Coloring edges

Let $G = (V, E)$ be a graph without loops. Its *(correct)* edge coloring with k colors is a function $\gamma : E \longrightarrow$ $\{1, \ldots, k\}$ such that

• for any two different edges $e_1, e_2 \in E$ with a common endpoint we have $\gamma(e_1)\neq \gamma(e_2).$

Stating it otherwise, all the edges incident with some vertex must be colored differently.

Example: let us consoder a set of (school) classes X and a set of teachers Y . For each class it is known how many lessons a given teacher must teach to this class.

The task is to compose a time-table for the school.

Consider a bipartite graph with vertex set $X \cup Y$ and the number of edges between $x \in X$ and $y \in Y$ showing, how many lessons the teacher y teaches to the class x .

The time-table can be represented as a correct edge coloring, where the edge colors are possible time slots for the lessons.

Let $G = (V, E)$ be a graph, γ its edge coloring and i one of the colors.

The set
$$
\{e \mid e \in E, \gamma(e) = i\}
$$
 is a matching.

Coloring the edge set can be thought of as partitioning this set into matchings.

Let $G = (V, E)$ be a graph. Assume it has a correct edge coloring with k colors, but no correct edge coloring with $k-1$ colors.

The number k is called *edge chromatic number* and de- $\operatorname{noted }\nolimits \chi'(G).$

Let $\Delta(G) = \max_{\pi \in V}$ $v\!\in\!V$ $\deg(v)$ be the maxmal vertex degree of graph G.

Obviously, $\chi'(G)\geq \Delta(G).$

An example where $\chi'(G)>\Delta(G)$: odd cycles.

Theorem. In a bipartite graph G we have $\chi'(G)=\Delta(G).$ Proof. First turn G into a $\Delta(G)$ -regular graph.

- 1. If one of the vertex set parts has less vertices than the other, then add the missing number of vertices to make the parts equal.
- 2. If some of the vertices in one part has a degree less than $\Delta(G)$, then a similar vertex must also exist in the other part. Join these two by an edge.

If the edges of the new graph can be colored using $\Delta(G)$ colors, the same holds true for the original graph as well.

Thus we can consider only k-regular bipartite graphs G .

- 1. k-regular bipartite graph G has a complete matching M_1 .
- 2. Remove the edges of M_1 . The remaining graph is a $(k-1)$ -regular bipartite graph.
- 3. This graph has a complete matching M_2 .
- 4. Remove the edges of M_2 . The remaining graph is a $(k-2)$ -regular bipartite graph.

5. etc.

This way we partition the edge set of G into k perfect matchings M_1, \ldots, M_k . These matchings give a suitable coloring. \Box

Theorem (Vizing). Let $G = (V, E)$ be a simple graph. Then $\chi'(G)\leq \Delta(G)+1.$

Proof is by induction over the number of vertices. The claim is obvious if $|V| = 1$.

We have to show the following:

Let $G = (V, E)$ be a simple graph and let $k =$ $\Delta(G) + 1$. Choose a vertex $v \in V$ in graph G and let the edges of $G\backslash v$ be colorable with k colors. Then the edges of G can also be colored with k colors.

We will prove this statement using induction over k . In fact, we will even prove a slightly stronger result.

Lemma. Let $G = (V, E)$ be a graph and γ its edge coloring. Let $E'\, \subseteq\, E$ be an edge subset being colored with some two colors. Consider the graph $G^{\prime}=(V,E^{\prime}).$

Let H be a connected component of graph $G'.$ If we exchange the colors of the edges of H , we again get a correct coloring of the edges of G

Proof is pretty straightforward.

Lemma. Let $G = (V, E)$ be a simple graph and $k \in \mathbb{N}$. Let $v \in V$ be such that

- deg(v) $\leq k$. If $w \in V$ is the neighbour of v, then $deg(w) < k$.
- Vertex v has at most one neighbour with degree k .

Let the edges of $G\backslash v$ be colorable with k colors. Then the edges of k are colorable with k colors.

Proof by induction on k .

Base. $k = 1$.

Thus deg(v) = 0 or deg(v) = 1.

If deg(v) = 0, the edges of G coincide with the edges of $G\backslash v.$

If deg(v) = 1, then let u be the neighbour of v. According to the assumption of the Lemma we have $\deg(u)\leq 1,$ thus $u - v$ is a connected component of G.

The coloring of G can be obtained from the coloring of $G\backslash v$ bu coloring the edge between u and v using the only available color.

Step. $k > 1$.

As long as $deg(v) < k$, we add another vertex u and an edge $u - v$ to the graph G.

As long as the degree of some neighbour v^{\prime} of v is less than k or $k-1,$ we add another vertex u and an edge $u \longrightarrow v'$ to the graph G .

Thus we get a graph G with equalities holding in all the inequalities in the statement of the Lemma.

