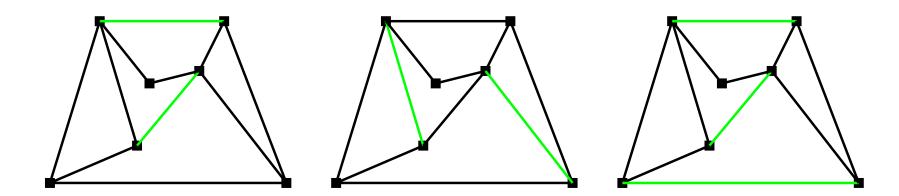
Matchings and coverings

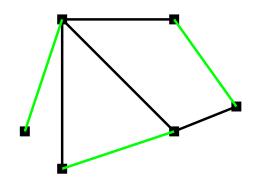
Consider a set X. We want to pair its elements.

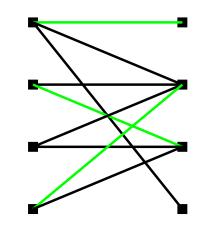
The set of potential pairs is constrained by the relation

 $P\subseteq \{\{x,y\}\mid x,y\in X,x
eq y\},$

showing which elements can be paired.

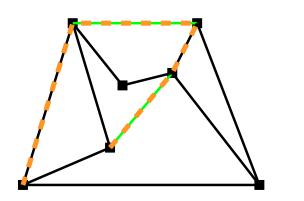

In this lecture, we assume (X, P) to be a simple graph.

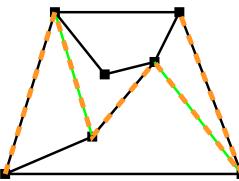

Often (X, P) is a bipartite graph. E.g., X can be the set of lecture halls and potential times of particular lectures. P can indicate which halls can accommodate which lectures.

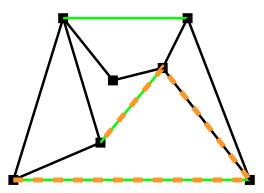

Let G = (V, E) be a simple graph. Matching (kooskõla) in the graph G is a set $M \subseteq E$ of edges such that for each $v \in V$ we have $\deg_M(v) \leq 1$.

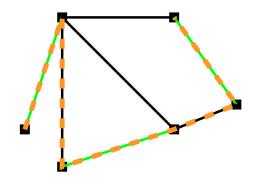
The matching is *maximal* if its cardinality is the largest possible.

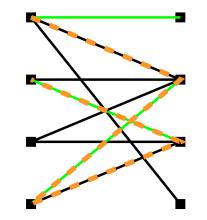
The matching M is *perfect (täielik)* if deg_M(v) = 1 holds for every $v \in V$.

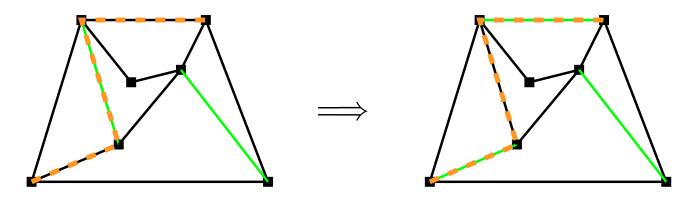




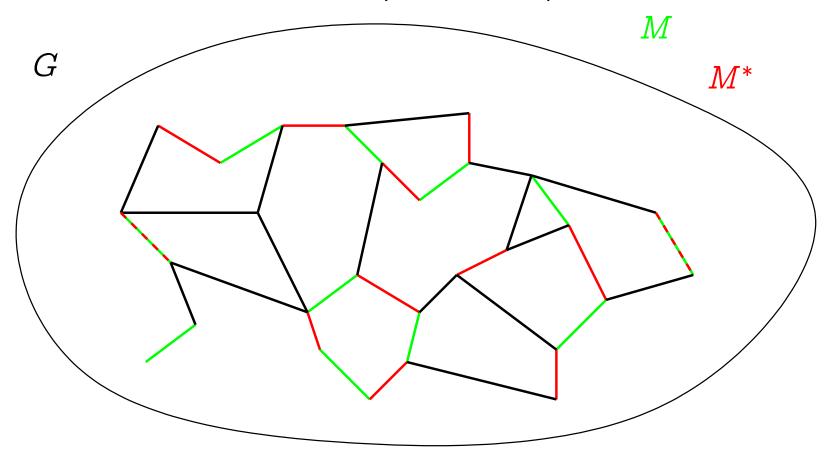

Let G = (V, E) be a simple graph, $M \subseteq E$ a matching and P some path (with different endpoints) in the graph G.


The path P is *M*-alternating (vahelduv) if its edges alternately belong to the sets M and $E \setminus M$.


