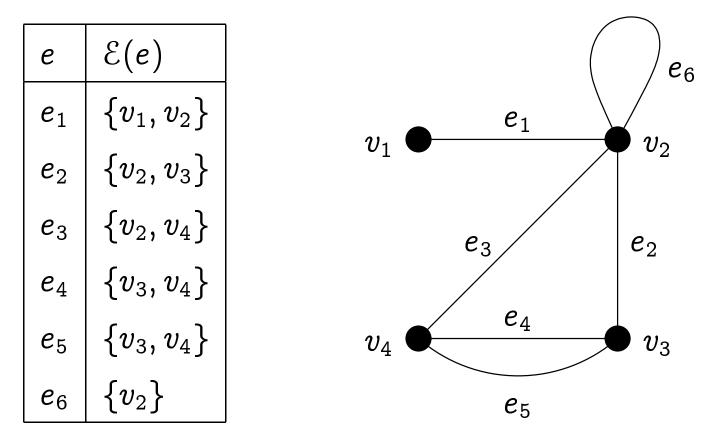
(Undirected) graph G can be defined as consisting of

- vertex set V,
- edge set E,
- incidence function E : E → P(V), so that for all e ∈ E, the set E(e) of endpoints of e has either 1 or 2 elements.

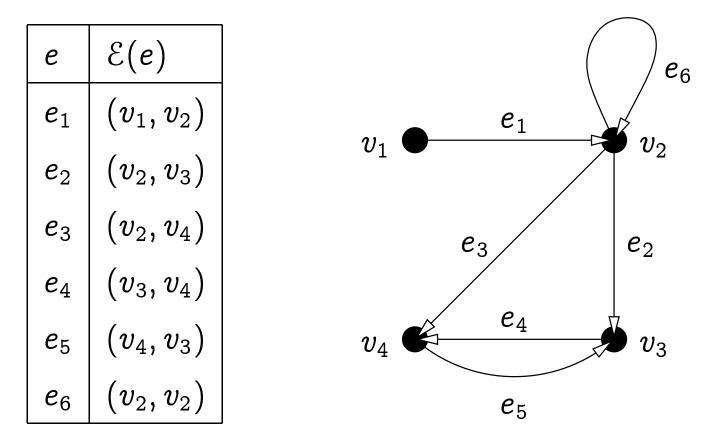
In this course, we assume that V and E are finite and $V \neq \emptyset$.

Example: let $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ and



A graph may be <u>illustrated</u> using a figure. Formally, graph is the triple (V, E, \mathcal{E}) . *Directed graph* consists of vertex set V, arc set E and incidence function $\mathcal{E}: E \longrightarrow V \times V$.

Example: let $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4, e_5, e_6\}$ and



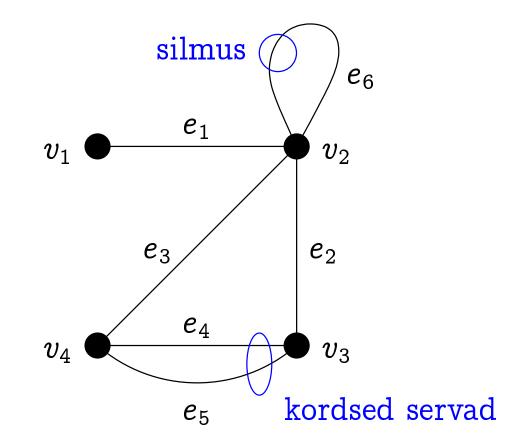
Let $G = (V, E, \mathcal{E})$ be a graph.

- If $v \in \mathcal{E}(e)$, we say that v and e are *incident*.
- It there exists e such that $\mathcal{E}(e) = \{v_1, v_2\}$ then v_1 and v_2 are *neighbours*.
- If *E*(*e*) = {*v*₁, *v*₂} then *v*₁ and *v*₂ are *endpoints* of the edge *e*. We also denote *v*₁ ^{*e*}/_− *v*₂.

Let $G = (V, E, \mathcal{E})$ be a directed graph.

If \$\mathcal{E}(e) = (v_1, v_2)\$ then \$v_1\$ and \$v_2\$ are called *initial ver-*tex and terminal vertex of the arc \$e\$, respectively.

 $e \in E$ is a *multiple edge* if there exist $e' \in E \setminus \{e\}$ so that $\mathcal{E}(e) = \mathcal{E}(e')$. $e \in E$ is a *loop* if $|\mathcal{E}(e)| = 1$.



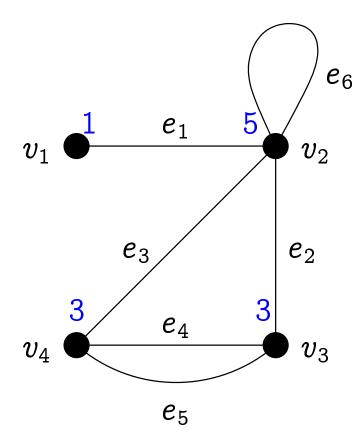
In a directed simple graph we can take $E \subseteq V \times V$.

