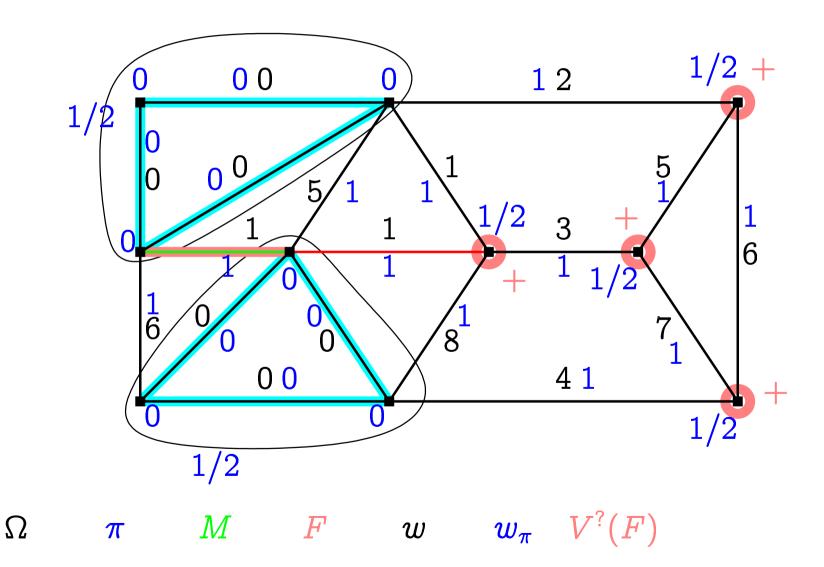


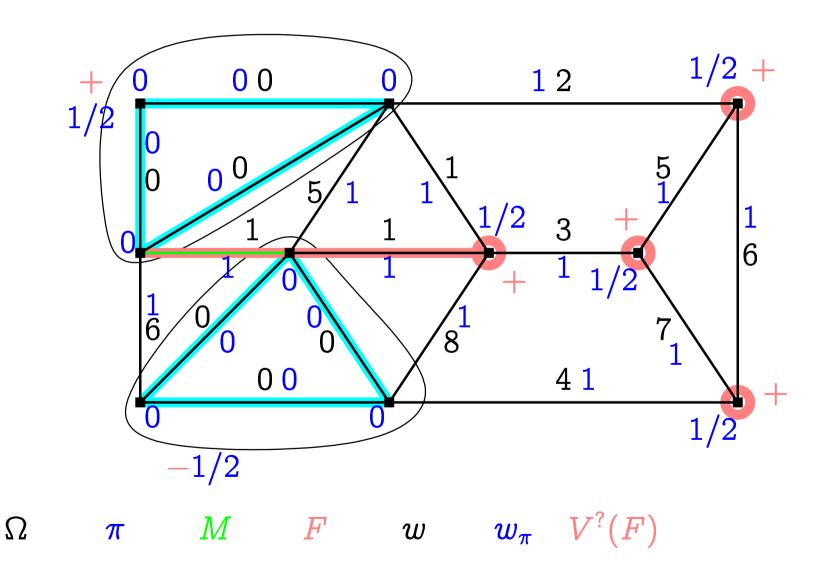
 Ω

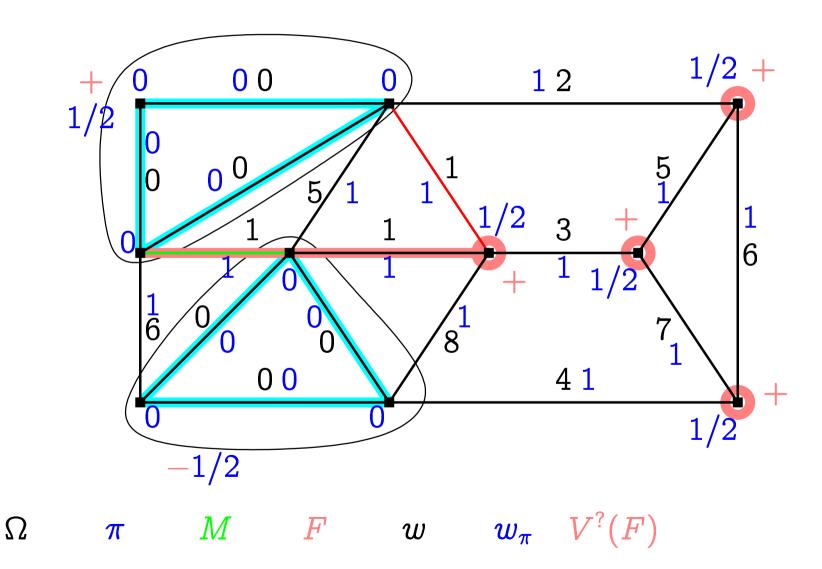


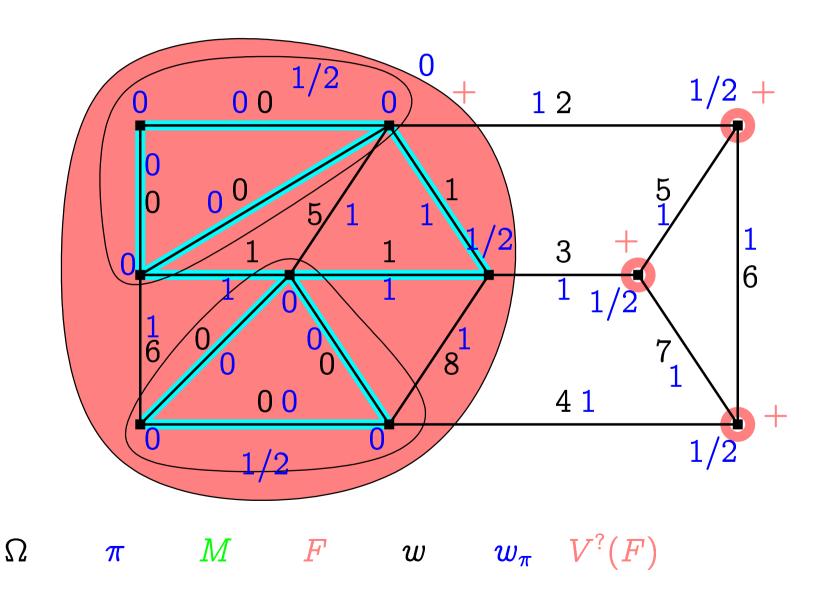
 Ω

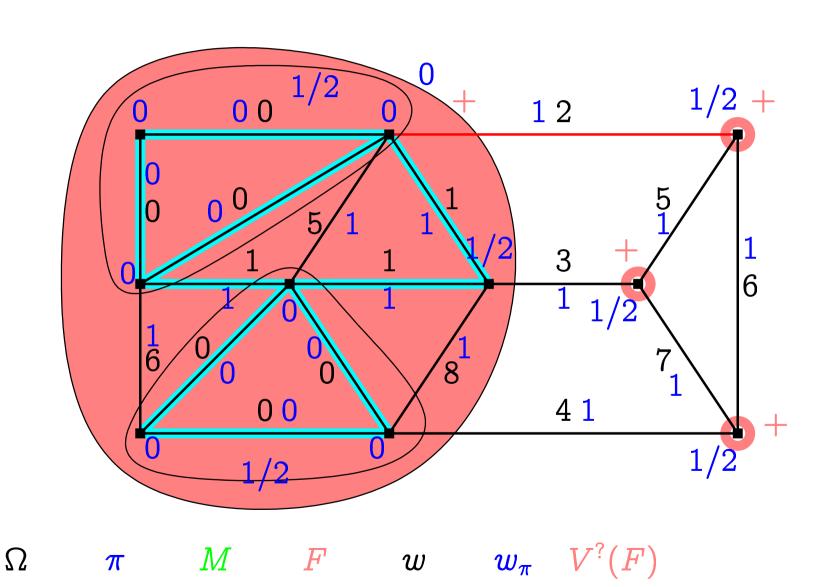


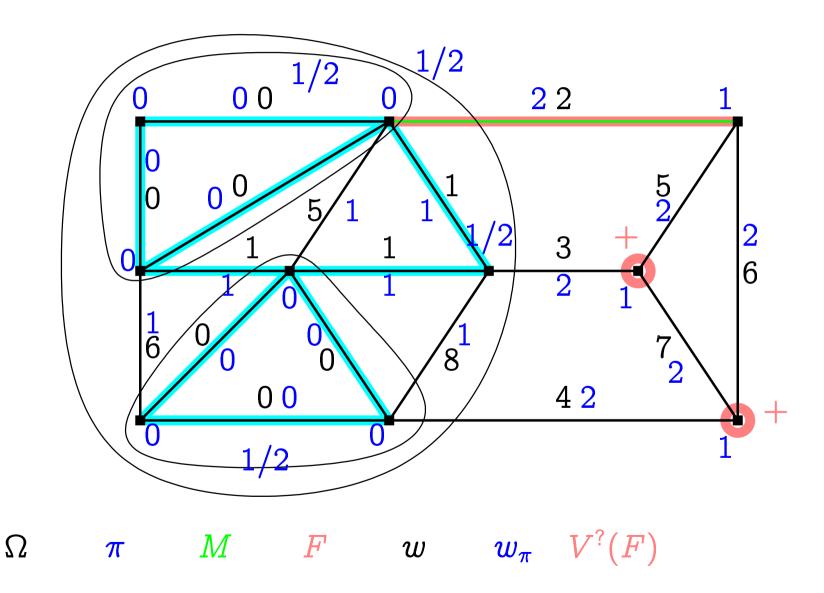


