
Eulerian graphs



Graph G is a pair (V;E), where V is the set of vertiesand E is the set of edges. Besides that, we are given theinidene funtion E.Walk in the graph G is a sequenev0 e1� v1 e2� v2 e3� v3 e4� : : : vk�1 ek� vk;where v0; : : : ; vk 2 V , e1; : : : ; ek 2 E and E(ei) = fvi�1; vig.The walk is losed , if its �rst and last verties oinide.Path is a walk where every vertex ours at most one.Cyle is a losed path.



Eulerian walk in the graph G = (V;E) is a losed walkovering eah edge exatly one.Eulerian graph is a graph with a Eulerian walk.A graph that has a non-losed walk overing eah edgeexatly one is alled semi-Eulerian .

A well-known lass of puzzles: draw the �gure without rais-ing the pen from the paper and overing eah line exatlyone.
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�Original problem�:



Theorem. Let G = (V;E) be a onneted graph. Thefollowing are equivalent:(i). G is a Eulerian graph.(ii). All vertex degrees of G are even.(iii). E an be represented as a union of edge-wise non-interseting yles.



Proof (i))(ii). Let P be some Eulerian walk of G and letv 2 V .The walk P enters v some number of times and also exitsit the same number of times. Thus the number of edges ofP inident with v is even (again, loops are ounted twie).On the other hand, P is a Eulerian walk, thus the edges ofP inident with v are exatly all the edges of G inidentwith v.



Proof (ii))(iii). Indution over jEj.Base. jEj = 0. Then E is a union of 0 piees, eah one ofthem is . . . .Step. jEj > 0. Sine G is onneted, all the vertex degreesmust be positive.Aording to (ii), all the vertex degrees are � 2.Using a theorem from the previous leture, there is a yleC in G.
Theorem. If all the vertex degrees in a graph are at least 2, then thereis a yle in this graph.



Delete all the edges of C from grapg G; let the remaininggraph be G0.G0 has less edges than G and all its vertex degrees are stilleven.Let H1; : : : ; Hk be the onneted omponents of graph G0.Indution hypothesis implies that eah of them an be rep-resented as a union of edge-wise non-interseting yles.Adding the yle C to the union of these representations,we have obtained the required representation for E.



Proof (iii))(i). Let E = C1 _[C2 _[ � � � _[Cn, whereC1; : : : ; Cn are yles.If n = 1, the laim is lear. Assume n � 2.W.l.o.g assume that every yle Ci (i > 1) has a ommonvertex with some yle Cj (j < i).We will now onstrut losed walks P1; : : : ; Pn so that eahPi overs eah edge of the yles C1; : : : ; Ci exatly oneand does not over any other edges.



Let the losed walk P1 be the yle C1.Construt the walk Pi based on the walk Pi�1 as follows.� Move along the walk Pi�1 until we hit a vertex alsopresent in the yle Ci.� Follow the yle Ci starting and �nishing in vertex v.� Move along the rest of the walk Pi�1.The walk Pn is a Eulerian one in graph G. �



The proof gives an algorithm for �nding a Eulerian ylein a Eulerian graph G:� Partition E(G) into yles.� Construt one of these yles, say, C.� Move along the edges of G until we reah somevertex for the seond time.� Remove the edges of C from graph G.� Partition the edges of the onneted omponents ofG (without C) to yles.� Output these yles and the yle C.� Construt a Eulerian walk as shown in the previousslide.
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Corollary. Conneted graph G is semi-Eulerian , thegraph G has exatly two verties with odd degree.

Proof ). Let x P y be a walk in G overing eah of theedges of G exatly one.Add an edge e to G so that E(e) = fx; yg.The graph we obtain is Eulerian (x P y e� x is a Eulerianwalk), thus all the vertex degrees are even.Hene in the original graph x and y have odd degree andall the other verties have even degrees.



