Planar graphs

Graph is *planar (tasandliline)*, if it can be drawn in the plane so that its edges do not intersect outside the vertices.

Example: K_4 is planar, Q_3 is planar, $K_{3,3}$ is not.

This definition is not formally strict, because "drawing" is not ^a mathematical term.

Next we will give one mathematical definition of drawing, but we will use the intuitive one in what follows anyway.

A curve ($k\tilde{o}ver$) in the Euclidean space \mathbb{R}^n is a function $\gamma : [a, b] \longrightarrow \mathbb{R}^n$, where $a, b \in \mathbb{R}$.

The curve γ is *continuous* (*pidev*), if for every $y \in \mathbb{R}$ we have lim $x{\rightarrow}y$ $\gamma(x)=\gamma(y).$

The *length* of the curve γ is

$$
\sup\{\sum_{i=1}^kd(\gamma(t_{i-1}),\gamma(t_i))\mid k\in\mathbb{N},a=t_0
$$

Jordan curve is a non-self-intersecting continuos curve that has ^a length (note that ^a curve is not guaranteed to have it). Let J_n be the set of all Jordan curves in the space \mathbb{R}^n .

A *drawing* of the graph $G = (V, E)$ in the space \mathbb{R}^n is a pair of mappings

$$
\iota_V: V \longrightarrow \mathbb{R}^n
$$

$$
\iota_E: E \longrightarrow J_n,
$$

such that

- ι_V and ι_E are injective.
- If $\mathcal{E}(e) = \{u, v\}$, then the endpoints of $\iota_E(e)$ are $\iota_V(u)$ and $\iota_V(v)$.
- The curves $L_E(e_i)$ intersect each other only in their endpoints.

Graph is *planar*, if it has a drawing in the space \mathbb{R}^2 .

The drawing of ^a graph partitions the portion of the plane not covered by the drawing.

These parts are called *faces (tahud)*.

The face F_3 is infinite face.

A planar graph can be drawn in such ^a way that any face is infinite.

 \Rightarrow A planar graph be drawn so that any edge is outer.

Every face has a number of *sides (küljed)*.

- The number of sides: $f_1 4$, $f_2 3$, $f_3 8$, $f_4 4$ 5.
- If some side has the same face on both sides, this side is counted twice.
- The number of all sides of all the faces is equal to the double of the number of edges in the graph.

Theorem (Euler). Let G be a connected planar graph. Let

- n the number of vertices of G ,
- m the number of edges of G ,
- f the number of faces of G .

Then $n + f - m = 2$.

Proof. Induction on the number of edges.

Base. G is a tree. Then $n = m + 1$ and $f = 1$. Thus $n + f - m = m + 1 + 1 - m = 2.$

Step. Let G be a graph having m edges and not being a tree. There exists an edge ^e such that when it is deleted, G still remains connected.

The graph $G - e$ has one edge and one face less than the graph G . According to the induction hypothesis, we have $n + (f - 1) - (m - 1) = 2$. This implies $n + f - m = 2$.

Corollary. Let G be ^a planar graph. Let

- n the number of vertices of G ,
- \bullet m the number of edges of G ,
- f the number of faces of G ,
- k the number of connected components of G .

Then $n + f - m = k + 1$.

Proof. Apply the previous theorem to every connected component of G . The infinite face is counted only once.

Corollary. If G is ^a simple planar connected graph having at least three vertices, then $m \leq 3n - 6$ (again, m is the number of edges and n is the number of vertices).

Proof. Each face of the drawing of such ^a simple graph has at least 3 sides. Every side belongs to two sides, hence

$$
2m = \sum_{F \text{ is a face}} \langle \# \text{ of } F \text{'s sides} \rangle \geq 3f \enspace .
$$

Euler's theorem gives

$$
2=n+f-m\leq n+\frac{2}{3}m-m=\frac{3n-m}{3}
$$

or $3n-m \geq 6$.

Corollary. K_5 is not planar.

Proof. In the graph K_5 , we have $n = 5$ and $m = 10$. If K_5 would be planar, then the previous corollary would imply $m < 3n - 6$ or $10 < 9$.

Corollary. If G is ^a simple planar connected graph having at least three vertices, but no cycles of length 3, then $m \leq 2n - 4$.

