Networks and flows Ford-Fulkerson algorithm

Let $G = (V, E)$ be a directed graph. For vertex $v \in V$ we can define its *indegree (sisendaste)* $\overrightarrow{\text{deg}}(v)$ and *outdegree* $(v\ddot{a}ljundaste)$ deg(v).

If $\overrightarrow{\deg}(v)=0$ or $\overleftarrow{\deg}(v)=0,$ the vertex v is called source $(läh)$ or $sink$ (suue) of graph G , respectively.

Capacity of graph G is a function $\psi : E \longrightarrow \mathbb{R}_+$.

The quantities

$$
\overrightarrow{\deg_{\psi}}(v) = \sum_{e \in E\mathcal{E}(e) = (u,v)} \psi(e) \text{ and } \overleftarrow{\deg_{\psi}}(v) = \sum_{e \in E\mathcal{E}(e) = (v,u)} \psi(e)
$$

are called ψ -indegree and ψ -outdegree of vertex $v \in V$, respe
tively.

Network (võrk) is a pair (G, ψ) where G is a directed graph and ψ its capacity.

Proposition. The sums of all ψ -indegrees and ψ -outdegrees of graph G are equal.

Proof.

$$
\begin{aligned}\sum_{v \in V} \overrightarrow{\mathrm{deg}_{\psi}}(v) &= \sum_{v \in V} \sum_{\substack{e \in E \\ \mathcal{E}(e) = (u,v)}} \psi(e) = \sum_{e \in E} \psi(e) = \\ & \sum_{v \in V} \sum_{\substack{e \in E \\ \mathcal{E}(e) = (v,u)}} \psi(e) = \sum_{v \in V} \overleftarrow{\mathrm{deg}_{\psi}}(v)\enspace.\end{aligned}
$$

Let (G, ψ) be a network. We assume that G has exactly one source s and exactly one sink t.

Flow (voog) on the network (G,ψ) is a function $\varphi : E \longrightarrow \mathbb{R}_+,$ su
h that

$$
\bullet \ \ \varphi(e) \leq \psi(e) \text{ for every } e \in E.
$$

$$
\bullet\;\overrightarrow{\deg_\varphi}(v)=\overleftarrow{\deg_\varphi}(v)\;\text{for every}\;v\in V\backslash\{s,t\}.
$$

The previous proposition implies $\overleftarrow{\deg_\varphi}(s) = \overrightarrow{\deg_\varphi}(t).$ This quantity is called *value (väärtus)* of the flow φ and denoted $|\varphi|$.

The flow is *maximal* if its value is the largest possible.

We assume that $G = (V, E)$ has no loops nor multiple $\mathrm{directed}\,\, \mathrm{arcs},\,\mathrm{i.e.}\,\ E \subseteq V\times V.$

Proposition. Consider a network (G, ψ) with $G = (V, E)$. Let $V=V_s\,\dot\cup\, V_t,$ such that $s\in V_s$ and $t\in V_t.$ Let

$$
\Phi(V_s,V_t) = \sum_{e \in E \cap (V_s \times V_t)} \varphi(e) - \sum_{e \in E \cap (V_t \times V_s)} \varphi(e) \enspace .
$$

Then $\Phi(V_s, V_t)$ is equal to the value of φ .

Proof. Induction over $|V_s|$.

 $Base.$ If $|V_s|=1$ then $V_s=\{s\}.$ The set $V_s\times V_t$ contains all the arcs originating from s and $V_t \times V_s = \emptyset.$

Step. Let the claim hold for some sets V_s and V_t . Let $x \in V_t \backslash \{t\}, V_s' = V_s \cup \{x\}$ and $V_t' = V_t \backslash \{x\}.$ It is enough to prove $\Phi(V_s, V_t) = \Phi(V'_s, V'_t)$.

$$
\begin{aligned} &\Phi(V_s,V_t)-\Phi(V'_s,V'_t)= \\ &\frac{V\times V \parallel V_s \parallel x \parallel V'_t}{V_s \parallel+\varphi} \\ &\frac{x \parallel -\varphi \parallel }{V'_t \parallel+\varphi} \\ &=\overrightarrow{\deg_\varphi}(x)-\overleftarrow{\deg_\varphi}(x)=0 \end{aligned} \quad \Box
$$

A cut (lõige) in the network (G, ψ) (where $G = (V, E)$) is such an arc set $L \subset E$ that every directed path from source to sink uses some arc from the set L .

Alternatively: $L \subset E$ is a cut, if there are no directed paths from s to t in the graph $(V, E \backslash L)$.

Capacity (läbisaskevõime) of L is the quantity $\psi(L) =$ $\begin{aligned} \sub{apacu} \ \sum \psi(e). \end{aligned}$ $e\in L$

The cut is *minimal* if its capacity is the smallest possible.

Theorem (Ford and Fulkerson). The value of all maximal flows in a network is equal to the capacity of all the minimal cuts.

