
MTAT.07.004 — Complexity Theory December 9th, 2011

Lecture 13

Lecturer: Peeter Laud Scribe(s): Alisa Pankova, Ilya Kuzovkin

Class #P

Definition 1 Function f : {0, 1}∗ → N belongs to class #P if there is a language in NP, or,
more precisely, a NTM M ′, such that f(x) is the number of certificates that M ′(x) accepts.
More formally, f ∈ #P if there is a DTM M and a polynomial p, such that

f(x) = |{y ∈ {0, 1}p(|x|) | M(x, y) = true}|

♦

Definition 2 Class FP is class of all function f : {0, 1}∗ → N computable in polynomial
time. ♦

Theorem 1 If FP = #P then P = NP.

Proof We want to show that if FP = #P then NP ⊆ P. Solving any FP problem takes
polynomial time. Our assumption implies that for any NP problem we can learn the number
of certificates in polynomial time. Hence, if L ∈ NP, then we can check whether x ∈ L by
determining the number of acceptance certificates for x of some NTM recognizing L. If the
number of certificates is above zero, then x ∈ L.

Hardness of finding vs. counting

Let’s have a look at CYCLE problem for a directed graph. The question it answers is
”Does graph G contain a simple (no repeating vertices or edges, except for starting vertex)
cycle?”. This problem can be solved in polynomial time: CYCLE ∈ P.

Next question to ask is how many simple cycles graph G has. This problem is referred
as #CYCLE and #CYCLE ∈ #P.

Theorem 2 If #CYCLE ∈ FP then P = NP

Proof If #CYCLE is in FP, then for any graph we can find the number of cycles in
polynomial time. Now assume we have graph G and we want to know if it is Hamiltonian
(a NP-complete problem). We introduce new graph G′ which is constructed as is shown on
Figure 1: for every pair of vertices we add n log n layers between them, so than there will
be 2n logn+1 possible paths from u′ to v′.

In G the number of cycles of length at most n − 1 is upper-bounded by nn−1 because we

13-1



Figure 1: G′ size is polynomial of G size

can assign to any cycle a sequence of n − 1 vertices by starting from some vertex in that
cycle and making n−2 steps along it; different cycles will give different sequences. For each
cycle of length m in G there are

2m(n logn+1)

cycles in G′. Hence, if G′ is not Hamiltonian (there are no cycles of length n) then the
upper bound for the number of cycles in G′ is

nn−1 · 2(n−1)(n logn+1) = 2n(n logn+1)−logn−1 .

Also we know that if G is Hamiltonian then G′ will have at least

2n(n logn+1)

cycles.
Problem of determining if graph is Hamiltonian is known to be NP-complete. Using our

approach we can check if number of cycles in graph G′ is larger or equal than 2n(n logn+1). If
it is larger or equal, then G is Hamiltonian, if it is smaller, then it is not Hamiltonian. Since
all our computation was made in polynomial time in FP (by assumption) then it turns out
that we can solve NP-complete problem in polynomial time, which will imply NP ⊆ P (and
P ⊆ NP is obvious).

#P-completeness

Definition 3 Function f : {0, 1}∗ → N is #P-complete if f ∈ #P and FP f = #P . In
other words completeness is achieved when function belongs to the class (obviously) and
polynomial functions g ∈ FP using f -Oracle can solve any problem in #P. ♦

Theorem 3 #SAT is #P-complete.

#SAT answers the question of how many satisfying valuations particular Boolean for-
mula has.

13-2



Proof The proof goes exactly as for ”SAT is NP-complete” theorem from Lecture 3.
Only difference is that now we are interested not only in the fact some of the branches will
accept, but also in how many of them will accept. We can compute it since our reduction
of SAT to a graph preserved all the computation paths and the certificates.

Perfect matching in bipartite graphs

Definition 4 Perfect matching of undirected (not necessarily bipartite) graph G is set S
of edges, such that each vertex of a graph is incident with exactly one edge in S. ♦

Figure 2: Not a perfect matching Figure 3: Perfect matching

Definition 5 Graph G is called bipartite is it’s vertices set V can be divided into two
disjoint subsets V1 and V2 such that there is no edge between any two vertices in V1 and no
edge between any two vertices in V2 (all existing edges go from V1 to V2 or vice versa). ♦

We will consider bipartite graphs where |V1| = |V2|.

Figure 4: Bipartite graph

Graphs can be represented as adjacency matrices. For a bipartite graph where the sizes
of the parts are x and y, the adjacency matrix can have x rows and y columns, where each
entry indicates whether there is (1) or is not (0) an edge between the corresponding vertices

13-3



in the first and the second part. Here is the representation of the graph from Figure 4.

