Matchings and coverings

Consider a set X . We want to pair its elements.

The set of potential pairs is constrained by the relation

 $P \subset \{ \{x, y\} \mid x, y \in X, x \neq y \},\$

showing whi
h elements an be paired.

In this lecture, we assume (X, P) to be a simple graph.

Often (X, P) is a bipartite graph. E.g., X can be the set of lecture halls and potential times of particular lectures. P can indicate which halls can accommodate which lectures.

Let $G = (V, E)$ be a simple graph. *Matching (kooskõla)* in the graph G is a set $M \subseteq E$ of edges such that for each $v \in V$ we have $\deg_M(v) < 1$.

The matching is *maximal* if its cardinality is the largest possible.

The matching M is perfect (täielik) if $\deg_M(v) = 1$ holds for every $v \in V$.

Let $G = (V, E)$ be a simple graph, $M \subseteq E$ a matching and P some path (with different endpoints) in the graph G .

The path P is M-alternating (vahelduv) if its edges alternately belong to the sets M and $E\backslash M$.

The path P with endpoints x and y is M-extensible (laienev) if it is M-alternating and $\deg_M(x) = \deg_M(y) = 0.$

Theorem (Berge). Matching M in the graph $G = (V, E)$ is maximal iff there are no M -extensible paths in G .

Proof \Rightarrow . Assume to the contrary that there exists an Mextensible path P in G .

Consider P as a set of edges. Let $M' = (M \backslash P) \cup (P \backslash M)$. Then $|M'| = |M| + 1$. It is easy to verify that M' is a matching. Let $v \in V$, we will show that $\deg_{M'}(v) \leq 1$. There are three options.

- v is not on the path P. Then $\deg_M(v) = \deg_{M'}(v)$. Indeed, let $e \in E$ be incident with v. As $e \notin P$, we have $e \in M \Leftrightarrow e \in M'.$
- v is an endvertex of P. Then $\deg_{M'}(v) = \deg_M(v)+1 = 0$ 1.
- v is an internal vertex of P. Then $\deg_{M}(v) = \deg_M(v) = 0$ 1.

Proof \Leftarrow . We will construct an *M*-extensible path. Let M^* be a maximal matching in G. Then $|M| < |M^*|$.

Consider the graph $H = (V, M \cup M^*)$.

For each $v \in V$ we have $\deg_H(v) \leq 2$. Possible connected components of H are:

- Isolated vertices.
- Paths.
	- Closed paths, i.e. cycles.
		- $*$ The edges of M and M^* alternately.
	- Open paths. Options:
		- * A lonely edge $e \in M \cap M^*$.
		- * The edges of M and M^* alternately. Options:
			- \cdot Having one end in M , another end in M^* .
			- \cdot Having both ends in M .
			- \cdot Having both ends in M^* .

Since $|M| < |M^*|$, there must exist a connected component of H having more edges from M^* than edges from M. The only such components are open paths having both

ends in M^* .

These paths are M-extensible.

Let $G = (V, E)$ be a graph and let $S \subseteq V$. Neighbourhood $(naabrus)$ of S is the set

 $N(S) = \{w \mid w \in V, \exists e \in E, \exists v \in S : \mathcal{E}(e) = \{v, w\}\}\.$

Theorem (Hall). Let $G = (V, E)$ be a bipartite graph with vertex set partition to X and Y. The graph G has a matching M with the property $\forall x \in X : \deg_M(x) = 1$ iff for each $S \subset X$ the inequality $|N(S)| > |S|$ holds.

Proof \Rightarrow . Let M be a matching with the required property. Let $S \subset X$. Consider the set

$$
T=\{y\mid y\in Y,\exists x\in S:(x,y)\in M\}\enspace.
$$

Then $|T| = |S|$, since each $x \in S$ defines a different y. We also have $T \subseteq N(S)$, consequently $|S| = |T| \leq |N(S)|$.

Proof \Leftarrow . Let M be some maximal matching. Assume to the contrary that there exists $x \in X$, such that $\deg_M(x) =$ 0.

Let $S \subset X$ be the set of all vertices $v \in X$ such that there exists an M-alternating path from x to v. Note that $x \in S$. Let $T \subset Y$ be the set of all vertices $w \in Y$ such that there exists an *M*-alternating path from x to w .

