
Test one

1. Consider the graphs Rn (n � 3) with the vertex set V (Rn) = f0; 1gn and
edge set

E(Rn) = ffa; bg : vectors a and b di�er in exactly two positionsg :

Which ones of these graphs are Eulerian? Semi-Eulerian? Hamiltonian?
Semi-Hamiltonian?
Solution. Note that vectors with odd Hamming weigth (the number of
ones in the vector) are connected only to the vectors with odd weigth
and similarly for the vectors of even weigth. Thus these graphs are not
connected.

2. Prove that if n � 3 then Qn is Hamiltonian.
Solution. We can make use of Ore theorem. Take two non-neighbouring
vertices u and v in Qn. Their degrees are 2

n � n� 1, thus

deg(u) + deg(v) = 2n+1 � 2n� 2

and we need to prove the inequality

2n+1 � 2n� 2 � 2n ;

which is equivalent to
2n � 2n+ 2 :

This holds true for n = 3 (as 8 � 8) and since exponential function
increases faster than linear, this inequality also holds for larger values of
n.

3. Find jE(L(Km;n))j.
Solution. The graph L(G) has an edge for every pair of edges of G having
a common vertex. Km;n hasm vertices of degree n and n vertices of degree
m, thus the total number of edges of L(Km;n) is

m �

�
n

2

�
+ n �

�
m

2

�
=
mn

2
(m+ n� 2) :

4. Find all the bipartite simple graphs G, such that G ' G.
Solution. Note that if one of the parts of G has 3 or more vertices then G
has K3 as a subgraph and can not thus be bipartite. Hence the parts of G
have either 1 or 2 vertices and G consequently has 2, 3 or 4 vertices. On
the other hand, since G ' G, the graph Kn must have an even mumber
of edges (where n = jV (G)j). Hence, n = 4 is the only possibility and G

must have 6

2
= 3 edges. By considering two possible graphs with these

parameters we conclude that the only option is P4.



Test two

1. Find the maximal �ow and a minimal cut in the following network:
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1/5

1/6

1/15

4/15

2/15

1/2

1/3

2/5

1/6

3/10

4/15

Solution. First convert all the arc capacities to integers by multiplying
them all by 30. We obtain the following graph:
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Applying Ford-Fulkerson algorithm to this graph we �nd that it has max-
imal �ow of size 30 and a minimal cut as follows:
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Hence the maximal �ow in the original graph is 30

30
= 1 and the edges in

the minimal cut are the same as in the last graph.

2. Prove that if all the edges of a graph G have pairwise di�erent weigths,
this graph has a unique spanning tree of minimal weigth.
Solution. First note that the algorithm for �nding a minimal spanning
tree can in principle output every minimal spanning tree. Indeed, given a
minimal spanning tree T and selecting its edges in the order of increasing
weigth, we get T as an output.



The algorithm for �nding a minimal spanning tree can only branch if at a
certain step there are several edges of the same weigth. If all the edges of
a graph G have di�erent weigths, the output of the algorithm is uniquely
determined, thus there can be only one minimal spanning tree.

3. Find the number of leaves in a tree with n vertices, where all the non-
leaves have degree d.
Answer: nd�2n+2

d�1
.

Solution. Let the number of leaves be x; then the tree has n�x non-leaves.
We know that the tree has n�1 edges, hence the sum of the vertex degrees
is 2(n� 1). On the other hand, there are x vertices of degree 1 and n� x

vertices of degree d, thus we get

2(n� 1) = x � 1 + (n� x) � d

2n� 2� nd = x� x � d
nd� 2n+ 2

d� 1
= x

4. Two magicians show the following trick. One of them goes outside of
the room, the second magician takes a deck of cards and gives it to the
spectators. The spectators pick four cards out of the deck and show them
to the second magician who removes one of the four cards. The spectators
shu�e the three remaining cards, call the �rst magician back and show
the remaining cards to him. The �rst magician guesses the card removed
by his colleague. What is the greatest number of cards in the deck such
that this trick is possible?
Answer: 7.
Solution. Let D denote the set of cards in the deck and let jDj = n.
Consider a bipartite graph with the parts T and Q consisting of all the
unordered triples and quadruples of the set D, respectively, and with edges
between T 2 T and Q 2 Q i� T � Q. The second magician needs to
�encode� all the possible quadruples with unique triples. He can do so only
if the number of triples is at least as large as the number of quadruples.
The inequality jT j � jQj gives us

n(n� 1)(n� 2)

6
�

n(n� 1)(n� 2)(n� 3)

24
4 � n� 3

7 � n

and hence the deck can have at most 7 cards. To prove that the graph has
a suitable matching note that since jDj = 7, we have jT j = jQj = 35 and
that the graph is regular with the degree of every vertex being 4. Thus
this graph has a perfect matching which can be used to perform the trick.



Test three

1. Find as many automorphisms in the following graph as you can:
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(Remark. Full marks are awarded if more than 50 automorphisms are
found.)
Answer: 52.
Solution. We have 13 rotations and 13 rotations with re�ection. Besides
these, there is also an automorphist taking the outer cycle to inner and
vice versa, doubling the overall number of automorphisms.

2. Prove that r(3; 5) = 14.
(Hint. You may �nd it useful to look at the �rst problem.)
Solution. First we know that

r(3; 5) � r(2; 5) + r(3; 4) = 5 + 9 = 14 :

It remains to prove that there exists a graph on 13 nodes that has no
K3 nor O5 as induced subgraphs. A suitable graph G has a vertex set
V (G) = Z13 and edge set

E(G) = f(a; b) : a� b � 1 mod 13 _ a� b � 5 mod 13g :

Absence of induced K3 can be veri�ed directly (e.g. by noting that three
numbers, each of which is equal to either 1 or 5, can not sum up to a
multiple of 13). In order to prove absence of induced O5 note �rst that
if we select �ve elements a; b; c; d; e from Z13, there must be two of them
di�erent from each other by at most 2. Since we can not have elements
having di�erence 1, we must have two elements with di�erence exactly 2.
Mark them on the graph and mark also the vertices prohibited by them:



We see that the remaining three vertices must be chosen among four re-
maining ones, but this is impossible, since they are pairwise connected by
an edge.

3. Let G be a connected palanar graph such that the degree of each vertex
is at least 3 and that has at most 10 faces. Prove that G has at most 16
vertices.
Solution. Since each vertex has at least 3 neighbours, by double counting
we obtain the inequality m � 3

2
n. Then substituting this inequality and

the inequality f � 10 to the Euler formula, we get

10 � f = m� n+ 2 �
3

2
n� n+ 2 =

1

2
n+ 2 ;

which implies n � 16.

4. Find the edge chromatic number of the following Tietze graph:
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Answer: 4.
Solution. According to Vizing' theorem, �0(G) may be either �(G) or
�(G) + 1. Tiete graph has �(G) = 3, so the possibilities for �0(G) are
3 and 4. Trying out the possibilities to color it with 3 colors we see that
they all lead to a contradiction, so we must have �0(G) = 4.



Test four

1. Find the chromatic polynomial of the following graph:
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Solution. The chromatic polynomial of the given graph is a di�erence of
the chromatic polynomials of the following graphs:
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The �rst one of them is C6 with chromatic polynomial

(k � 1)6 + (�1)6(k � 1) = k6 � 6k5 + 15k4 � 20k3 + 15k2 � 5k

and the chromatic polynomial of the second graph may be directly com-
puted to be equal to

k(k � 1)2(k � 2)2 = k5 � 6k4 + 13k3 � 12k2 + 4k :

All in all, the required chromatic polynomial is

k6 � 7k5 + 21k4 � 33k3 + 27k2 � 9k :

2. Prove that all the simple graphs with at most 8 edges are planar.
Solution. Kuratowski theorem states that a graph is non-planar i� it has
a subgraph homeomorphic to K5 or K3;3. Note that K5 has 10 edges and
K3;3 has 9 edges. Thus a graph with at most 8 edges can have none of
these graphs as a homeomorphic subrgaphs (since turning this subrgaph
into K5 or K3;3 may only lose edges) and hence it must be planar.

3. In a simple graph G call a vertex subset D dominating, if for every node
x 2 V (G) nD there exists a node y 2 D that is connected to x. Let �(G)
denote the largest vertex degree of the graph and let �(G) denote the size
of the smallest dominating set. Prove the inequality

�(G) � jV (G)j ��(G) :

Solution. Let a be a vertex with maximal degree, and N(a) be the set
of the �(G) vertices connected to a by an edge. We claim that the set
D = V (G) nN(a) is dominating. Indeed, the only vertices not belonging
to D are the ones from N(a) and they are all connected to the vertex
a 2 D. Thus there is a dominating set of size jV (G)j � �(G), hence
�(G) � jV (G)j ��(G), proving the required claim.

4. Consider a connected non-complete simple graph with n vertices. Prove
that if the smallest dominating vertex subset of this graph has size k, then
the vertices of this graph can be colored in n � k colors so that no two



vertices of the same color are joined by an edge.
Solution. We need to prove that �(G) � n� �(G). The conditions of the
problem say that G is connected, but not a complete graph; hence it has
no clique of size �(G) + 1. If �(G) � 3, we can use Brooks theorem to
conclude that �(G) � �(G), so it is enough to prove that�(G) � n��(G).
But this is the claim of the previous problem.

If �(G) � 2, the graph G must be either a cycle or a path. The inequality
�(G) � �(G) in most of the cases still holds, the only exceptions being
P2 and cycles of odd length. Since P2 ' K2 and C3 ' K3, the only case
to consider is when G ' Cn, where n � 5 is an odd integer. We have
�(G) = n�1

2
and �(G) = 3. Thus the required inequality becomes

3 � n�
n� 1

2

which is true, since n � 5.