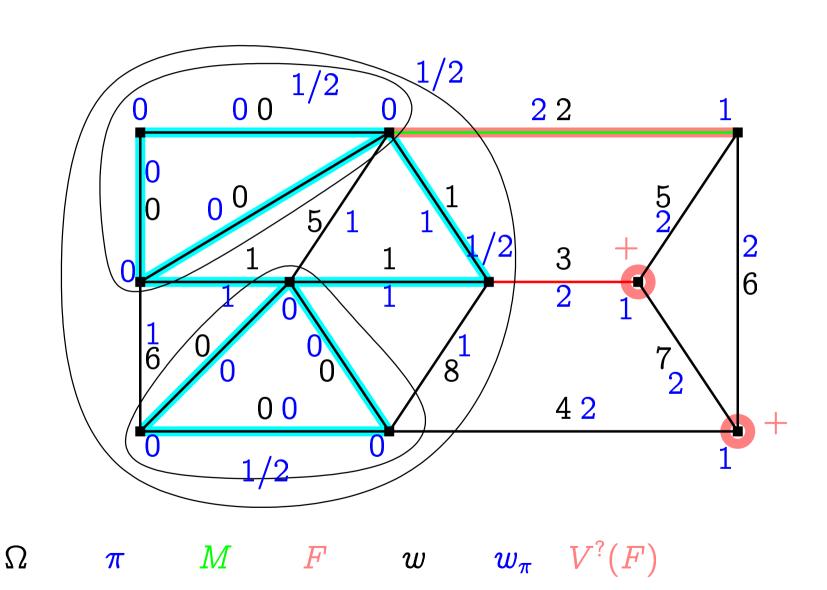


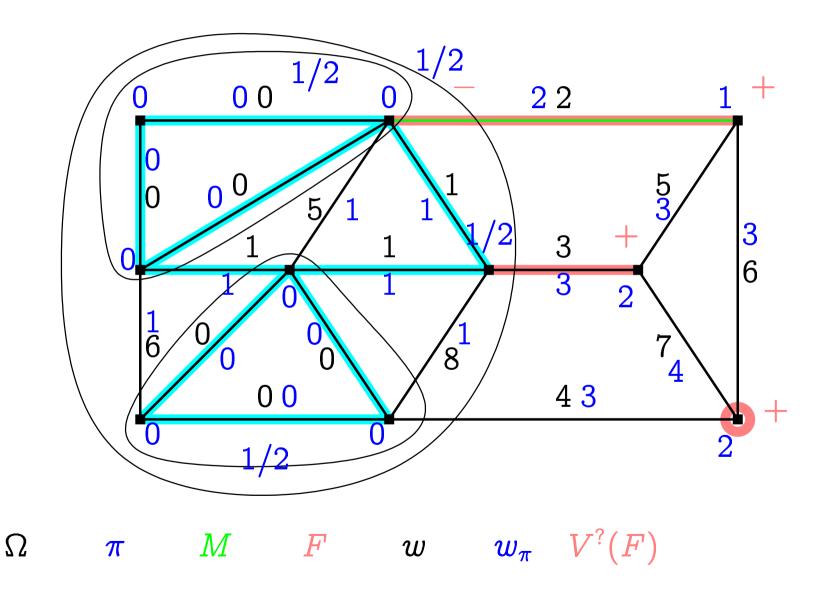


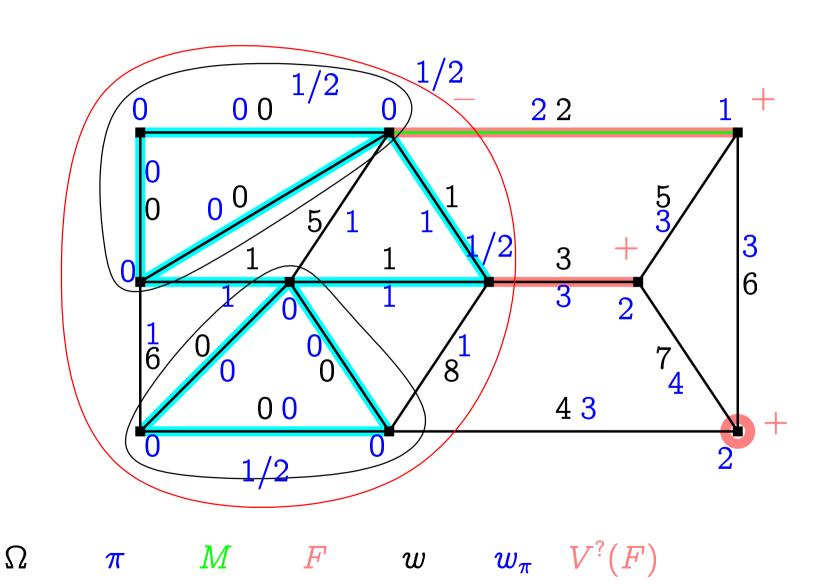


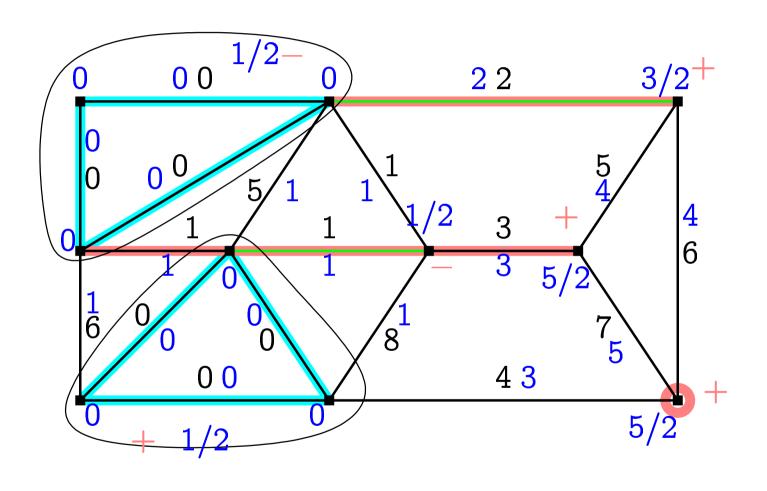


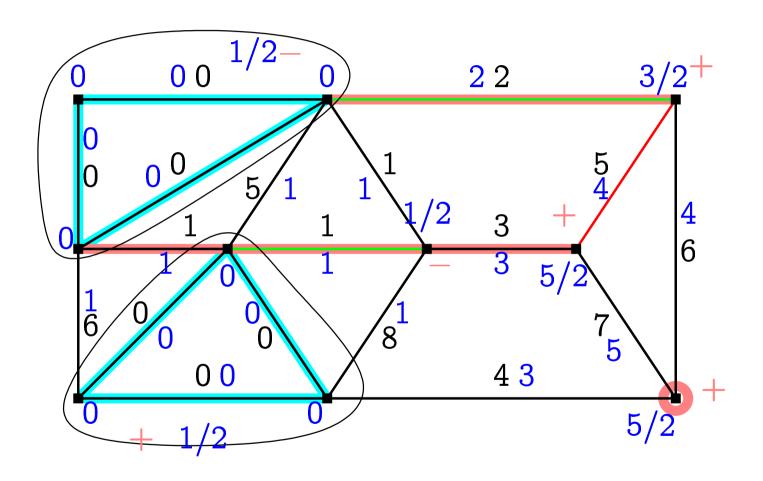




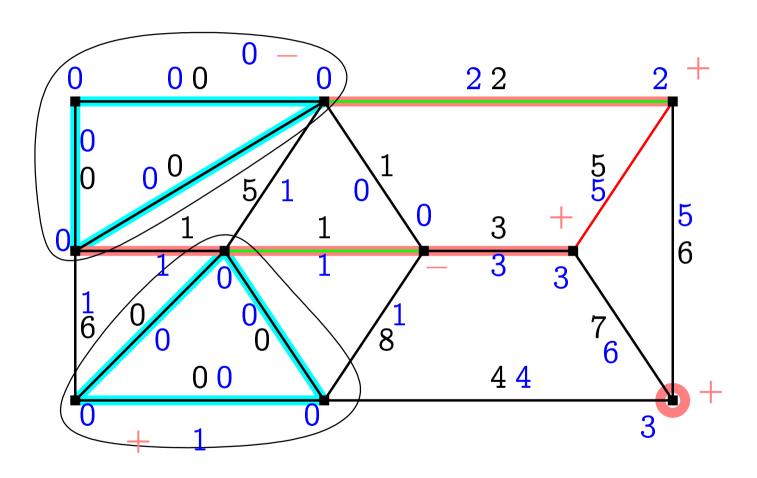