Proof. Each face of the drawing of such ^a simple graph has at least 4 sides. Every side belongs to two sides, hence $2m > 4f$. Euler's theorem gives

$$
2=n+f-m\leq n+\frac{1}{2}m-m=\frac{2n-m}{2}
$$

or $2n - m > 4$.

Corollary. $K_{3,3}$ is not planar.

Tõestus. In the graph $K_{3,3}$ we have $n = 6$ and $m = 9$. Evenmore, $K_{3,3}$ has no cycles of length 3. If $K_{3,3}$ would be planar, then the previous corollary would imply $m \leq$ $2n - 4$ or $9 < 8$.

Corollary. Each planar simple graph has ^a vertex of degree at most 5.

 $\operatorname{\mathsf{Proof.}}$ Let G be a connected component of such a graph. Assume to the contrary that all the vertices of G have $\mathrm{degree}\geq6.$

Since every edge is incident to two vertices, we have 6 $n\le$ $2m$ or $m \geq 3n$. At the same time we have proven that $m \leq 3n-6.$ A contradiction. The operation of *sudividing (poolitamine)* an edge $(G \Longrightarrow$ G' :

The edge e is replaced by a the vertex w and edges e' , e'' .

Graphs G_1 and G_2 are homeomorphic (homöomorfsed), if there exists a graph G such that G_1 and G_2 can be obtained from G by subdividing the edges.

Theorem (Kuratowski). ^A graph is planar iff it has no subgraphs homeomorphic to K_{5} or $K_{3,3}.$

Stating it otherwise, graph G is not planar iff it "contains" K_5 or $K_{3,3}$ in the following way:

- $\bullet\,$ The vertices of K_5 or $K_{3,3}$ are some vertices of $G.$
- $\bullet~$ The edges of K_5 or $K_{3,3}$ are some simple paths of G -s.
- These paths do not intersect anywhere but in the vertices.

Proof. Assume to the contrary that there exist nonplanar graphs that do not contain K_{5} nor $K_{3,3}.$ Let G be such ^a graph and let its edge set cardinality be the smallest possible.

The following holds true for G :

- \bullet G is a simple graph.
- \bullet G is connected.
- \bullet G has no bridges.
- \bullet G has no cut-vertices.

Let e be one of the edges of the graph G and let $\mathcal{E}(e) =$ $\{u,v\}.$ Let $F=G-\{e\}.$ Then F is planar, since it does not contain K_5 nor $K_{3,3}.$

Claim 1. The graph F has no vertex w , such that F would be of the form

i.e. $F \setminus w$ would have u and v in different connected components.

Assume to the contrary that F has the form

Let F^\prime be the graph obtained from F by adding two edges:

Let B_1 and B_2 be the following graphs:

Graphs B_1 and B_2 have less edges than G , thus they satisfy the claim of the theorem

There are two options:

1st option. B_1 (or B_2) contains either K_5 or $K_{3,3}$. This embedding must use the edge between u and w . Then G contains either K_5 or $K_{3,3}$:

The new edge can be replaced by ^a simple path outside B_1 .

2nd option. B_1 and B_2 are planar.

Then G is planar as well: draw B_1 and B_2 so that the new edges would be outer:

Claim 1 is proven.

 ${\rm Claim}$ 2. There exists a cycle containing both u and $v.$ First make some observations about u (and v).

- $\bullet\;\;u\;\;{\rm is\; not\; a\; cut-vertex\; of}\;F\;({\rm as}\;F\!\setminus\!u=G\!\setminus\!u,\;{\rm it\; would}$ then also be a cut-vertex of $G)$
- \bullet u and v are not neighbours in F (otherwise there would be a multiple edge between them in $G)$
- \bullet u has at least two neighbours in F (if it had only one, removing it would cause u and v ending up in different connected components)
- \bullet Consequently, the edges incident with u can not be bridges

Let $U \subset V(F) \backslash \{u\}$ be the set of all vertices that are on some cycle together with u .

Assume to the contrary that $v \not\in U$.

First we prove that $U \neq \emptyset$.