A =


1 0 0 1
0 1 1 0
0 1 1 0
1 0 1 1



Permanent of a matrix

Definition 6 Permanent of a matrix A is

perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Si is a set of a permutations {1, . . . , n}.
In other words permanent is sum of multiplications of the elements taken in such way that
all factors inside one summand come from different row and column. ♦

perm


1 0 0 1
0 1 1 0
0 1 1 0
1 0 1 1

 =

(1 · 1 · 1 · 1) + (1 · 1 · 0 · 1) + (1 · 1 · 1 · 1) + (1 · 1 · 0 · 0)+

(1 · 0 · 1 · 1) + (1 · 0 · 1 · 0) + (0 · 0 · 1 · 1) + (0 · 0 · 0 · 1)+

(0 · 1 · 0 · 1) + (0 · 1 · 0 · 1) + (0 · 0 · 0 · 1) + (0 · 0 · 1 · 1)+

(0 · 0 · 1 · 1) + (0 · 0 · 0 · 0) + (0 · 1 · 0 · 1) + (0 · 1 · 0 · 1)+

(0 · 0 · 0 · 0) + (0 · 0 · 1 · 1) + (1 · 0 · 1 · 1) + (1 · 0 · 1 · 0)+

(1 · 1 · 0 · 1) + (1 · 1 · 1 · 1) + (1 · 1 · 0 · 0) + (1 · 1 · 1 · 1) =

1 + 0 + 1 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 1 + 0 + 1 = 4

Note If summand is 1 then the permutation corresponding to this summand gives us a
perfect matching in the graph. If it is 0 then there is no matching. Permanent = number
of perfect matchings for a graph.

Definition 7 A cycle cover of a directed graph is a set of cycles, such that each node is on
exactly one cycle. ♦

Theorem 4 Perm is #P-complete (even for 0,1-matrices)

13-4



Figure 5: Cycle cover

Proof First of all, note that the permanent of the adjacency matrix of an arbitrary
directed graph denotes the number of cycle covers in it. If one summand of the permanent
is 1, it means that all the arcs that we have chosen for that summand form a cycle cover.
They may belong to a single cycle, but there may also be several cycles. A vertex may be
even connected to itself. If the summand is 0, it means that the connection is lost for at
least one of the arcs, and it gives us no cycle cover.

If the arcs of a graph have weights, we may include the weights into the adjacency
matrix. This permanent would be less sensible (it does not represent the number of cycle
covers anymore), but we will need it for our further proof. If the arcs have weights then we
define the weight of a cycle cover as the product of the weights of the arcs in this cover. In
such manner, the permanent of the adjacency graph would equal the sum of the weights of
all cycle covers.

Now we are going to show how to reduce #SAT to perm. Since we have already proved
that #SAT is #P -complete, we will show that perm is also #P -complete. First, we show
that it holds for the permanents that use arc weights, and afterwards we show that it holds
even for 0,1-matrices.

In a previous lecture, we have seen that 3-CNFSAT is NP complete. Furthermore, the
reduction (from SAT) we used to show this preserves the number of certificates. Therefore,
it is sufficient to show that we can reduce #3-CNFSAT to perm.

Suppose that we are given a boolean formula in 3-CNF .

ϕ = C1 ∧ C2 ∧ . . . Cm ,

where Ci denote clauses that consist of at most three variables:

Ci = li1 ∨ li2 ∨ li3 .

We have shown that perm denotes the number of possible cycle covers in a graph. Now
we need to construct a graph G corresponding to the formula ϕ, such that the number of
satisfiable evaluations in ϕ is equal to the number of cycle covers in G. This construction is
not trivial, and first of all it requires construction of some auxiliary parts (so-called gadgets).

First of all, we will construct a graph G′. It will be similar to G, but it will contain
some weighted edges. Later, we will show how to get rid of them.

13-5



• Variables: for each variable in ϕ, we define the following construction:

Figure 6: Variable gadget

Each outer edge represents an association with a clause. The numbers of true- and
false-edges are equal to the number of times the variable occurs in a clause either
positively or negatively. Note that the variable cannot be at once true and false in a
single circuit over (see Figure 7).

Figure 7: True and False states of a variable

• Clauses: for each clause in ϕ, we define the following construction:

Figure 8: Clause gadget

The external edges here represent associations with variables. It works in a reversed
way: if the variable is true, then its corresponding external edge belongs to the cycle
cover, but the edge on the clause’s side does not belong to the cycle cover. We can
represent any true-false combination of the three variables on this graph, as it is shown
in Figure 9.

• XOR: unfortunately, we cannot connect variables and clauses directly. It is important
to maintain correctess: if the variable is true, then it must indeed be true in each

13-6



Figure 9: Possible covers of a clause gadget

clause. We need to be sure that exactly one of variable’s external edge and the
corresonding clause’s external edge belong to the cycle cover. They cannot belong to
it at once, and it is also impossible that none of them belongs to the cover. We need
one more auxiliary construction.