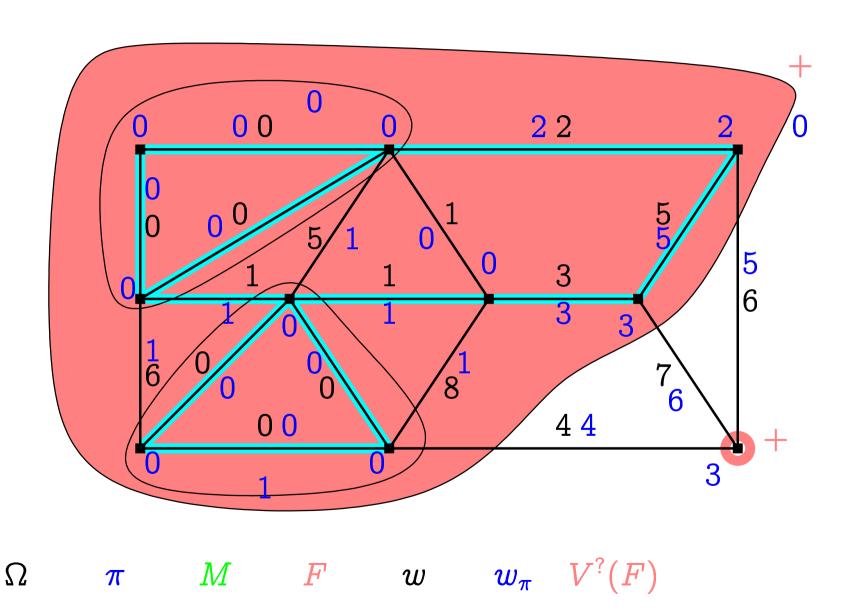


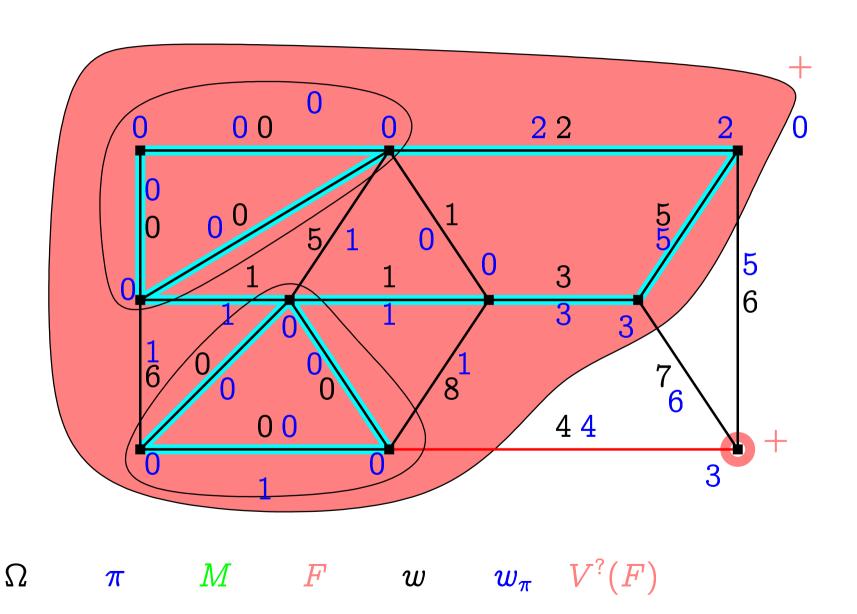


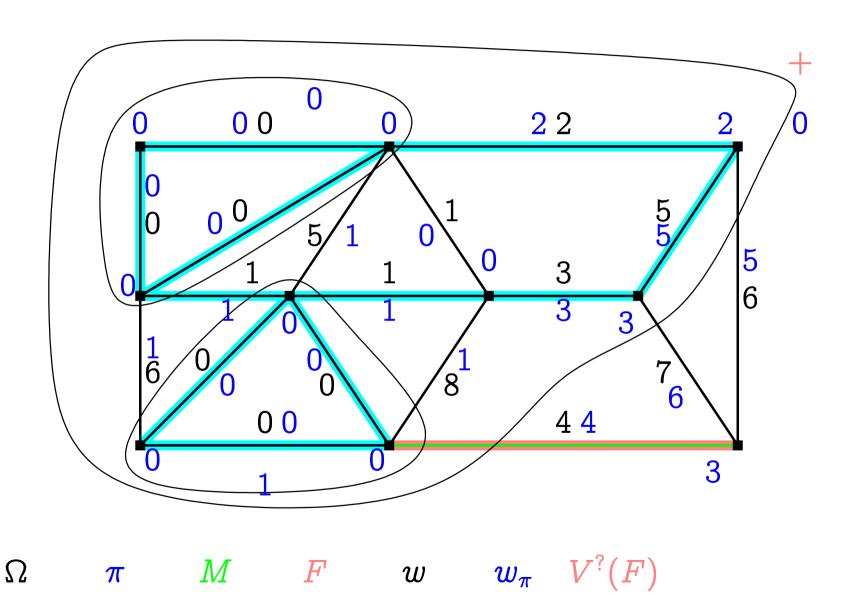
$$\Omega$$
 π M F w w_{π} $V^?(F)$

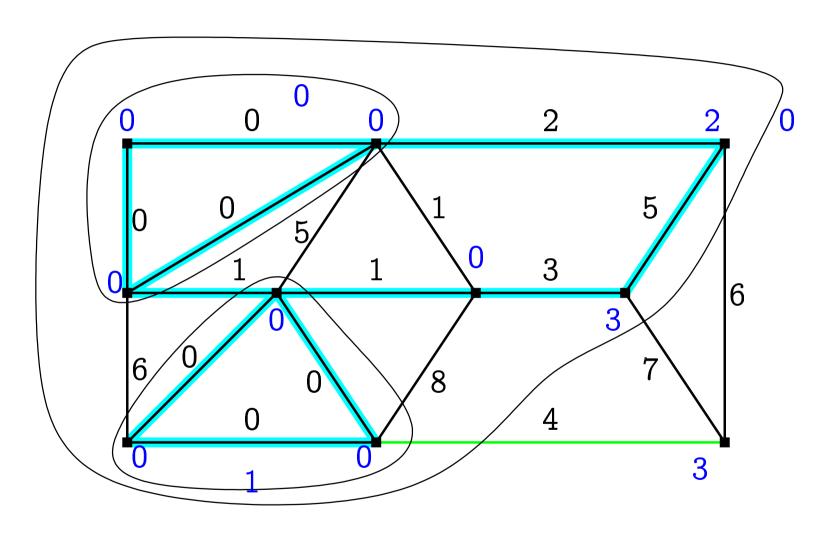


$$\Omega$$
 π M F w w_{π} $V^?(F)$