Let u' be a neighbour of u in F. Since $\{u, u'\}$ is not a bridge, there exists a path $u \leadsto u'$ in $F \setminus \{u, u'\}.$ This path together with $\{u, u'\}$ is a cycle proving that $u' \in U$. Let $w \in U$ be the vertex having the minimal distance from ^v. Let

- P_0 the shortest simple path from w to v;
- P_1 , P_2 non-intersecting simple paths from u to w. Due to the choice of w , P_0 does not intersect P_1 and P_2 .

- Let P' be a simple path $u \leadsto v$ not passing through w (it exists due to Claim 1, since otherwise removing w would disconnect u and v);
- Let w' be the first (starting from u) vertex on the path P' that is also on the path P_0 ;
- Let u' be the last (starting from u) vertex on the path P' before w' that is also on the path P_1 or P_2 . W.l.o.g. assume that it is on P_1 .

 $u\ \stackrel{P_2}{\leadsto}\ u\ \stackrel{P_0}{\leadsto}\ w'\ \stackrel{P'}{\leadsto}\ u'\ \stackrel{P_1}{\leadsto}\ u\ \text{ is a cycle, thus }\ w'\ \in\ U\ \text{ and }$ $d(w', v) < d(w, v)$. Contradiction with the choice of w.

Let F be drawn in the plane and let C be a cycle containing u and v . Choose the drawing and the cycle so that the number of faces remaining inside C is as large as possible.

Besides the cycle C the graph F has more *components*. Some of them are inner, some outer.

Let x and y be two vertices on C . We say that some inner/outer component separates x and y if it is on the way when drawing a line from x to y inside/outside C .

All the outer components seprate u and v and are joined with C by exactly two edges:

Otherwise we would get another drawing / cycle containing more faces.

Claim 3. There exist an inner component and an outer component (being joined with C at vertices u' and v') so that the inner component separates both $u,\ v$ and $u',\ v'$:

Proof of the claim: Let I be an inner component separating u and v such that it does not separate any two vertices where some outer component is joined with C :

If the Claim 3 would not hold, we could take out all the inner components separating u and v . Then we can put back the edge e . Thus G would be planar; a contradiction. Thus the Claim 3 holds.

Let x, y be the vertices that I has separating u and v. Let x', y' be the vertices that I has separating u' and v' .

They can be arranged in several ways. We will consider them and find K_5 or $K_{3,3}$ from G in all cases.

1st way. x', y' differ from u and v and I separates u and v due to x', y' as well.

2nd way x', y' differ from u and v and I does not separate u and v due to x', y' .

We can assume that x', y' are on the same side as x . 1st option. y is between u and v' .

2nd way. x', y' differ from u and v and I does not separate u and v due to x', y' .

We can assume that x', y' are on the same side as x .

2nd option. y is between v' and v .

2nd way. x', y' differ from u and v and I does not separate u and v due to x', y' .

We can assume that x', y' are on the same side as x .

3rd option. $y = v'$.

3rd way. $x' = u$ and $y' \neq v$. Assume that y' is between u' and v .

1st option. y is between u and v' .

3rd way. $x' = u$ and $y' \neq v$. Assume that y' is between u' and v .

2nd option. y is between v' and v or $y = v'$.

4th way. $x' = u$ and $y' = v$.

If x and y are not u' and v' , then we exchange the notations $(u \leftrightarrow u', v \leftrightarrow v', x \leftrightarrow x', y \leftrightarrow y', e \leftrightarrow$ the path outside C). We are back to one of the three first ways.

We are left with the case $x'=u,\ y'=v,\ x=u',\ y=v'.$ The vertices neighbouring u,v,u',v' within the inner component are connected somehow within the component.

The first possible connection:

The second possible connection:

The theorem is proven.

 $\text{Edge contraction } (kokkut\~{o}mbamine) \ (G \Longrightarrow G') \colon$

When edges are contracted, ^a planar graph remains planar.

Theorem (Wagner). ^A graph is planar iff it has no subrgaphs contractible to K_5 or $K_{3,3}.$

Proof. If G is planar, then all its subrgaphs are planar. If we contract edges in ^a planar subgraph, we still get ^a planar graph, thus we can't get K_{5} or $K_{3,3}.$

If G is not planar then there exists $H \leq G$ such that H is homeomorphic to K_{5} or $K_{3,3}.$ Contracting the edges we can reverse the effect of subdividivision.