Proof. Let (G, ψ) be a network with $G = (V, E)$, source s and sink t. We will show that

- I. The value of no flow is larger than the capacity of any cut.
- II. For any maximal flow φ there exists a cut with capacity $|\varphi|.$

Part I Let φ be a flow and L a cut.

Let $V_s \subseteq V$ be the set of such nodes v that there exists a directed path from s to v without using any arc from L . Let $V_t=V\backslash V_s.$ Since $E\cap (V_s\times V_t)\subseteq L,$ we have

$$
\psi(L) \geq \sum_{e \in E \cap (V_s \times V_t)} \psi(e) \geq \sum_{e \in E \cap (V_s \times V_t)} \varphi(e) \geq \Phi(V_s,V_t) = |\varphi| \enspace.
$$

Part II Let φ be a maximal flow.

Let $V_s \subset V$ be the set of all vertices v such that: There exists an undirected path $s = v_0 \stackrel{e_1}{\cdots} v_1 \stackrel{e_2}{\cdots} \cdots \stackrel{e_m}{\cdots} v_m = v,$ su
h that

• If
$$
e_i = (v_{i-1}, v_i)
$$
 then $\varphi(e_i) < \psi(e_i)$.

• If
$$
e_i = (v_i, v_{i-1})
$$
 then $\varphi(e_i) > 0$.

We say that the flow between v_{i-1} and v_i is unsaturated $(küllastamata)$.

Such a path is called *augmenting (suurendav)*.

Let $V_t = V \backslash V_s$. We will show that $t \in V_t$. Indeed, if $t \in V_s$ then φ is not maximal:

Let $s = v_0 \stackrel{e_1}{\smile} v_1 \stackrel{e_2}{\smile} \cdots \stackrel{e_m}{\smile} v_m = t$ be some augmenting path. Define positive real numbers δ_i as follows:

$$
\delta_i = \begin{cases} \psi(e_i) - \varphi(e_i), & \text{ if } e_i = (v_{i-1}, v_i) \\ \varphi(e_i), & \text{ if } e_i = (v_i, v_{i-1}) \end{cases}.
$$

Let $\varepsilon = \min$ i δ_i and let φ' be the following flow:

$$
\varphi'(e) = \begin{cases} \varphi(e), & \text{if } e \not\in \{e_1, \ldots, e_m\} \\ \varphi(e) + \varepsilon, & \text{if } e = e_i = (v_{i-1}, v_i) \\ \varphi(e) - \varepsilon, & \text{if } e = e_i = (v_i, v_{i-1}) \enspace. \end{cases}
$$

Then φ' is a flow and $|\varphi'| = |\varphi| + \varepsilon$.

Construction of the sets V_s and V_t gives:

- $\bullet~~{\rm If}~e\in E\cap (V_s\times V_t) \text{ then } \varphi(e)=\psi(e).$
- $\bullet~~\text{If}~e\in E\cap (V_t\times V_s) \text{ then } \varphi(e)=0.$

Let $L = E \cap (V_s \times V_t).$ Then L is a cut and $\psi(L) = |\varphi|.$ \Box

Algorithm for finding a maximal flow (Ford-Fulkerson). Let (G, ψ) be a network with $G = (V, E)$.

Let φ be some initial flow on the network (G, ψ) , say, $\forall e$: $\varphi(e) = 0.$

Repeat:

- 1. Find an augmenting path $s = v_0 \stackrel{e_1}{\cdots} v_1 \stackrel{e_2}{\cdots} \cdots \stackrel{e_m}{\cdots} v_m = t.$ If there is no such path then stop and output φ .
- 2. Construct φ' as described 2 slides ago.
- 3. Assign $\varphi := \varphi'$.

The augmenting path is found traversing the graph in some manner.

Theorem. Ford-Fulkerson algorithm finds a maximal flow. Proof. The algorithm obviously outputs a flow. We need to prove that it does not stop before a maximal flow is found.

We will show that if φ is not a maximal flow then there exists an augmenting path $s \leadsto t$ for it.

Let V_s be the set of vertices v such that there exists an augmenting path from s to v and let $V_t = V \backslash V_s$. Assume that $t \in V_t$.

Similarly to the proof of the previous theorem we get that $L\,=\, E \cap \left(V_s \times V_t \right)$ is a cut and $\psi(L) \,=\, |\varphi|.$ Thus φ must be maximal.

neisse tippudesse leidub suurendav tee

minimaalne lõige: ringiga \rightarrow ringita

Finding the augmenting path:

Let $V_s = \{s\}, W = \{s\}.$

While $W \neq \emptyset$ and $t \not\in V_s$ do:

- 1. Somehow choose $v \in W$. Remove it from the set W.
- 2. For each $e \in E$ and vertex v incident with it: if the flow between v and e 's other endpoint w is unsaturated and $w \not\in V_s$ then
	- (a) Add w to sets V_s and W .
	- (b) Remember that v is the vertex "preceding" w .

