
MTAT.07.004 — Complexity Theory December 8th, 2011

Lecture 12

Lecturer: Peeter Laud Scribe(s): Ilya Kuzovkin

Introduction

On the previous lecture we had a look onto interactive proofs, where the system consists of
two parts Prover (P) and Verifier (V). Prover is computationally unbounded while Verifier
is polynomial-time bounded. Basic scheme of interaction is

1. We provide the system with yes/no question

2. Verifier maps this question to some form Prover will accept and adds randomization

3. Verifier sends challenge to Prover

4. Prover responds with certificate

5. Verifier checks certificate and may proceed or repeat steps 2-5 to be more sure in
Prover’s capability of finding the answer

6. Verifier gives us yes/no answer

This basic scheme describes complexity class IP (Interactive Proof). For formal defini-
tion please refer to the previous lecture’s notes. There is slight variation of the IP protocol
called Arthur-Merlin (AM) protocol. Arthur plays the Verifier role and Merlin is the omni-
scient Prover. The only difference is that in AM protocol Prover knows the random coins
used by Verifier in step 2. Intuitively it seems that Arthur in an AM-protocol is more
constrained than the Verifier in an IP-protocol. Hence the class AM might be smaller than
IP.

But we will see that actually these complexity classes are equal.

IP = AM

We will say Prover and Verifier when talking about IP protocol and Merlin and Arthur
when talking about AM protocol.

Theorem 1 IP = AM

Proof
To show that classes are equal we must show both way inclusions.

AM ⊆ IP

We have a problem in AM and we want to simulate it in IP. Each AM-verifier is also an
IP-verifier, hence this inclusion is trivial.

12-1

IP ⊆ AM

The opposite direction is more complicated. Here we have problem in IP and we want to
simulate it in AM. Since Merlin knows all the randomization data he can fool Arthur with
less effort than Prover would need to fool Verifier.

Let V be a verifier algorithm and let P be the corresponding prover that makes the
verifier accept with maximum possible probability. On the figure below you can see initial
protocol in IP. To show that on every step on the simulation we are very close to the original
protocol we define time limit T and assume that our protocol runs until limit is reached.

Prover Verifier
w – question, |w| = nw – question, |w| = n

r – random, |r| = l(n)

check, accept / reject

x1�

y1 -

x2�

y2 -

. . .

xT (n)�

yT (n) -

Figure 1: Initial protocol in IP

The sequence of the messages (x1, y1, x2, y2, ..., xn, yn) we call transcript. For each r
there is a distinct transcript. Each transcript ends with accept or reject.

Definition 1 At some point of time τ we will have partial transcript t; we define ACC(w, t)
to be a set of all random bit-strings r which make the transcript start with t and lead to
accept.

Now we can construct AM simulation for the protocol described on Figure 1. The idea
is that after each round of the protocol (one xi, yi pair) Merlin provides best yi and wants to
convince Arthur that ACC(w, ti) covers almost all set of outcomes (e.g. almost all outcomes
are accept).

12-2

Merlin

Finding xi, yi, bi+1 :

t – current transcript
d – presume bitstring length

ACCd = {x : 2d−1 < |ACC(w, t, x)| ≤ 2d}
We look for d which will
maximize ACC for all x-es:

dmax = arg maxd

⋃
x∈ACCd

ACC(w, t, x)

bi+1 = 2 + dlog dmaxe
xi ∈ ACCdmax

yi = P (w, t, xi)

last bi is different: bT (n) + 1
is chosen so that zi-s cover
remaining answer space

send the random coins which
led to current transcript

Arthur
w – question, |w| = nw – question, |w| = n

Random linear functions:
h1, . . . , hl(n) : {0, 1}m(n) → 0, 1bi+1

and random strings
z1, . . . , zl(n)2 ∈ {0, 1}bi+1

check ∃j, k : hj(xi) = zk

check ∃j, k : hj(r) = zk

check transcript gives true:
V (w, r, x1, y1, ..., xT (n), yT (n))
= true

check Merlin’s bi-s:
T (n)∑
i=1

bi ≥ l(n)− T (n) log l(n)

b1 -

h1, . . . , hl(n), z1, . . . , zl(n)2�

xi, yi, bi+1 -

. . . T (n)− 1 rounds . . .

h1, . . . , hl(n), z1, . . . , zl(n)2�

xT (n), yT (n), bT (n)+1 -

h1, . . . , hl(n), z1, . . . , zl(n)2�

r
-

Round i

Figure 2: Protocol in AM

12-3

Intuitively this protocol acts in the same way as IP one, but here instead of Verifier
picking next xi randomly, Merlin himself chooses the best xi. And after protocol is finished
the r is the transcript which can act as certificate in original IP protocol.