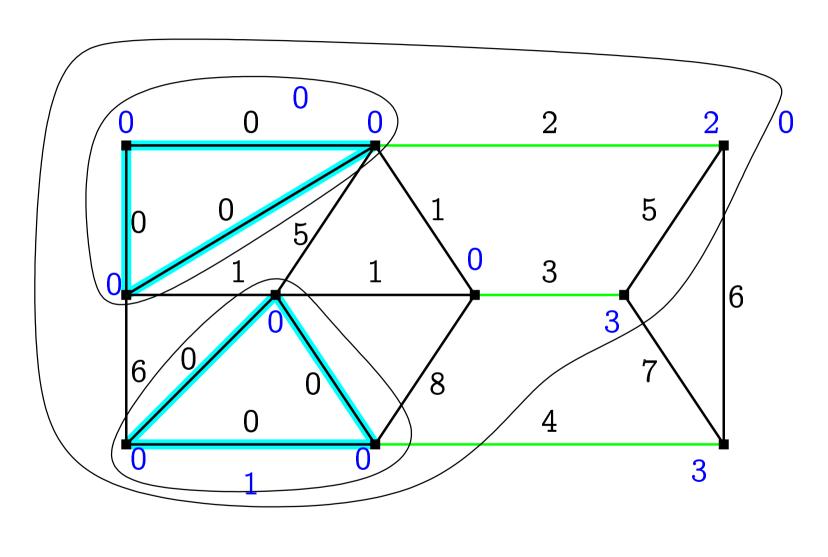








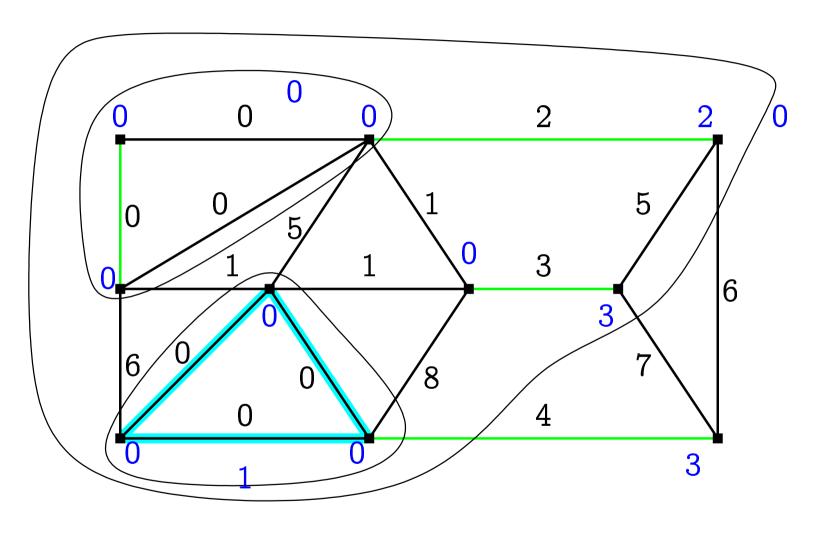
 Ω π M w



 Ω π

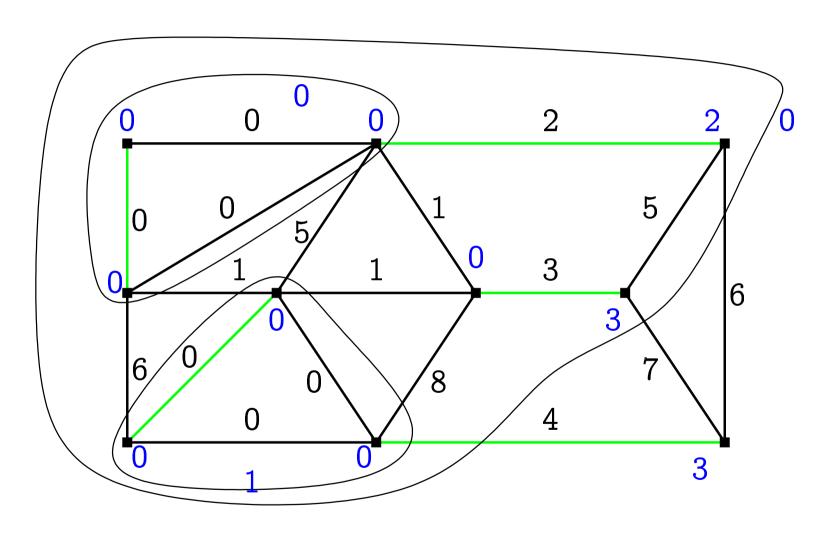
M

w



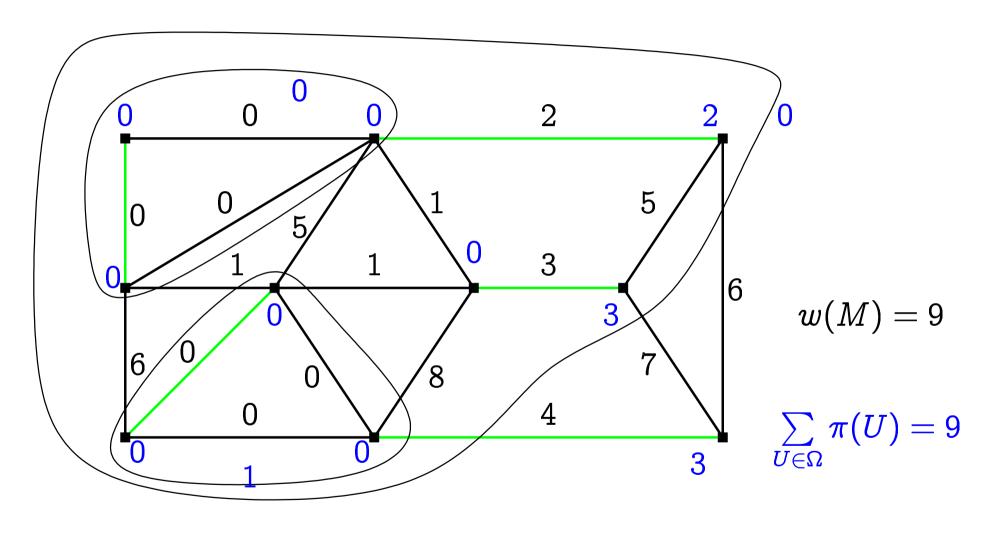
w

 Ω π M



w

 Ω π M



w

 Ω π M