If $t \notin V_s$ then there is no augmenting path. If $t \in V_s$ one can construct an augmenting path moving from t by "preceding" vertices to s.

Proposition. If capacities of all the edges are integers then the main cycle of the algorithm is run at most $|\varphi|$ times where φ is a maximal flow.

Proof. Each iteration increases the value of the flow. Since our omputations do not introdu
e non-integers, ea
h in crease has to be at least by 1.

We will now assume that the augmenting path is found using breadth-first traversal of the graph (Edmonds-Karp algorithm).

The augmenting path $s = v_0 \stackrel{e_1}{\cdots} v_1 \stackrel{e_2}{\cdots} \cdots \stackrel{e_m}{\cdots} v_m = t$ found will have the following property: For each i, the path $s = v_0 \stackrel{e_1}{\smile} v_1 \stackrel{e_2}{\smile} \cdots \stackrel{e_i}{\smile} v_i$ is the shortest augmenting path from source to v_i .

Let (G, ψ) be a network with $G = (V, E)$ and let φ be a flow on it. Denote the length of the shortest path from source to $v \in V$ as $\delta_{\varphi}(v)$.

Proposition. Let $\varphi_0, \varphi_1, \varphi_2, \ldots$ be the sequence of flows generated during the maximal flow finding algorithm. Then for each $v \in V$ the sequence $\delta_{\varphi_i}(v)$ is non-decreasing.

Proof. Consider the flows φ_n and φ_{n+1} in this sequence and let $B = \{v \mid \delta_{\varphi_{n+1}}(v) < \delta_{\varphi_n}(v)\}\$. Assume that B is not empty and let $v \in B$ be such that $\delta_{\varphi_{n+1}}(v)$ is the smallest possible.

Let P' be the shortest augmenting path from source to v w.r.t the flow φ_{n+1} . Let u be the vertex preceding v on this path. Since $\delta_{\varphi_{n+1}}(u) < \delta_{\varphi_{n+1}}(v)$, we have $u \notin B$.

Consider the flow φ_n between the vertices u and v.

If φ_n is unsaturated between the vertices u and v then

$$
\delta_{\varphi_n}(v)\leq \delta_{\varphi_n}(u)+1\leq \delta_{\varphi_{n+1}}(u)+1=\delta_{\varphi_{n+1}}(v)
$$

and $v \notin B$, a contradiction.

If φ_n is saturated between the vertices u and v then let P_n be the augmenting path from sour
e to sink that was used to generate φ_{n+1} from φ_n .

In φ_{n+1} , the flow between u and v becomes unsaturated. Thus, in the path P_n there exists an edge \cdots v \cdots u \cdots According to the properties of P_n we get $\delta_{\varphi_n}(v)$ $=$ $\delta_{\varphi_n}(u) - 1$. Consequently,

$$
\begin{aligned} &\delta_{\varphi_n}(v)=\delta_{\varphi_n}(u)\!-\!1\le\delta_{\varphi_{n+1}}(u)\!-\!1=\delta_{\varphi_{n+1}}(v)\!-\!2<\delta_{\varphi_{n+1}}(v)\\ &\text{and}~v\not\in B,~\text{a contradiction}. \end{aligned} \hspace*{20mm}\square
$$

Theorem. Edmonds-Karp algorithm makes at most $(|V| - 2) \cdot |E|$ iterations.

Proof. Consider the *n*th iteration of the algorithm. On this iteration, the augmenting path P_n : $s = v_0 \stackrel{e_1}{\cdots} v_1 \stackrel{e_2}{\cdots} \cdots \stackrel{e_m}{\cdots}$ $v_m = t$ is constructed. Call the pair of vertices (v_{i-1}, v_i) critical if the respective quantity δ_i (showing how much the flow between v_{i-1} and v_i must be changed to make it saturated) is minimal (i.e. $\delta_i = \varepsilon$).

Each iteration has a critical pair of vertices. On the next iteration it be
omes saturated.

Let's count the number of iterations where a pair (u, v) can be critical. If it is critical on the nth iteration, we have $\delta_{\varphi_n}(v) = \delta_{\varphi_n}(u) + 1.$

To make (u, v) again critical on iteration number $n' > n$, there must exist another augmenting path P_{n} containing the arc $\cdots - v - u - \cdots$. Then

$$
\delta_{\varphi_{n'}}(u)=\delta_{\varphi_{n'}}(v)+1\geq \delta_{\varphi_n}(v)+1=\delta_{\varphi_n}(u)+2,
$$

thus every time when (u, v) is critical, $\delta_{\varphi}(u)$ has increased at least by 2.

The quantity $\delta_{\varphi}(u)$ can not exeed $|V| - 2$ (when (u, v) is critical). Thus (u, v) is critical at most $\frac{|V| - 2}{2}$ times. The number of vertex pairs (u, v) is at most $2 \cdot |E|$.