Why Arthur needs to check ∃j, k : hj(xi) = zk in the end of each round? The reason
is that Merlin must convince Arthur that the answer space, where ACC set is defined is
big enough. And the way he convinces is by showing that for randomly chosen hj and zk
Merlin is able to find original in the set of answers.

Figure 3: Merlin should be able to find original of random zj in S

This whole construction must convince us that after running protocol in AM final tran-
script r will be suitable transcript for IP.

IP = PSPACE

In this section we will show that every problem, which can be solved in IP can be solved in
PSPACE and vice versa. As usually, if we want to show equality of the classes we will need
to show both way inclusions.

Theorem 2 IP = PSPACE

Proof

IP ⊆ PSPACE

Every problem solvable in IP is solvable in PSPACE. As we know from the previous section
IP = AM, therefore AM ⊆ PSPACE also. Assume we have usual AM protocol:

12-4

Merlin Arthur
w – question, |w| = nw – question, |w| = n

r – random, |r| = l(n)

check
A(x1, y1, ..., xn, yn, w) = true

x1�

y1 -

x2�

y2 -

. . .

xn�

yn -

Figure 4: Abstract AM protocol

For each function
f : {0, 1}l(n) → R

we will define
max f = max{f(x) : x ∈ {0, 1}l(n)}

avgf =

∑
x∈{0,1}l(n)

2l(n)
.

At each round of the protocol Arthur randomly chooses xi and Merlin chooses best yi, so
the probability that Arthur accepts at the end of the protocol can be written as

avgx1
maxy1 . . . avgxn

maxynA(x1, y1, . . . , xn, yn, w) (1)

By definition we know that A(x1, y1, . . . , xn, yn, w) is computable in polynomial time (oth-
erwise Arthur would not be able to perform final check). This implies that sizes of xi and
yi are polynomial (otherwise computation of A(...) would take more than polynomial time).
These two facts together show us that the value (1) is computable in polynomial space.

PSPACE ⊆ IP

Here we must show that every problem solvable in PSPACE is solvable in IP. We will first
demonstrate the techniques we’re going to use on the problem #SATD which is both NP-
hard and coNP-hard. We will then generalize those techniques to the PSPACE-hard problem
TQBF, showing that it belongs to IP.

12-5

Arithmetization

We will now deviate from the main direction of the proof and study the idea of arithmeti-
zation, since we will use it later.

If we have Boolean formula ϕ(x1, . . . , xn) we can transform it into n-variable polynomial
as follows:

Pxi = xi

P¬ϕ = 1− Pϕ

Pϕ1∧ϕ2 = Pϕ1 · Pϕ2

Pϕ1∨ϕ2 = 1− (1− Pϕ1)(1− Pϕ2)

For example formula
(x1 ∨ x2) ∧ ¬x1

can be arithmetized as
(1− (1− x1)(1− x2)) · (1− x1)

Note that length on the polynomial is linear to length of the Boolean formula: O(Pϕ) is O(|ϕ|).

#SATD ∈ IP

A pair 〈ϕ,K〉 belongs to the language #SATD if the formula ϕ has exactly K satisfying
valuations. Number of satisfying valuations can be calculated using

#ϕ =
∑

b1∈{0,1}

. . .
∑

bn∈{0,1}

Pϕ(b1, . . . , bn) .

We note that the number of satisfying valuations is at most 2n. A more general case of such
type of verification is to check for any polynomial g whether

K =
∑

b1∈{0,1}

. . .
∑

bm∈{0,1}

g(b1, . . . , bm) .

Sumcheck protocol

For a polynomial g(x1, . . . , xm) let projg(x) denote the single-variable polynomial

projg(x1,...,xm)(x) =
∑

b2∈{0,1}

. . .
∑

bm∈{0,1}

g(x, b2, . . . , bm) .

In the definition of projg we implicitly assume that the variables of g are ordered and x is
the first variable. Fig. 5 depicts the IP protocol for verifying

K =
∑

b1∈{0,1}

. . .
∑

bm∈{0,1}

g(b1, . . . , bm)

The base case for the Sumcheck protocol is m = 1. In this case, Verifier will check only
if g(0) + g(1) = K.

