
Trees



A graph that has no yles is alled a forest .A forest with one onneted omponent is aleld a tree .

A tree vertex with degree 1 is alled a leaf .Proposition. All trees are bipartite.
Proof. Start dividing the verties alternatively into twosets starting from some vertex and moving along the edges.We an not get a ontradition, sine there are no yles.�



Proposition. Let G be a graph with n verties, m edgesand k onneted omponents. Then n� k � m.

Proof. Indution over m.If m = 0, then eah vertex of G is a separate onnetedomponent, i.e. k = n. The inequality holds.Let m > 0. Removing an edge from graph G, we obtain agraph with m� 1 edges. There are two possibilities:� The number of onneted omponents did not inrease.Indution hypothesis gives n�k � m�1. Thus n�k �m as well.� The number of onneted omponents inreased byone. Indution hypothesis gives n � (k + 1) � m� 1.Thus we also have n� k � m. �



Theorem. Let T = (V;E) be a graph with n verties.Any two of the following laims imply the third.(i). T is onneted.(ii). T has no yles.(iii). T has n� 1 edges.This theorem gives two alternative de�nitions of a tree.



Proof.(i) & (ii) ) (iii). Indution over n.If T has one vertex, then all the edges of T are loops. Butloops are yles, whih are prohibited by (ii). Thus T musthave 0 = 1� 1 edges.Let T have n verties.T has no yles =) T has a vertex v with degree 0 or 1.Theorem. Graph with all vertex degrees � 2 has a yle.T is onneted =) the defree of v is not 0.The subgraph T 0 indued by V nfvg is onneted and hasno loops, hene by the indution hypothesis it has n � 2edges.It remains to note that T has one more edge than T 0.



(ii) & (iii) ) (i). Assume that T is not onneted.Let T1; : : : ; Tk be the onneted omponents of graph T .They are all onneted and yle-free, thus aording tothe proof (i) & (ii) ) (iii) the number of edges is one lessthan the number of verties in all of them.Alltogether, graph T has n � k edges. Sine T has n � 1edges by (iii), we must have k = 1, hene T is onneted.(i) & (iii) ) (ii). Assume T has a yle. Removing oneedge form the yle, we get a onneted graph with n ver-ties and n � 2 edges, ontradition with the propositionproven earlier. �



Intermezzo: mathematial indution



Theorem. Graph T is a tree i� it is onneted and all ofits edges are bridges.
Proof. ) Let T have n verties and n� 1 edges. Consideran edge. If we remove it, we are left with a graph havingn verties and n � 2 edges, thus it an not be onnetedaording to the �rst proposition. Thus this edge was abridge.( If T had a yle, then all of the edges of this ylewould be non-bridges. Thus T an not have yles and,being onneted, it is a tree. �



Teoreem. Let T be a graph with n verties. The followinglaims are equivalent.1. T is a tree.2. Between any two verties of T there is exatly onepath.3. T has no yles, but adding an edge between any twoverties reates a yle.
Proof. 1 ) 2. Between any two verties there is at leastone path � otherwise T would not be onneted. If therewere two di�erent paths between two verties, we wouldget a yle and T would not be a tree.



2 ) 3. T has no yles, sine otherwise we would gettwo di�erent paths bewteen any two verties on the yle.Adding a new edge e between the verties u and v, weobtain a yle u v e� u.3) 1. Suppose T is not onneted. When adding an edgebetween the verties in di�erent onneted omponents weget no yles, a ontradition with the assumption. �



Spanning tree (aluspuu) of the onneted graph G =(V;E) is a suh a subgraph T of G that their vertex setsoinide.For a non-onneted graph we an de�ne the spanningforest (alusmets) whih is the union of the spanning treesof ots onneted omponents.



Let G = (V;E) be a graph with n verties and let us havea weight w(e) de�ned for eah of its edges e 2 E.If G0 = (V 0; E 0) is a subgraph of G, then de�ne w(G0) =Pe2E0 w(e).Algorithm (for �nding the minimal weight spanningtree of G).Selet the edges e1; : : : ; en�1 so that� ei di�ers from the edges e1; : : : ; ei�1;� ei does not form a yle together with e1; : : : ; ei�1;� ei has the minimal weight among the edges satisfyingthe two onditions above.Output T = (V; fe1; : : : ; en�1g).
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Theorem. The presented algorithm is orret.

Proof. T is a (spanning) tree � it has no yles, but doeshave n verties and n� 1 edges.Assume that w(T ) is not minimal possible. Let T 0 be someminimal spanning tree of G. Let T 0 be suh that is has themaximal possible number of edges in ommon with T .Let k 2 f1; : : : ; n� 1g be the least number suh that ek 62E(T 0).Let S = T 0 [ fekg. The graph S has a yle C.Sine T and T 0 have no yles, we must have ek 2 C andthere exists an edge e 2 E(T 0)nE(T ) suh that e 2 C.The graph T 00 = Snfeg is onneted and has n � 1 edges,i.e. it is a spanning tree.



Edge e� is di�erent from e1; : : : ; ek�1,� does not form a yle together with e1; : : : ; ek�1 (sinee1; : : : ; ek�1 2 E(T 0)).The edge ek has minimal weight among the edges suh that� are di�erent from e1; : : : ; ek�1,� do not form a yle together with e1; : : : ; ek�1.Thus w(ek) � w(e).We obtain w(T 00) = w(T 0)�w(e) +w(ek) � w(T 0), i.e. T 00is a minimal weight spanning tree.The tree T 00 has more edges in ommon with T than T 0does. A ontradition with the hoie of T 0. �


