Networks and flows Ford-Fulkerson algorithm

Let G = (V, E) be a directed graph. For vertex $v \in V$ we can define its $\underbrace{indegree}_{\text{(v\"aljundaste)}} \xleftarrow{\text{deg}(v)}_{\text{deg}(v)}$ and $\underbrace{outdegree}_{\text{(v\"aljundaste)}} \xleftarrow{\text{deg}(v)}$.

If $\overrightarrow{\deg}(v) = 0$ or $\overrightarrow{\deg}(v) = 0$, the vertex v is called source (lähe) or sink (suue) of graph G, respectively.

Capacity of graph G is a function $\psi: E \longrightarrow \mathbb{R}_+$.

The quantities

$$\overrightarrow{\deg_{\psi}}(v) = \sum_{e \in E \ \mathcal{E}(e) = (u,v)} \psi(e) \ ext{and} \ \ \overrightarrow{\deg_{\psi}}(v) = \sum_{e \in E \ \mathcal{E}(e) = (v,u)} \psi(e)$$

are called ψ -indegree and ψ -outdegree of vertex $v \in V$, respectively.

Network ($v\tilde{o}rk$) is a pair (G, ψ) where G is a directed graph and ψ its capacity.

Proposition. The sums of all ψ -indegrees and ψ -outdegrees of graph G are equal.

Proof.

$$egin{aligned} \sum_{v \in V} \overrightarrow{\deg_{\psi}}(v) &= \sum_{v \in V} \sum_{\substack{e \in E \ \mathcal{E}(e) = (u,v)}} \psi(e) = \sum_{e \in E} \psi(e) = \ &\sum_{v \in V} \sum_{\substack{e \in E \ \mathcal{E}(e) = (v,u)}} \psi(e) = \sum_{v \in V} \overleftarrow{\deg_{\psi}}(v) \enspace . \end{aligned}$$

Let (G, ψ) be a network. We assume that G has exactly one source s and exactly one sink t.

Flow (voog) on the network (G, ψ) is a function $\varphi : E \longrightarrow \mathbb{R}_+$, such that

- $\varphi(e) \leq \psi(e)$ for every $e \in E$.
- $ullet \ \overrightarrow{\deg_{arphi}}(v) = \overleftarrow{\deg_{arphi}}(v) \ ext{for every} \ v \in V ackslash \{s,t\}.$

The previous proposition implies $\overline{\deg_{\varphi}}(s) = \overline{\deg_{\varphi}}(t)$. This quantity is called *value* (*väärtus*) of the flow φ and denoted $|\varphi|$.

The flow is maximal if its value is the largest possible.

We assume that G = (V, E) has no loops nor multiple directed arcs, i.e. $E \subseteq V \times V$.

Proposition. Consider a network (G, ψ) with G = (V, E). Let $V = V_s \cup V_t$, such that $s \in V_s$ and $t \in V_t$. Let

$$\Phi(V_s,V_t) = \sum_{e \in E \cap (V_s imes V_t)} arphi(e) - \sum_{e \in E \cap (V_t imes V_s)} arphi(e) \; .$$

Then $\Phi(V_s, V_t)$ is equal to the value of φ .

Proof. Induction over $|V_s|$.

Base. If $|V_s| = 1$ then $V_s = \{s\}$. The set $V_s \times V_t$ contains all the arcs originating from s and $V_t \times V_s = \emptyset$.

Step. Let the claim hold for some sets V_s and V_t . Let $x \in V_t \setminus \{t\}, \ V_s' = V_s \cup \{x\}$ and $V_t' = V_t \setminus \{x\}$. It is enough to prove $\Phi(V_s, V_t) = \Phi(V_s', V_t')$.

$$\Phi(V_s,V_t)$$
:

$$\Phi(V_s',V_t')$$
:

V imes V	V_s	x	V_t'
$\overline{V_s}$		$+\varphi$	$+\varphi$
x	-arphi		
V_t'	-arphi		

V imes V	V_s	\boldsymbol{x}	V_t'
V_s			$+\varphi$
x			$+\varphi$
V_t'	-arphi	-arphi	

$$\Phi(V_s,V_t) - \Phi(V_s',V_t') =$$

V imes V	7	V_s	x	V_t'
$\overline{}$	<i>T</i>		$+\varphi$	
	$x \mid$	-arphi		-arphi
\overline{V}	t'		$+\varphi$	

$$=\overrightarrow{\deg_{arphi}}(x)-\overleftarrow{\deg_{arphi}}(x)=0$$
 .

A cut (lõige) in the network (G, ψ) (where G = (V, E)) is such an arc set $L \subseteq E$ that every directed path from source to sink uses some arc from the set L.

Alternatively: $L \subseteq E$ is a cut, if there are no directed paths from s to t in the graph $(V, E \setminus L)$.

Capacity (läbisaskevõime) of L is the quantity $\psi(L) = \sum_{e \in L} \psi(e)$.

The cut is *minimal* if its capacity is the smallest possible.

Theorem (Ford and Fulkerson). The value of all maximal flows in a network is equal to the capacity of all the minimal cuts.

Proof. Let (G, ψ) be a network with G = (V, E), source s and sink t. We will show that

- I. The value of no flow is larger than the capacity of any cut.
- II. For any maximal flow φ there exists a cut with capacity $|\varphi|$.

Part I Let φ be a flow and L a cut.

Let $V_s \subseteq V$ be the set of such nodes v that there exists a directed path from s to v without using any arc from L. Let $V_t = V \setminus V_s$. Since $E \cap (V_s \times V_t) \subseteq L$, we have

$$\psi(L) \geq \sum_{e \in E \cap (V_s imes V_t)} \psi(e) \geq \sum_{e \in E \cap (V_s imes V_t)} arphi(e) \geq \Phi(V_s, V_t) = |arphi| \enspace .$$

Part II Let φ be a maximal flow.

such that

Let $V_s \subseteq V$ be the set of all vertices v such that: There exists an undirected path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = v$,

- ullet If $e_i=(v_{i-1},v_i)$ then $arphi(e_i)<\psi(e_i).$
- If $e_i = (v_i, v_{i-1})$ then $\varphi(e_i) > 0$.

We say that the flow between v_{i-1} and v_i is unsaturated (küllastamata).

Such a path is called *augmenting* (suurendav).

Let $V_t = V \setminus V_s$. We will show that $t \in V_t$. Indeed, if $t \in V_s$ then φ is not maximal:

Let $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ be some augmenting path. Define positive real numbers δ_i as follows:

$$\delta_i = egin{cases} \psi(e_i) - arphi(e_i), & ext{if } e_i = (v_{i-1}, v_i) \ arphi(e_i), & ext{if } e_i = (v_i, v_{i-1}) \end{cases}.$$

Let $\varepsilon = \min_{i} \delta_{i}$ and let φ' be the following flow:

Then φ' is a flow and $|\varphi'| = |\varphi| + \varepsilon$.

Construction of the sets V_s and V_t gives:

- If $e \in E \cap (V_s \times V_t)$ then $\varphi(e) = \psi(e)$.
- If $e \in E \cap (V_t \times V_s)$ then $\varphi(e) = 0$.

Let $L = E \cap (V_s \times V_t)$. Then L is a cut and $\psi(L) = |\varphi|$. \square

Algorithm for finding a maximal flow (Ford-Fulkerson). Let (G, ψ) be a network with G = (V, E).

Let φ be some initial flow on the network (G, ψ) , say, $\forall e : \varphi(e) = 0$.

Repeat:

- 1. Find an augmenting path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$. If there is no such path then stop and output φ .
- 2. Construct φ' as described 2 slides ago.
- 3. Assign $\varphi := \varphi'$.

The augmenting path is found traversing the graph in some manner.

Theorem. Ford-Fulkerson algorithm finds a maximal flow.

Proof. The algorithm obviously outputs a flow. We need to prove that it does not stop before a maximal flow is found.

We will show that if φ is not a maximal flow then there exists an augmenting path $s \rightsquigarrow t$ for it.

Let V_s be the set of vertices v such that there exists an augmenting path from s to v and let $V_t = V \setminus V_s$. Assume that $t \in V_t$.

Similarly to the proof of the previous theorem we get that $L = E \cap (V_s \times V_t)$ is a cut and $\psi(L) = |\varphi|$. Thus φ must be maximal.

neisse tippudesse leidub suurendav tee

minimaalne lõige: ringiga \rightarrow ringita

Finding the augmenting path:

Let $V_s = \{s\}, W = \{s\}.$

While $W \neq \emptyset$ and $t \notin V_s$ do:

- 1. Somehow choose $v \in W$. Remove it from the set W.
- 2. For each $e \in E$ and vertex v incident with it: if the flow between v and e's other endpoint w is unsaturated and $w \notin V_s$ then
 - (a) Add w to sets V_s and W.
 - (b) Remember that v is the vertex "preceding" w.

If $t \notin V_s$ then there is no augmenting path. If $t \in V_s$ one can construct an augmenting path moving from t by "preceding" vertices to s.

Proposition. If capacities of all the edges are integers then the main cycle of the algorithm is run at most $|\varphi|$ times where φ is a maximal flow.

Proof. Each iteration increases the value of the flow. Since our computations do not introduce non-integers, each increase has to be at least by 1.

We will now assume that the augmenting path is found using breadth-first traversal of the graph (Edmonds-Karp algorithm).

The augmenting path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ found will have the following property:

For each i, the path $s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_i}{\longrightarrow} v_i$ is the shortest augmenting path from source to v_i .

Let (G, ψ) be a network with G = (V, E) and let φ be a flow on it. Denote the length of the shortest path from source to $v \in V$ as $\delta_{\varphi}(v)$.

Proposition. Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be the sequence of flows generated during the maximal flow finding algorithm. Then for each $v \in V$ the sequence $\delta_{\varphi_i}(v)$ is non-decreasing.

Proof. Consider the flows φ_n and φ_{n+1} in this sequence and let $B = \{v \mid \delta_{\varphi_{n+1}}(v) < \delta_{\varphi_n}(v)\}$. Assume that B is not empty and let $v \in B$ be such that $\delta_{\varphi_{n+1}}(v)$ is the smallest possible.

Let P' be the shortest augmenting path from source to v w.r.t the flow φ_{n+1} . Let u be the vertex preceding v on this path. Since $\delta_{\varphi_{n+1}}(u) < \delta_{\varphi_{n+1}}(v)$, we have $u \notin B$.

Consider the flow φ_n between the vertices u and v.

If φ_n is unsaturated between the vertices u and v then

$$\delta_{arphi_n}(v) \leq \delta_{arphi_n}(u) + 1 \leq \delta_{arphi_{n+1}}(u) + 1 = \delta_{arphi_{n+1}}(v)$$

and $v \notin B$, a contradiction.

If φ_n is saturated between the vertices u and v then let P_n be the augmenting path from source to sink that was used to generate φ_{n+1} from φ_n .

In φ_{n+1} , the flow between u and v becomes unsaturated. Thus, in the path P_n there exists an edge $\cdots v - v - u - \cdots$. According to the properties of P_n we get $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) - 1$. Consequently,

$$\delta_{arphi_n}(v) = \delta_{arphi_n}(u) - 1 \leq \delta_{arphi_{n+1}}(u) - 1 = \delta_{arphi_{n+1}}(v) - 2 < \delta_{arphi_{n+1}}(v)$$

and $v \notin B$, a contradiction.

Theorem. Edmonds-Karp algorithm makes at most $(|V|-2)\cdot |E|$ iterations.

Proof. Consider the *n*th iteration of the algorithm. On this iteration, the augmenting path $P_n: s = v_0 \stackrel{e_1}{\longrightarrow} v_1 \stackrel{e_2}{\longrightarrow} \cdots \stackrel{e_m}{\longrightarrow} v_m = t$ is constructed. Call the pair of vertices (v_{i-1}, v_i) critical if the respective quantity δ_i (showing how much the flow between v_{i-1} and v_i must be changed to make it saturated) is minimal (i.e. $\delta_i = \varepsilon$).

Each iteration has a critical pair of vertices. On the next iteration it becomes saturated.

Let's count the number of iterations where a pair (u, v) can be critical. If it is critical on the nth iteration, we have $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) + 1$.

To make (u, v) again critical on iteration number n' > n, there must exist another augmenting path $P_{n'}$ containing the arc $\cdots - v - u - \cdots$. Then

$$\delta_{arphi_{n'}}(u) = \delta_{arphi_{n'}}(v) + 1 \geq \delta_{arphi_n}(v) + 1 = \delta_{arphi_n}(u) + 2,$$

thus every time when (u, v) is critical, $\delta_{\varphi}(u)$ has increased at least by 2.

The quantity $\delta_{\varphi}(u)$ can not exceed |V|-2 (when (u,v) is critical). Thus (u,v) is critical at most $\frac{|V|-2}{2}$ times. The number of vertex pairs (u,v) is at most $2 \cdot |E|$.