The modified graph is colorable with k colors iff the original graph was.

Let γ be the coloring of the graph $G\backslash v$ with k colors.

Consider the neighbours of the (removed) vertex v . For each $i\, \in\, \{1,\ldots,k\}$ let X_i be the set of such neighbours that have no incident edges colored with color i .

One of these vertices belongs to exactly one of the sets X_i , all the others belong to exactly two of these. Thus \sum $\frac{k}{2}$ $i=1$ $|X_i| = 2k-1.$

We will be looking for γ such that there is a color i with $|X_i|=1.$

That is, the edges colored with i are incident with all the neighbours of v , except for one.

We will first show that we can choose γ so that for every $i,j \in \{1, \ldots, k\}$ we have $\big|$ $\big| |X_i| - |X_j| \big| \leq 2.$

To do that we will prove that if for some i, j we have $|X_i| - |X_j| \geq 3,$ then there is a coloring γ' such that $|X_i|$ is decreased by 1 and $\vert X_j\vert$ is increased by 1.

We will also prove that after a finite number of such steps $(\gamma \rightarrow \gamma')$ there will be no such i and $j.$

Let i and j be such that $|X_i|-|X_j|\geq 3.$ Let $w\in X_i\backslash X_j.$ I.e., the number of vertices having an incident edge of color j is larger by at least 3 than the number of vertices having an incident edge of color i.

Let $E'\in E$ be the set of all edges e such that $\gamma(e)=i$ or $\gamma(e)=j.$ Consider the graph $G'=(V,E').$ In $G^{\prime},$ all vertex degrees are \leq 2. Thus the connected components of G^{\prime} are isolated vertices, paths and cycles.

The vertex $w \in X_i \backslash X_j$ is an endpoint of some path.

Where can the other endpoint be?

Somewhere else in graph G

In a vertex of the set $X_i\backslash X_j$

In a vertex of the set $X_j\backslash X_i$

Since $|X_i|$ $>$ $|X_j|$, there exists w \in $X_i\backslash X_j$ such that the path that starts in it (being a connoected component in $G^{\prime})$ ends somewhere else than in the set $X_j\backslash X_i.$

In this path we exchange the colors i and j. We get a new coloring $\gamma'.$

 $|X_{\boldsymbol{i}}|$ and $|X_{\boldsymbol{j}}|$ will change as follows:

$\left|X_{i}\right|$ decreases by one, $\left|X_{j}\right|$ increases by one

 $|X_{\boldsymbol{i}}|$ decreases by two, $|X_{\boldsymbol{j}}|$ increases by two

To show the finiteness of the process, we need a *monovari*ant, i.e. a quantity describing a coloring γ of the graph $G\backslash v$, such that

- $\bullet\,$ On each step $(\gamma\rightarrow \gamma')$ it changes by a positive integer in a certain direction (e.g. decreases strictly).
- \bullet It has a fixed bound in this direction (e.g. 0).

A suitable quantity is \sum k $i=1$ $|X_i|^2.$

Indeed, let $n_i, n_j \in \mathbb{N}$ such that $n_i - n_j \geq 3.$ Then

$$
(n_i\!-\!1)^2\!+\!(n_j\!+\!1)^2=n_i{}^2\!+\!n_j{}^2\!-\!2(n_i\!-\!n_j)\!+\!2\leq n_i{}^2\!+\!n_j{}^2\!-\!4\\(n_i\!-\!2)^2\!+\!(n_j\!+\!2)^2=n_i{}^2\!+\!n_j{}^2\!-\!4(n_i\!-\!n_j)\!+\!8\leq n_i{}^2\!+\!n_j{}^2\!-\!4
$$

We have shown that there is a coloring γ , such that the cardinalities of X_i differ by at most 2.

Average cardinality of the sets X_i is a bit less than 2 (namely $\frac{2k-1}{k}$ k). Thus the possible sets of cardinalities of X_i are $\{0,1,2\}$ and $\{1,2,3\}.$

If we have $\{1,2,3\},$ then there must exist i such that $|X_i|=$ 1, otherwise the average cardinality is at least 2.

If we have $\{0,1,2\},$ then there must exist i such that $|X_i|=$ 1, since the sum of cardinalities of X_i is odd $(2k-1).$

W.l.o.g. assume that this i is k. Let $\{u\} = X_k$.

Let H be obtained from G by deleting

- all edges that γ colors with color k ;
- \bullet the edge between v and u .

All the deleted edges form a matching in G.

Coloring γ without the color k is a coloring of the edges of $H\backslash v$ using $(k - 1)$ colors.

The degree of v and its every neighbour (in H) has decreased by 1.

Induction hypothesis can be applied to graph H and vertex v. Thus the edges of H can be colored with $k-1$ colors. Let γ' be such a coloring.

We obtain the required coloring of G with k colors by coloring all the deleted edges with color k .