The path P with endpoints x and y is M-extensible (laienev) if it is M-alternating and $\deg_M(x) = \deg_M(y) = 0$.



Theorem (Berge). Matching M in the graph G = (V, E) is maximal iff there are no M-extensible paths in G.


Proof \Rightarrow . Assume to the contrary that there exists an *M*-extensible path *P* in *G*.

Consider P as a set of edges. Let $M' = (M \setminus P) \cup (P \setminus M)$. Then |M'| = |M| + 1. It is easy to verify that M' is a matching. Let $v \in V$, we will show that $\deg_{M'}(v) \leq 1$. There are three options.

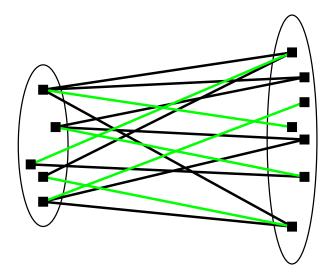
- v is not on the path P. Then $\deg_M(v) = \deg_{M'}(v)$. Indeed, let $e \in E$ be incident with v. As $e \notin P$, we have $e \in M \Leftrightarrow e \in M'$.
- v is an endvertex of P. Then $\deg_{M'}(v) = \deg_M(v)+1 = 1$.
- v is an internal vertex of P. Then deg_{M'}(v) = deg_M(v) =
 1.

Proof \Leftarrow . We will construct an *M*-extensible path. Let M^* be a maximal matching in *G*. Then $|M| < |M^*|$. Consider the graph $H = (V, M \cup M^*)$.

For each $v \in V$ we have $\deg_H(v) \leq 2$. Possible connected components of H are:

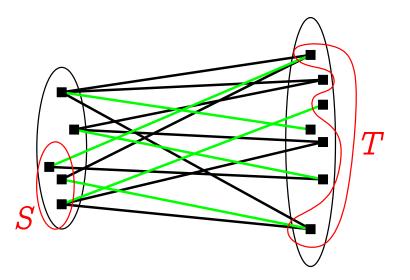
- Isolated vertices.
- Paths.
 - Closed paths, i.e. cycles.
 - * The edges of M and M^* alternately.
 - Open paths. Options:
 - * A lonely edge $e \in M \cap M^*$.
 - * The edges of M and M^* alternately. Options:
 - · Having one end in M, another end in M^* .
 - · Having both ends in M.
 - · Having both ends in M^* .

Since $|M| < |M^*|$, there must exist a connected component of H having more edges from M^* than edges from M. The only such components are open paths having both


ends in M^* .

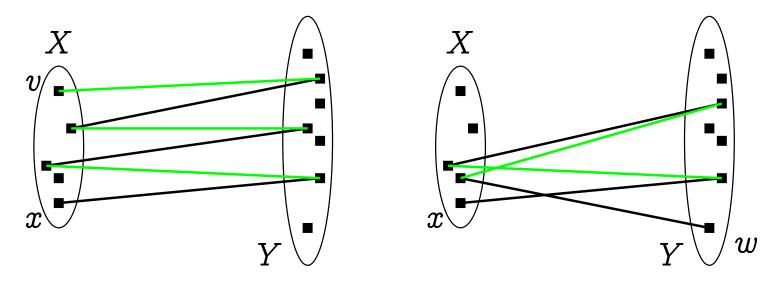
These paths are M-extensible.

Let G = (V, E) be a graph and let $S \subseteq V$. *Neighbourhood* (*naabrus*) of S is the set


 $N(S) = \{w \mid w \in V, \exists e \in E, \exists v \in S : \mathcal{E}(e) = \{v, w\}\}$.

Theorem (Hall). Let G = (V, E) be a bipartite graph with vertex set partition to X and Y. The graph G has a matching M with the property $\forall x \in X : \deg_M(x) = 1$ iff for each $S \subseteq X$ the inequality $|N(S)| \ge |S|$ holds.

Proof \Rightarrow . Let *M* be a matching with the required property. Let $S \subseteq X$. Consider the set


$$T=\{y\mid y\in Y, \exists x\in S: (x,y)\in M\}$$
 .

Then |T|=|S|, since each $x\in S$ defines a different y. We also have $T\subseteq N(S),$ consequently $|S|=|T|\leq |N(S)|.$

Proof \Leftarrow . Let M be some maximal matching. Assume to the contrary that there exists $x \in X$, such that $\deg_M(x) = 0$.

Let $S \subseteq X$ be the set of all vertices $v \in X$ such that there exists an *M*-alternating path from x to v. Note that $x \in S$. Let $T \subseteq Y$ be the set of all vertices $w \in Y$ such that there exists an *M*-alternating path from x to w.