12-6

Prover

s0(0) + s0(1)
?
= K

s1(0) + s1(1)
?
= s0(a1)

sm−1(0) + sm−1(1)
?
= sm−2(am−1)

accept / reject

Verifier

s0 = projg(x1,...,xm) -

a1 ∈ random�

s1 = projg(a1,x2,...,xm) -

a2 ∈ random�

. . .

sm−1 = projg(a1,...,am−1,xm) -

Figure 5: Sumcheck protocol

TQBF ∈ IP

The proof works in the same way as for #SATD, but since TQBF includes universal quanti-
fiers the formula will contain products. We will introduce prodcheck protocol, which works
in the same way as sumcheck, but polynomials are more complex. Because degree of the
polynomials are too large (exponential) Verifier would not be able to work with them, so
we must provide the optimization steps to make polynomial degrees low.

Optimizing TQ formula

To make Prodcheck computation more efficient we can bring in new variables, which will
allow us to move quantifiers closer to the variables bounded to these quantifiers. For example
in the following formula

∀x2∀x3(∀x1(x1 ∧ x2)) ∨ x3
which can be represented as syntax tree, shown in Fig. 6, we can introduce x′2 = x2 which
will allow us to bring ∀x2 closer to variable x2:

∀x2∀x3∃x′2(x′2 = x2 ∧ ∀x1(x1 ∧ x′2) ∨ x3)

The syntax tree for this formula is depicted in Fig. 7.

12-7

∀x2

∀x3

∨

@
@
@

x3
�
�
�

∀x1

�
�
�

x1
@
@
@

x2

Figure 6: Syntax tree for ∀x2∀x3(∀x1(x1 ∧ x2)) ∨ x3

∀x2

∀x3

x2 = x′2

�
�
�

∃x′2

@
@
@

∨

@
@
@

x3
�
�
�

∀x1

�
�
�

x1
@

@
@

x′2

Figure 7: Syntax tree for ∀x2∀x3∃x′2(x′2 = x2 ∧ ∀x1(x1 ∧ x′2) ∨ x3)

Before we move quantifiers closer to the variables we can bring all negations to the front
of variables. After that we can arithmetize quantifiers:

P∃xϕ =
∑

b∈{0,1}

Pϕ(x← b)

P∀xϕ =
∏

b∈{0,1}

Pϕ(x← b)

After these transformation we will get Pϕ which can be used in the prodcheck protocol to
check if Pϕ has K satisfiable evaluations.

Now the degree of a polynomial Pϕ is at most 2|ϕ|.

12-8

Prodcheck

As we have mentioned before the scheme of the protocol is the same as for sumcheck
protocol. But there are some differences.

• If ϕ ≡ ϕ1∨ϕ2 then Prover sends both values K1 = Pϕ1 and K2 = Pϕ2 . Verifier checks

that K = K1 +K2 and then runs the protocol for K1
?
= Pϕ1 and K2

?
= Pϕ2

• If ϕ ≡ ϕ1∧ϕ2 then Prover sends both values K1 = Pϕ1 and K2 = Pϕ2 . Verifier checks

that K = K1 ·K2 and then runs the protocol for K1
?
= Pϕ1 and K2

?
= Pϕ2

• If ϕ ≡ ∃xϕ′ then Prover sends the polynomial s(x) = Pϕ′(x) to Verifier. Verifier checks

s(0) + s(1)
?
= K, then picks number a ∈ random and run the protocol Pϕ′(a)

?
= s(a).

• If ϕ ≡ ∀xϕ′ then Prover sends the polynomial s(x) = Pϕ′(x) to Verifier. Verifier checks

s(0) · s(1)
?
= K, then picks number a ∈ random and run the protocol Pϕ′(a)

?
= s(a).

Relationship between PSPACE, P/poly and MA

Theorem 3 If PSPACE ⊆ P/poly then PSPACE = MA

Proof We use the fact that Merlin can work in PSPACE. PSPACE ⊆ P/poly implies that
Merlin can be represented as Boolean circuit of polynomial size, thus Merlin’s algorithm
can be sent to Arthur. And Arthur can himself run Merlin’s algorithm in polynomial time
(and polynomial space), thus solving any PSPACE problem in MA.

12-9

