
Solutions for the reattempt of the 2nd test in
Graphs

January 19th, 2009

Exercise 1. Find the maximum flow and the minimum cut in the following
network:
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Just use Ford-Fulkerson’s algorithm. . .

Exercise 2. Let X be the set of all subsets of {1, . . . , n}. Let Xk ⊆ X
contain all subsets of {1, . . . , n} with exactly k elements.

Let k ≤ n/2. The sets Xk and Xn−k have the same number of elements.
Indeed,

(

n

k

)

=
(

n

n−k

)

. Does there exist a bijection from Xk to Xn−k, such that
each X ∈ Xk is mapped to one of its supersets?

Answer: yes. Consider the following bipartite graph. Let Xk and Xn−k be the
two parts and let there be an edge between some X ∈ Xk and Y ∈ Xn−k iff
X ⊆ Y .

By symmetry, all vertices in Xk have the same degree dk. Also by sym-
metry, all vertices in Xn−k have the same degree dn−k. The total number
of edges in the graph is |Xk| · dk which is also equal to |Xn−k| · dn−k. As
|Xk| = |Xn−k|, we also have dk = dn−k.

Hence we have constructed a regular bipartite graph. By one of the
corollaries of Hall’s theorem, it has a perfect matching M . This matching
M associates a (n − k)-element set Y to each k-element set X, such that X
and Y are connected by an edge, i.e. X ⊆ Y . The edges of M define the
bijection we’re looking for.

Exercise 3. Show that a tree cannot have two different perfect matchings.

Proof. Let M and M∗ be two perfect matchings of the tree T . I.e. deg
M

(v) =
deg

M∗(v) = 1 for any vertex v ∈ V (T ). Consider the symmetric difference
M △ M∗. For some v ∈ V (T ), the value of degM△M∗(v) can be one of the
following:



• 0, if the edge incident to v in M is the same as the edge incident to v
in M∗;

• 2, if the edge incident to v in M is different from the edge incident to
v in M∗.

Consider the subgraph T ′ of T containing all vertices, but only edges in
M△M∗. As the vertex degrees in T ′ are in {0, 2}, the connected components
of T ′ are either isolated vertices or cycles. But T ′ cannot contain cycles,
otherwise its supergraph, the tree T would also contain cycles. Hence all
connected components of T ′ are isolated vertices, thus T ′ has no edges, thus
M △ M∗ = ∅, thus M = M∗.

Exercise 4. We say that a graph is uniquely k-edge colorable, if its edges
can be colored with k colors in exactly one way (modulo renaming of colors).
In other words, all colorings with k colors give the same partition of edges
into matchings.

Show that uniquely 3-edge colorable 3-regular graphs are Hamiltonian.

Proof. Let G = (V, E) be a uniquely 3-edge colorable 3-regular graph. Let
E = E1 ∪̇ E2 ∪̇ E3, where {E1, E2, E3} is the partition of E induced by any
3-coloring of the edges of G. Note that each one of E1, E2 and E3 is a perfect
matching, because each vertex must have an edge of each color incident to it
(the number of colors equals the degree of all vertices).

Consider the graph G′ = (V, E1 ∪ E2). In this graph, the degree of all
vertices is 2 (because degE1

(v) = degE2
(v) = 1 and E1 ∩ E2 = ∅). Hence

the connected components of G′ are cycles. Let C1, C2, . . . ⊆ E1 ∪E2 be the
cycles of G′. We can consider a new coloring of G, by swapping the colors 1
and 2 in just the cycle C1. This defines us a new partitioning of edges:

• E ′

1
= (E1\C1) ∪ (C1 ∩ E2);

• E ′

2
= (E2\C1) ∪ (C1 ∩ E1);

• E ′

3
= E3.

If C1 contains all edges of E1 ∪ E2, then this is the same partition as before
(we have E ′

1
= E2 and E ′

2
= E1). Otherwise we get a different partition. But

according to our premises, no other partitions are possible. Hence the graph
G′ is made of a single cycle C1. This cycle passes all vertices of G′ (and G)
i.e. it is a Hamiltonian cycle.