Figure 10: XOR gadget

Let uu′ denote an edge in a variable gadget, and vv′ in a clause gadget. We can
indeed choose edges in such a way that both uu′ and vv′ do not belong to the cover.
Therefore, we need to introduce weights.

In this case we want the perm of this construction be 0. Then the perm of the whole
graph will be 0 (because of multiplication by 0), and this cover will therefore not be
included in the answer. The given XOR construction indeed provides this property
(see Figure 11).

On the other hand, if we consider exactly one of uu′ and vv′, we need to be sure that
the sum will not be 0. Let us consider all the possibilities for both cases.
As we can see from Figure 12, for the path uu′ we have 1+(−1)+2+1+2+(−1) = 4
cycle covers.

13-7



Figure 11: Introducing both uu′ and vv′

From Figure 13, for the path vv′ we also have 1 + 3 = 4 cycle covers.

We have got that the number of cycle covers of XOR graph is exactly 4. Since each clause is
connected to three variables, there are 3 XOR nodes, and their perm together is 4 (neither
the variable gadgets nor the clause gadgets do anything to number of cycle covers since
their edges have weight 1).

We have m clauses in total. The whole graph G′ would have perm = 43m cycle covers,
and that’s for only one particular evaluation. In general, there are #ϕ evaluations that
return positive values for the permanent. Therefore, we can say that perm(G) = 43m ·#ϕ.
We can compute directly #ϕ = perm(G)/43m.

We have reduced #SAT to perm, but there are some numbers that are neither 0 nor 1.
It would be good to reduce the graph G′ to the graph G, where all the edges are of weight
1, and where the same properties hold.

• Each positive edge with weight k can be split to k edges of weight 1. The answer
does not change since we get k possiblities instead of 1, and summing them together
we get back the proper value. The problem is that multiple edges between the same
vertices are not permitted. We need to put an intermediate vertex into each of the
new edges, and each of these intermediate vertices need a loopback edge that would
keep the number of cycle covers consistent.

• There are more problems with the negative edges. We can split them also, but one of
them will have weight −1. We want to get rid of negative weights.

If there are n vertices in a graph (n variables in a formula), then the permanent will
be somewhere in the interval [−n!, n!]. We can pick m so that 2m >= 2n!, and can
therefore compute everything mod 2m+1 without loss of precision. The values −1 will
therefore become 2m. We can handle them in the same way as we handled positive
edges. In order to reduce exponential number of edges, we may split the edge first of

all sequentially. For example, if we have u
−1−→ v, we first transform it to u

2m−→ v, and
then to

u
2−→ u1

2−→ . . .
2−→ um−1

2−→ v .

We have still some edges left with weight 2. They can be handled as ordinary positive
edges (transformed to two edges of weight 1 with additional vertices in the middle).

13-8



Figure 12: Cycles for uu′

In conclusion, we have reduced #SAT to perm, and since #SAT solves any problem in
#P , we get that perm can also solve any problem in #P . We get that perm is #P -complete
even for 0,1-matrices.

Optimization

An optimization problem consists of:

• Relation ρ ⊆ {0, 1}∗ × {0, 1}∗, where x ρ y means that y is a feasible solution to the
problem x.

• cost function c : {0, 1}∗ → N, which computes the cost of an answer to the given
problem (each problem uses its own costs).

• Direction of optimization (maximization / minimization).

The optimization problem ”does there exist a feasible solution to the problem x of cost at
most/least K?” can be denoted as 〈x, ρ, c,K〉. If ρ, c are polynomial-time functions, then

13-9



Figure 13: Cycles for vv′

〈x, ρ, c,K〉 ∈ NP. Given a cerificate y, we need to check if x ρ y and if c(y) ≤ K. Both
things can be done in polynomial time.

An example of an optimization problem is a maximum satisfiability problem MAXSAT.
Given Boolean formulas ϕ1, . . . , ϕm with the same variables x1, . . . , xn, find a valuation of
these variables that satisfies as many of ϕ1, . . . , ϕm as possible. The answer does not need
to satisfy all of them.

A similar problem is k-MAXSAT, where each of the formulas ϕi depends on at most k
variables.

There exist more optimization problems: traveling salesman, independent set, vertex
cover, knapsack, . . .

Approximability

Let 〈ρ, c〉 be an optimization problem. For any x ∈ {0, 1}∗, let opt(x) be the cost of optimal
feasible solutions to x.
Definition 8 Algorithm M is an ε-approximation algorithm for 〈ρ, c〉, if for all (sufficiently

large) x ∈ {0, 1}∗:

• x ρ M(x) — M(x) is a feasible solution to x.