Example: let $V = \{v_1, v_2, v_3, v_4\}, E = \{e_1, e_2, e_3, e_4\}$ and			
e	E(e)		
e_1	(v_1,v_2)		
e_2	(v_2,v_3)		
<i>e</i> ₃	(v_2,v_4)		
e_4	(v_3,v_4)		

Here we can take $E = \{(v_1, v_2), (v_2, v_3), (v_2, v_4), (v_3, v_4)\}.$

Degree $\deg(v)$ of the vertex $v \in V$ is the number of edges incident with it (where the loops are counted twice).

 $\deg(v) = |\{e \in E \,|\, v \in \mathcal{E}(e)\}| + |\{e \in E \,|\, \mathcal{E}(e) = \{v\}\}|$



Theorem In a simple graph, there is an even number of verices having odd degree.

Proof. Let's count the total number of endpoints of all the edges in the simple graph G = (V, E).

- On one hand, we get $2 \cdot |E|$.
- On the other hand, we get $\sum_{v \in V} \deg(v)$.

Since these quantities are equal, the sum of all vertex degrees is an even number. Thus we must have an even number of odd terms in the sum. \Box

The same theorem holds if we allow loops and multiple edges.

In a directed graph (V, E, \mathcal{E}) we have two kinds of degrees for a vertex v:

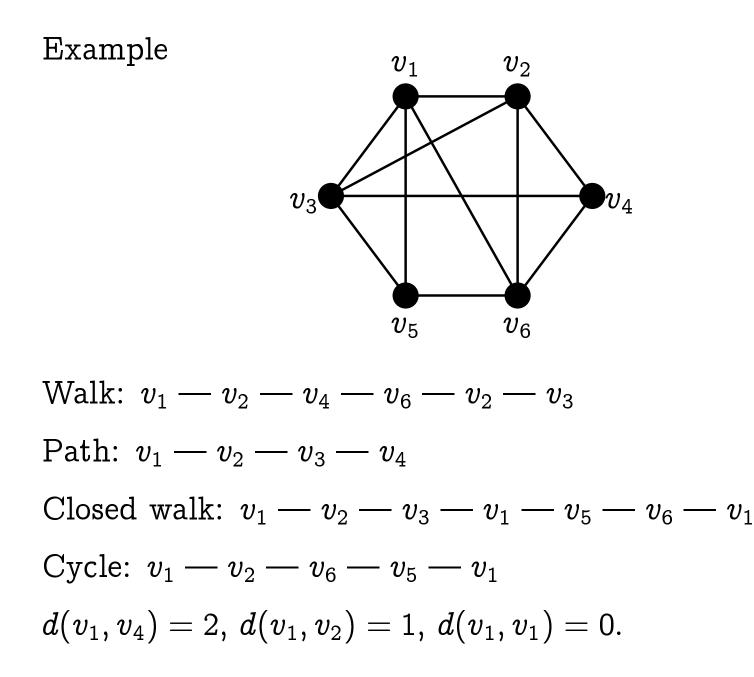
- *indegree* $\overrightarrow{\deg}(v)$ the number of arcs coming to the vertex v (i.e. the number of arcs having v as a terminal vertex); and
- outdegree deg(v) the number of arcs going from the vertex v (i.e. the number of arcs having v as a initial vertex).

Again we can prove:
$$\sum_{v \in V} \overrightarrow{\deg}(v) = \sum_{v \in V} \overleftarrow{\deg}(v).$$

• A *walk* (from vertex x to vertex y) is the sequence

$$P: x = v_0 \stackrel{e_1}{-} v_1 \stackrel{e_2}{-} v_2 \stackrel{e_3}{-} v_3 \stackrel{e_4}{-} \dots v_{k-1} \stackrel{e_k}{-} v_k = y$$

- k is the length of the walk P, we also denote it as |P|.
- If P is a walk from x to y, we write $x \stackrel{P}{\rightsquigarrow} y$.
- A walk, having all the vertices different (except for possibly x_0 and x_k), is called a *path*.
- A walk with $v_0 = v_k$ is called a *closed walk*.
- A closed path is called a *cycle*.
- Graph is *connected* if there is a walk between any two of its vertices.
- Distance d(u, v) between the vertices $u, v \in V$ is defined as the length of the shortest path between them.



Theorem If all the vertex degrees in a graph are at least 2, then there is a cycle in this graph.

Proof. Loop is a cycle. Multiple edges form a cycle.