Proof (. Let x and y be the two verties of G having odddegree.Add an edge e to G so that E(e) = fx; yg.As a result, all the vertex degrees beome even, thus thereexists a Eulerian walk P .W.l.o.g assume that the last edge in this walk is e. Re-moving it from P we obtain the required walk. �The proof gives an algorithm for �nding suh a walk:Add an additional edge e, �nd the Eulerian walk andthen drop e from it.



Fleury's algorithm for �nding a Eulerian walk in Eule-rian graph G = (V;E):1. Pik any vertex u 2 V as the �rst one in the walk. Leti := 0 and v0 := u.2. Pik an edge e inident with vertex vi, add it to thewalk and delete it from the graph G. Let vi+1 be theother endpoint of e and let i := i+ 1.� If e is a bridge, pik it only if there is no otheralternative.3. Repeat the last step until all the edges are deleted.



Theorem. Fleury's algorithm is orret (i.e. it will alwaysrun suessfully and produe a Eulerian walk).

Proof. The algorithm produes some walk P starting fromu. At some point it stops, beause it reahes a vertex vn,that has all the inident edges deleted. Considering thevertex degrees, it is obvious that vn = u.We have to show that at that moment all the edges aredeleted.



Let Gi be the graph remaining of G after step i. ThenG0 = G and Gi+1 ontains one edge less than the graphGi. Let Hi be the onneted omponent of Gi ontainingthe vertex u.Note that the degrees of all the verties of Gi (exept for,possibly, u and vi) are even. If u = vi then also deg(u) iseven. If u 6= vi then deg(u) and deg(vi) are odd.We will show that all the remaining onneted omponentsof Gi are isolated verties.We will use indution over i. If i = 0 then G0 = G = H0,and G0 has only one onneted omponent, thus the laimholds.



Let the laim hold for Gi. Consider �rst the ase u 6= vi.In order to give the proof for Gi+1, it is enough to provethat there is at most one bridge inident with vi in thegraph Gi.� If so, then we are done, beause the onneted ompo-nents of Gi+1 are the following.� If we deleted a non-bridge, the onneted ompo-nents did not hange.� If we deleted a bridge, it was the last edge inidentwith vi. The omponent Hi is divided into two newomponents � v and Hi+1 = Hinv. The �rst one isan isolated vertex, the seond one ontains vertexu.



If at least two bridges were inident to vi then:

viu
Hi Ke w

x

� There exists an edge e inident to vi suh that theonneted omponent of Hi� e not ontaining vi doesnot ontain u either.� degHi(x) is even. Thus degK(x) is odd.� There has to exist another vertex w of K so thatdegK(w) is odd. At the same time, degK(w) = degHi(w)an this had to be even.



If u = vi, it is enough to show that there are no bridgesinident with u, i.e. Gi and Gi+1 have the same onnetedomponents.If u would have an inident bridge,

u = vi Ke w
xHi

there would again exist a vertex w with odd degree. �



Let the edges of the graph G = (V;E;E) have non-negative

weights (“lengths”).

Let the function w : E −→ R + give the lengths.

If P = � e1
— � e2

— � � � ek
— � is a walk then let w(P ) :=Pki=1w(k) be its length.

Chinese postman problem (Hiina postiljoniprobleem)

(CPP): find the closed walk of minimum length that passes

each edge at least once.

Obviously, if G is Eulerian the the solution to CPP is any

Eulerian walk.



Tasks that reduce to CPP (or its variants):� Routing postmen, garbage trucks, snowplows, etc.� Checking the transportation routes (highways, rail-

ways, power lines, etc.)� Optimizing the testing strategies of state automata

(e.g. UIs)

– A test: does the system in state A go to state B

after the action s?



Let a pseudo-Eulerian walk be a closed walk that passes

through all edges of a graph at least once.

CPP is looking for a pseudo-Eulerian walk of minimum

length.