Kui palju iteratsioone on?

Kui me oleme leidnud M-laieneva tee, siis $|V(G/\Omega)|-2|M|$ väheneb kahe võrra. Kui me sellist teed ei leidnud (s.t. kasvatasime metsa või tõmbasime tsükli kokku), siis see suurus ei muutunud.

Seega leidub ülimalt |V|/2 iteratsiooni, kus leitakse Mlaienev tee.

Olgu $W(F) \subseteq V$ kõigi nende tippude hulk, mis jäävad G/Ω -s mingi tipu $\in V^+(F)$ sisse. Olgu $V_0(F) = V(G/\Omega) \setminus V^+(F)$. Igal iteratsioonil, kus M-laienevat teed ei leitud, suureneb avaldis $2|W(F)| + |V_0(F)|$.

- Kui kasvatati F-i, suureneb |W(F)| vähemalt ühe võrra ning $|V_0(F)|$ väheneb ühe võrra.
- Kui tsükkel U tõmmati kokku, siis olgu x $V^-(F)$ -i kuuluvate tippude arv selles tsüklis. |W(F)| suureneb vähemalt x võrra ja $|V_0(F)|$ väheneb x võrra.
- Kui tsükkel U võeti tagasi lahti, siis olgu 2x+1 tippude arv selles tsüklis. |W(F)| suureneb vähemalt x võrra ja $|V_0(F)|$ suureneb x võrra.

Avaldise $2|W(F)| + |V_0(F)|$ maksimaalne väärtus on 2|V|. Seega on iteratsioone ülimalt $|V|^2$.