
Solutions for the reattempt of the 3rd test in
Graphs

January 15th, 2009

Exercise 1. Does there exist an n ∈ N, such that there exist simple planar
bipartite graphs G1 and G2 with n vertices and 2n − 4 edges, such that
G1 6∼= G2?

Answer: yes. Both K2,4 and K3,3 − e (the graph K3,3 where one of the edges
has been deleted) are planar and contain 6 vertices and 8 = 2 · 6 − 4 edges.

Exercise 2. For any odd n ∈ N, define the simple graphs Gn as follows:

• the set of vertices Vn of Gn is {1, 3, 5, . . . , n};

• two numbers x, y ∈ Vn are connected with an edge iff gcd(x, y) > 1.

For which values of n is Gn planar?

Answer: Gn is planar iff n ≤ 25. A planar drawing of G25 is depicted in Fig. 1.
But the graph G27 contains a clique of size five; it is formed by the vertices
3, 9, 15, 21, 27.
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Figure 1:

Exercise 3. The Ramsey number r(k, l) is defined as the smallest n, such
that for any coloring of the edges of Kn with two colors, there exists a
monochromatic copy of Kk of the first color, or a monochromatic copy of
Kl of the second color. We can generalize r(k, l) as follows: for any two (sim-
ple) graphs G1, G2 let r(G1, G2) be the smallest n, such that for any coloring
of the edges of Kn with two colors, there is an i ∈ {1, 2}, such that Gi is a
subgraph (not necessarily induced) of the graph made up of the edges of i-th
color.

Show that if T is any tree with n vertices, then
r(Km, T ) ≥ (m − 1)(n − 1) + 1.



Proof. To show that r(Km, T ) is at least (m− 1)(n− 1) + 1 we have to show
how to color the edges of K(m−1)(n−1) with two colors, such that it contains
neither Km of the first color nor T of the second color.

We partition the vertices of K(m−1)(n−1) into (m−1) parts, each containing
(n−1) vertices. We color an edge (u, v) with the first color iff u and v belong
to different parts. We color an edge (u, v) with the second color iff u and v
belong to the same part.

The edges of the first color form the complete (m − 1)-partite graph
Kn−1,n−1,...,n−1. It contains no subgraph isomorphic to Km. Indeed, for any
m vertices, at least two of them must belong to the same part and thus the
edge connecting them is not colored with the first color.

The edges of the second color form (m − 1) independent copies of the
graph Kn−1. As no connected component of this graph contains n or more
vertices, it cannot contain the n-vertex connected graph T as a subgraph.

Exercise 4. Find the chromatic polynomial of the 2n-vertex graph Gn,
depicted in Fig. 2. below.
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Figure 2:

Answer: k(k − 1)(k2 − 3k + 3)n−1.
Lemma. Let G be a graph, let its chromatic polynomial PG(k) be p(k). Let
the graph G′ be constructed from G by

• adding to it two new vertices u and v and the edge e between them;

• adding to it the edges (a, u) and (b, v), where a and b are two different
vertices of G, such that the edge (a, b) is contained in G. (See Fig. 3)

Then PG′(k) = (k2 − 3k + 3) · p(k).
Proof of the lemma. We know that PG′(k) = PG′

−e(k) − PG′/e(k). The
chromatic polynomial PG′

−e(k) is (k−1)2 · p(k). Indeed, to color the vertices
of G′ − e, we first color the graph G, there are p(k) possibilites for that.
Afterwards, we have (k−1) possible colors for the vertex u and (k−1) possible
colors for the vertex v. The chromatic polynomial PG′/e(k) is (k − 2) · p(k).
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Figure 3:

Indeed, to color the vertices of G′/e we again start by coloring the vertices
of G. After that we have one more vertex to color — the one obtained by
contracting the edge e. This vertex has two neighbours — the vertices a
and b. As the vertices a and b have different colors in a valid coloring of
G, there are (k − 2) possible colors left over for the new vertex. Finally,
(k − 1)2 − (k − 2) = k2 − 3k + 3.

To prove the answer of the exercise, we note that the graph Gn has been
obtained by applying the construction of the lemma (n−1) times to the graph
K2. The chromatic polynomial of K2 is k(k − 1); this has to be multiplied
(n − 1) times by k2 − 3k + 3.