• |c(M(x))−opt(x)|/max{c(M(x)), opt(x)} ≤ ε— the relative difference betweenM(x)
and the optimal answer is bounded by some ε.

♦

Particular cases:

• A 0-approximation algorithm finds an optimal feasible solution. There is no difference
from the optimal answer.

• A 1-approximation algorithm finds any feasible solution. The difference can be as big
as possible, and it cannot be greater than 1 because |c(M(x)) − opt(x)| cannot be
greater than max{c(M(x)), opt(x)}.

An optimization problem can be ε-approximated if it has a poly-time ε-approximation al-
gorithm.

13-10



Example 1 Vertex cover problem can be 1/2-approximized.

Suppose that we are given a graph G where we need to solve vertex cover problem. The
optimal solution would be the smallest vertex cover, so that this problem is a minimizing
excercise. We propose an algorithm that finds an 1/2-approximated solution. It means that
the answer of this algorithm does not exceed the optimal answer more than 2 times.

Algorithm: we will collect the vertex cover into a set K. Initially, K is empty. On
each step, we take two arbitrary adjacent vertices u and v from the graph. Then we claim
these vetices now belongs to the set K and remove them from the graph along with all the
edges that connect to them. We repeat the step and take some other two vertices. We do it

Figure 14: Taking two arbitrary vertices and deleting the edges

until all the edges have been removed from the graph. The set K is indeed a vertex cover,
but it is not the optimal one. The size of K is however at most 2 times larger than the size
of the optimal vertex cover, since at least one of the vertices u and v was really necessary
for the vertex cover (otherwise, the edge between them would not be covered).

Example 2 If travelling salesman problem can be ε-approximized with ε < 1, then P = NP.

Suppose that we have a set of towns (probably a country). The towns are connected with
roads. A travelling salesman lives in a certain town. He wants to visit all the other towns
an return back to his hometown afterwards. The travelling salasman problem asks what is
the shortest path that he has to travel by visiting each other town only once. This problem
can be represented by an undirected weighted complete graph G = 〈V,E〉, where each
vertex is a town. Let n := |V |. If there exists a road between cities u and v, we mark the
corresponding edge with weight 1. If there is no road, we mark it with some L > 1. If the
graph G has a Hamiltonian cycle, it means that there exist a salesman tour of of length n.

Now suppose that we can solve it in K · opt time for a fixed K. Construct the graph
G as it is shown in Figure 15. If there is no road between two cities, we mark it with L,
where L := K · n+ 1. By solving travelling salesman problem we can decide if the graph G
has a Hamiltonian cycle.

• Hamiltonian⇔ ∃ way of length n, and the answer of our K-approximated algorithm
is at most K · n.

• Not Hamiltonian⇔ each way has length ≥ L+(n−1) = K ·n+1+n−1 = K ·n+n =
n · (K + 1).

The answers are distinguishable! We can decide if the graph is Hamiltonian.

13-11



Figure 15: Travelling salesman problem as a graph

If a problem can be ε-approximized, then, according to the definition, it has a polynomial
time approximization algoritm. We have solved the problem in polynomial time, and since
deciding if the graph is Hamiltonian is NP-complete, we get that P = NP.

Various complexity classes

We can define special complexity classes for optimization problems.

• NPO — all optimization problems with poly-time ρ and c.

• APX — ε-approximable problems, where ε < 1. APX ( NPO if we assume that
travelling salesman is non-approximable (that P 6= NP).

• PTAS — ε-approximable problems, for any ε > 0. Can be seperated from APX
by defining artificial problems. For examle, given a propositional formula ϕ, find
the evaluation such that ϕ is true. Feasible solution is any valuation of variables.
Additionally, define the const function c: c(x1, . . . , xn) = 1 iff ϕ(x1, . . . , xn) = true,
otherwise c(x1, . . . , xn) = 2. This problem belongs to APX, but does not belong to
PTAS (can be approximized for some ε, but not for any ε).

– The mapping ε → Mε must be poly-time, where Mε is the ε-approximation
algorithm.

• FPTAS — there exists an algorithm M(x, ε), such that

– M(·, ε) is a ε-approximation algorithm.

– Running time of M(x, ε) is bounded by q(|x|, 1/ε) for some polynomial q.

It can be separated from PTAS by BIN PACKING problem, where objects of different
volumes must be packed into a finite number of bins of a certain capacity in a way
that minimizes the number of bins used. This problem can be approximized with
any ε > 0, but the running time of the approximation algorithm is not polynomially
bounded.

In conclusion, we get that FPTAS ⊆ PTAS ⊆ APX ⊆ NPO. All inclusions are strict unless
P = NP.

13-12