We will show that

- I. N(S) = T;
- II. $|S \setminus \{x\}| = |T|$.

As a consequence, we will get a contradiction:

$$|N(S)| = |T| = |S ackslash \{x\}| = |S| - 1 < |S|$$
 .

Part I. Let $v \in S$ and let P be an M-alternating path from x to v. Note that the last edge on the path P belongs to M.

Let $w \in Y$ be a neighbour of vertex v. There are two options:

- 1. w is on the path P. The part of P from x to w is an M-alternating path from x to w. Thus $w \in T$.
- 2. w is not on the path P. Two options again:
 - (v, w) ∈ M. Then (v, w) is the last edge on the path P, because there are no other edges in M incident with v. Thus we are back to the 1st option.
 - $(v, w) \not\in M$. Then P together with the edge (v, w) is an M-alternating path from x to w. Thus $w \in T$.

Part II. We will construct a bijection between $S \setminus \{x\}$ and T.

Let $v \in S \setminus \{x\}$. Then there is an edge $e \in M$ incident with v (the last edge on the *M*-alternating path from x to v). We let the other endvertex w of e to correspond to v. We proved on the last slide that $w \in T$.

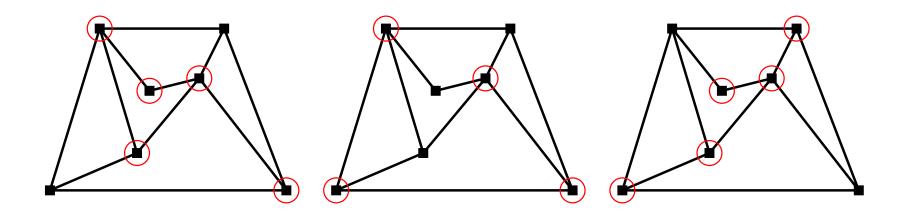
Let $w \in T$. If there was no edge $e \in M$ being incident with w, we would get an M-extensible path from x to w. Berge Theorem forbids this, thus we have such an edge e.

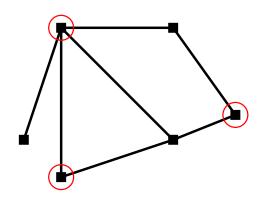
We let the other endvertex v of e to correspond to w. Obviously, $v \in S$. Also, $v \neq x$, since the other endvertex of e is not x, because $\deg_M(x) = 0$.

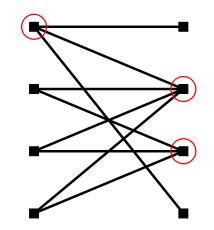
Corollary. Regular (i.e. with all vertex gedrees equal) bipartite non-null graph has a perfect matching.

Proof. Let G = (V, E) be a bipartite graph with partition X and Y. Let k > 0 be the degree of all the vertices. Since

$$|X|\cdot k = \sum_{x\in X} \deg(x) = \sum_{y\in Y} \deg(y) = |Y|\cdot k,$$

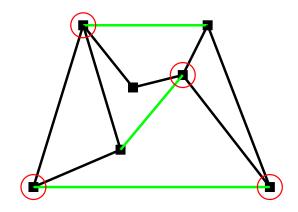

we have |X| = |Y|. Let $S \subseteq X$. Since


$$|S| \cdot k = \sum_{x \in S} \deg(x) \leq \sum_{y \in N(S)} \deg(y) = |N(S)| \cdot k,$$

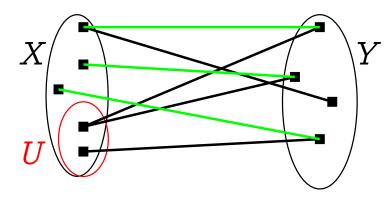

we get $|S| \leq |N(S)|$. Thus there exists a matching M such that $\deg_M(x) = 1$ for each $x \in X$. Since |X| = |Y|, we also have $\deg_M(y) = 1$ for each $y \in Y$.

Let G = (V, E) be a simple graph. Cover (kate) in graph G is the set $K \subseteq V$ of vertices such that each $e \in E$ is incident with some vertex from K.

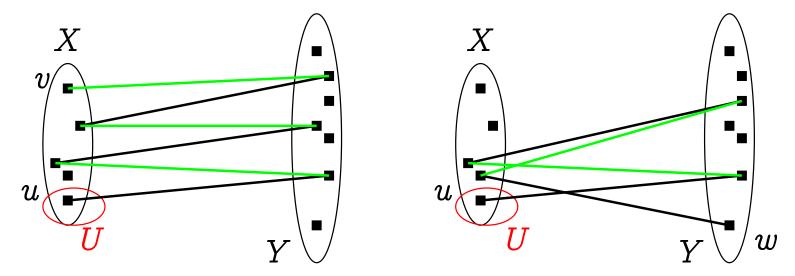
Cover is *minimal* if its cardinality is the smallest possible.