We will show that

- I. $N(S) = T;$
- II. $|S \backslash \{x\}| = |T|.$

As a consequence, we will get a contradiction:

$$
|N(S)|=|T|=|S\backslash\{x\}|=|S|-1<|S|\enspace.
$$

Part I. Let $v \in S$ and let P be an M-alternating path from x to v. Note that the last edge on the path P belongs to M .

Let $w \in Y$ be a neighbour of vertex v. There are two options:

- 1. w is on the path P. The part of P from x to w is an *M*-alternating path from x to w. Thus $w \in T$.
- 2. w is not on the path P . Two options again:
	- $(v, w) \in M$. Then (v, w) is the last edge on the path P, because there are no other edges in M incident with v . Thus we are back to the 1st option.
	- $(v, w) \notin M$. Then P together with the edge (v, w) is an M-alternating path from x to w. Thus $w \in T$.

Part II. We will construct a bijection between $S \setminus \{x\}$ and T .

Let $v \in S \backslash \{x\}$. Then there is an edge $e \in M$ incident with v (the last edge on the M-alternating path from x to v). We let the other endvertex w of e to correspond to v . We proved on the last slide that $w \in T$.

Let $w \in T$. If there was no edge $e \in M$ being incident with w, we would get an M-extensible path from x to w. Berge Theorem forbids this, thus we have such an edge e.

We let the other endvertex v of e to correspond to w . Obviously, $v \in S$. Also, $v \neq x$, since the other endvertex of e is not x, because $\deg_M(x) = 0$.

Corollary. Regular (i.e. with all vertex gedrees equal) bipartite non-null graph has ^a perfe
t mat
hing.

Proof. Let $G = (V, E)$ be a bipartite graph with partition X and $Y.$ Let $k>0$ be the degree of all the vertices. Since

$$
|X| \cdot k = \sum_{x \in X} \deg(x) = \sum_{y \in Y} \deg(y) = |Y| \cdot k,
$$

we have $|X|=|Y|.$ Let $S\subseteq X.$ Since

$$
|S|\cdot k = \sum_{x\in S} \deg(x) \leq \sum_{y\in N(S)} \deg(y) = |N(S)|\cdot k,
$$

we get $|S| < |N(S)|$. Thus there exists a matching M such that $\deg_M(x) = 1$ for each $x \in X$. Since $|X| = |Y|$, we also have deg_M $(y) = 1$ for each $y \in Y$.

Let $G = (V, E)$ be a simple graph. Cover (kate) in graph G is the set $K \subseteq V$ of vertices such that each $e \in E$ is in
ident with some vertex from K.

Cover is *minimal* if its cardinality is the smallest possible.

Proposition. Let $G = (V, E)$ be a simple graph, M some of its matchings and and K some of its covers. Then $|M| \leq |K|$.

Proof. For each edge $e \in M$, there exists a vertex $v \in K$ such that e is incident with v . For different edges these vertices differ, since the edges of M can not have common endverti
es.

Theorem (König). Let $G = (V, E)$ be a bipartite graph. Then the cardinalities of maximal matchings and minimal overs are equal.

Proof. Let X and Y be the partition of G and let M be one of its maximal matchings. We will construct a cover K such that $|M| = |K|$.

Let $U\subseteq X$ be the set of such vertices $u\in X$ that $\deg_M(u)=0$ 0. Then $|M| = |X \setminus U|$.

Let $S \subset X$ be the set of such vertices $v \in X$ that for some $u \in U$ there exists an M-alternating path from u to v. Then $U \subset S$.

Let $T \subset Y$ be the set of all such vertices $w \in Y$ that for some $u \in U$ there exists an M-alternating path from u to w .

Similarly to the proof of Hall's Theorem we an prove $N(S) = T$ and $|T| = |S \backslash U|$.

Let $K = T \cup (X \backslash S)$. Then K is a cover.

Indeed, assume that there is an edge $e \in E$ that is not incident with any vertex of K . Then one endvertex of e is in S and another one in $Y \setminus T$. Contradiction with the observation $N(S) = T$.

 $|K| = |T| + |X \setminus S| = |S \setminus U| + |X \setminus S| = |X \setminus U| = |M|$.

How to find maximal matchings in bipratite graphs?

leiame maksimaalse voo

kõigi kaarte läbilaskevõime on 1

Ford-Fulkerson algorithm gives a maximal flow, assigning ea
h ar an integer.

Maximal matching in the original graph is determined by these edges that were assigned 1.