Let G = (V, E) be a simple graph. Take $v_1 \in V$. There exists $v_2 \in V$ such that $v_1 - v_2$. There exists $v_3 \in V$ such that $v_1 - v_2 - v_3$ is a path.

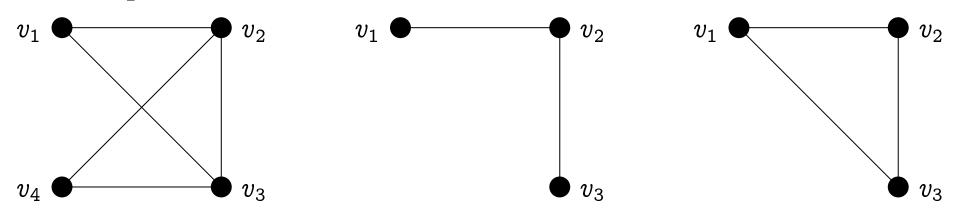
Let us have a path $v_1 - v_2 - \cdots - v_k$. There is a $v_{k+1} \in V$ so that $v_{k+1} \neq v_{k-1}$ and $v_k - v_{k+1}$.

If $v_{k+1} = v_i$ for some $i \in \{1, \ldots, k-2\}$ we have a cycle.

If not, we have a longer path. $v_1 - v_2 - \cdots - v_k - v_{k+1}$. The length of this path is upper bounded by |V| G' = (V', E') is a *subgraph* of graph G = (V, E) if $V' \subseteq V$, $E' \subseteq E$ and for every $e \in E'$ we have $\mathcal{E}(e) \subseteq V'$. We denote $G' \leq G$.

Subgraph (V', E') is said to be *induced* (by the set V'), if the set E' is the largest possible, i.e. for every $e \in E$ we have $\mathcal{E}(e) \subseteq V' \Rightarrow e \in E'$.

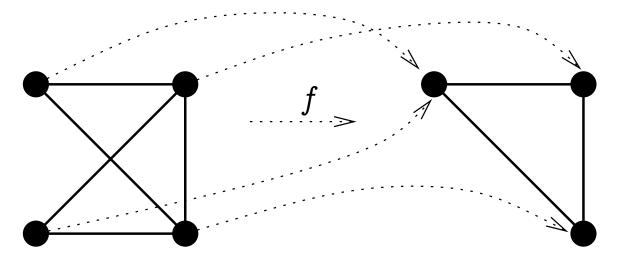
Example:



The maximal connected subraphs of a graph G are called its *connected compnents*. More notions:

- An edge of the graph is called a *bridge*, if its removal increases the number of connected components.
- A vertex of the graph is called a *cut-vetrex*, if its removal increases the number of connected components.

Homomorphism from the graph $G_1 = (V_1, E_1)$ to the graph $G_2 = (V_2, E_2)$ is a mapping $f : V_1 \longrightarrow V_2$ such that the vertices $x, y \in V_1$ are neighbours iff the vertices $f(x), f(y) \in V_2$ are neighbours.



Homomorphism f is a monomorphism if it is one-to-one. Homomorphism f is an *isomorphism*, if it is bijective. Graphs G_1 and G_2 are *isomorphic* (denoted as $G_1 \cong G_2$) if there is an isomorphism between them. • Null graph is a graph without edges. Null graph having n vertices is denoted as O_n or N_n .

• Complete graph is a graph having exactly one edge between each pair of vertices. Complete graph having n vertices is denoted as K_n .

Proposition. The graph K_n has $\frac{n(n-1)}{2}$ edges.

• The graph G = (V, E) is called *bipartite* if V can be partitioned into two subsets V_1 and V_2 (i.e. $V_1 \cup V_2 = V$ and $V_1 \cap V_2 = \emptyset$) so that no edge has its endpoints in the same subset V_i . • A bipartite graph with bipartition V_1 and V_2 is *complete bipartite* if between each $v_1 \in V_1$ and $v_2 \in V_2$ there is an edge. If $|V_1| = m$ and $|V_2| = n$, we denote this graph $K_{m,n}$.

Proposition. Graph $K_{m,n}$ has mn edges.

Theorem A graph is bipartite \Leftrightarrow all its cycles have even length.

Proof \Rightarrow . On a cycle, we must have vertices from the sets V_1 and V_2 alternating.

Proof \Leftarrow . Consider one connected component of G = (V, E) (other components are handled similarly).

Colour the vertices of the graph G black and white.

Select a vertex $v_0 \in V$ and color it white.

Let u be a coloured vertex having uncoloured neighbours and let v be one of those. Colour v in a colour opposite to u's. Denote $v \xrightarrow{c} u$.

Repeat this procedure until we get two neighbours x and y coloured the same or until we run out of vertices.

we have an odd cycle $x - \cdots - v' - \cdots - y - x$.

If we run out of the vertices, we have constructed a bipartition for this component. \Box