Proposition. Let G = (V, E) be a simple graph, M some of its matchings and and K some of its covers. Then $|M| \leq |K|$.

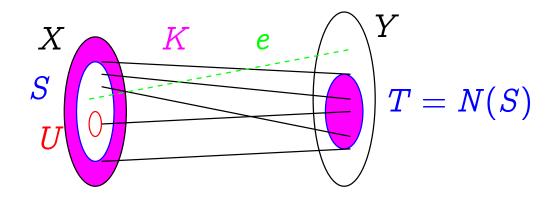

Proof. For each edge $e \in M$, there exists a vertex $v \in K$ such that e is incident with v. For different edges these vertices differ, since the edges of M can not have common endvertices.

Theorem (König). Let G = (V, E) be a bipartite graph. Then the cardinalities of maximal matchings and minimal covers are equal.

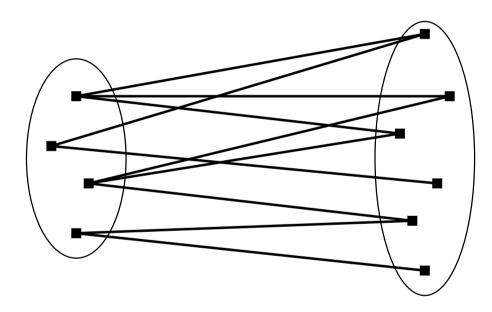

Proof. Let X and Y be the partition of G and let M be one of its maximal matchings. We will construct a cover K such that |M| = |K|.

Let $U \subseteq X$ be the set of such vertices $u \in X$ that $\deg_M(u) = 0$. Then $|M| = |X \setminus U|$.

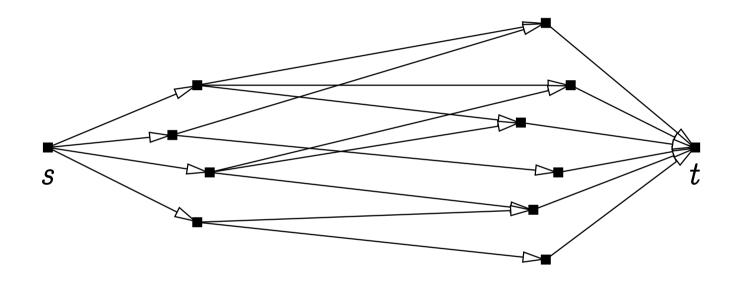
Let $S \subseteq X$ be the set of such vertices $v \in X$ that for some $u \in U$ there exists an *M*-alternating path from u to v. Then $U \subseteq S$.


Let $T \subseteq Y$ be the set of all such vertices $w \in Y$ that for some $u \in U$ there exists an *M*-alternating path from u to w.

Similarly to the proof of Hall's Theorem we can prove N(S)=T and |T|=|Sackslash U|.


Let $K = T \cup (X \setminus S)$. Then K is a cover.

Indeed, assume that there is an edge $e \in E$ that is not incident with any vertex of K. Then one endvertex of eis in S and another one in $Y \setminus T$. Contradiction with the observation N(S) = T.



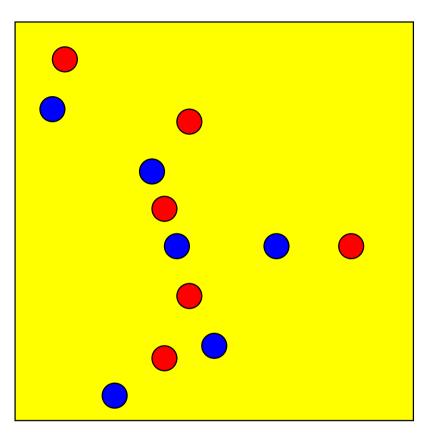
 $|K| = |T| + |X \backslash S| = |S \backslash U| + |X \backslash S| = |X \backslash U| = |M|$.

How to find maximal matchings in bipratite graphs?

find the maximal flow

the capacities of all arcs are 1

Ford-Fulkerson algorithm allows us to find the maximal flow, assigning an integer flow to each arc.


A maximal matching in the original graph is given by the edges that were assigned the flow 1.

There are problems where

- The edges of a bipartite graph have been assigned costs.
- One has to find the maximal matching having the least cost.

This exercise reduces to finding the minimum-cost maximal flow. Example: let two pictures of the same slowlymoving objects be given, taken in two different time moments.

Which two blobs correspond to the same object?

Finding the minimal cover in a bipartite graph:

- First find a maximal matching.
- Then look at our proof of König's theorem. It is constructive.