Let P be a pseudo-Eulerian walk in the graph G. Define

the graph GP = (V;EP ;EP ) as follows:� EP = fe(i) j 1 � i � jP jeg,� EP (e(i)) = E(e),
where jP je is the number of occurrences of e in P .



Proposition. GP is an Eulerian graph for any graph G

and pseudo-Eulerian walk P .

Proof. Replace the i-th occurrence of an edge e in P withe(i). This gives an Eulerian walk in GP . �



In the other direction, let  : E −→ N . Define G =(V;E;E), as follows:� E = fe(i) j 1 � i � (e)g,� EP (e(i)) = E(e),
If (e) > 0 for all e 2 E and G is an Eulerian graph then

each Eulerian walk in G defines a pseudo-Eulerian walk

in G.

The lengths of all pseudo-Eulerian walks resulting from G

are equal.� they equal

Pe2E (e)w(e).



Proposition. In the solution to CPP, no edge occurs more

than twice.

Proof. Let P be the solution to CPP in G = (V;E;E).
Assume the opposite: 9e 2 E, such that n = jP je � 3.
Consider the graph GP . It is an Eulerian graph.

Remove e(n�1) and e(n) from GP , giving G. It is still an

Eulerian graph and e(1) 2 E(G).
For all e 2 G, G contains at least one copy of G. Hence an

Eulerian walk in G is a pseudo-Eulerian walk in G. The

cost of such a walk is w(P )� 2w(e) � w(P ). �

A generalization:. . .



Proposition. Let P be a solution to CPP in G = (V;E;E).
Let (e) = jP je � 1. Then G does not contain cycles.

Proof. Assume that the graph G contains a cycle C. Let0(e) = jP je � jCje. Then 0(e) > 0 for any e 2 E.G0 is an Eulerian graph, giving pseudo-Eulerian walks inG with the cost w(P )� w(C). �



Theorem. Let G = (V;E;E) a graph and let V � � V be

the set of vertices of odd degree in G. The set V � can be

partitioned to pairs V � = fu1; v1g _[fu2; v2g _[� � � _[fun; vng;� (let Pi be the shortest path from ui to vi)
such that an edge occurs twice in a CPP solution P for G

iff this edge belongs to one of P1; : : : ; Pn.
In other words, the edges of G (from the previous propo-

sition) are made up of P1; : : : ; Pn.



Proof. Consider this graph G.
Then degG(v) � degG(v) (mod 2) for any v 2 V , becausedegG(v) = degGP (v)� degG(v) and GP is Eulerian.

Let G0 = G and n = jV �j=2. For all i 2 f1; : : : ; ng define� let ui; vi 2 V be two vertices of odd degree in the same

connected component of Gi�1;� let Pi be a path from ui to vi in Gi�1;� let Gi be a graph obtained from Gi�1 be removing from

it the edges of Pi.



In Gi, the degrees of ui and vi are even and the parity of

degrees of other vertices did not change from Gi�1.
In Gn, all vertices have even degree.

Consider a connected component of Gn. If it is not an

isolated vertex, then it contains a cycle. The same cycle

exists in G. This contradicts the last proposition. HenceGn contains no edges.

We have partitioned the edges of G to n paths.P is the solution to CPP, hence these paths must be of

minimal length between their endpoints. �



Algorithm for solving CPP in the graph G = (V;E;E):
1. Find the pairwise distances between all vertices in V � � V .� It makes sense to use e.g. Floyd-Warshall algorithm

to find the pairwise distances between all vertices.� Find the corresponding shortest paths, too.

2. Partition V � to pairs fui; vig in such a way, that the

summary length of distances between ui and vi is as

small as possible.� This can be done in polynomial time.� We might see an algorithm in one of the following

lectures.

3. Augment G with a copy of edges on some of the short-

est paths between ui and vi. Find an Eulerian walk in

the resulting graph.



Example: Distances between vertices of odd degree:
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The pairs fb;dg and ff; gg give the minimum summary

length.



The solution to CPP is an Eulerian walk in the graph
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