
MTAT.07.004 — Complexity Theory September 15th, 2011

Lecture 3

Lecturer: Peeter Laud Scribe(s): Ilya Kuzovkin

Introduction

During this lecture we went through proofs for four theorems.

Multi-tape Turing Machine → Two-tape Turing Machine

Theorem 1 Let machine M with k tapes accept a language / compute a function in time
T . There exists a TM M ′ with two tapes that accepts the same language / computes the
same function in time O(λn.T (n)2)

Intuitively put it means that if we can solve a problem on a turing machine with k-tapes
we also can come up with a 2-tape turing machine which will be able to solve same problem
in time O(T (n)2)

Figure 1: M and M ′

Proof The original TM M had one input tape and k − 1 work tapes. The machine M ′

we’re constructing will have just a single working tape. To write all data from k tapes onto
one tape we do the following: we take every first symbol from k tapes and put them onto
k first positions of the target tape. First symbol from first tape goes to position 1, first

3-1

Figure 2: Representing k tapes on 2 tapes

symbol from second tape goes to position 2, first symbol of the kth tape goes to position k.
Then we start transferring second symbols: second symbol from first tape goes to position
k+1, second symbol from second tape to position k+2, kth symbol from second tape to
position k + k and so on. In such way we transfer all data from k tapes to one single tape.

Only thing we left to store is position of the heads. For recording those, we increase
the tape alphabet. If Γ was the tape alphabet of M , then the tape alphabet of M ′ will be
Γ×{0, 1}. The second component indicates whether a head of some tape of M is located at
this position (this is denoted as 1) or not (this is denoted as 0). As you can see on Figure
3, on the second tape we have head on position 3 – we mark corresponding position on the
target tape as 1.

Performing one step on machine M takes constant time. You just pass the instructions
to every head and it performs a step.

Now if we look at machine M ′ then we can see that for performing 1 step it has to scan
through all the tapes to find out there heads are at the moment. After we have done that
we will have to scan through the tape once more to apply all the operations we have to do
to perform a step. So performing one step on machine M ′ will take time 2n ∈ O(n).

Consequently, if we want to perform n steps with temporal cost of O(n) each, we will
have to spend O(n2) time.

Theorem 2 Let machine M with k tapes accept a language / compute a function in time
T . There exists a TM M ′ with two tapes that accepts the same language / computes the
same function in time O(λn.T (n)logT (n))

Proof To do that we have to come up with more sophisticated way of representing k
tapes on 3 tapes. In this machine we will use 3 tapes instead of 2. Third tape will be used
to temporary store data we want to move during the step.

We imagine our resulting data tape in machine M ′ has k layers – one for each tape in
machine M .

3-2

Figure 3: Representing k tape as one tape with k layers

We have only one head in machine M ′. To simulate movement of the head in M we
move the corresponding layer of the tape of M ′. For example if we move second head of
the original machine to the left, we move second layer to the right. Such operation will
require to rewrite every symbol on the layer we moved, which will take linear time. So this
”layer”-trick alone will do no good – we still will have to do n operations in M ′ for every
step in M .

Next trick we make we split each layer into groups Ri and Li in such way that |R1| =
|L1| = 1 and |Ri| = |Li| = 2|Ri−1| = 2|Li−1|

Figure 4: Splitting layer into groups of exponentially growing size

We introduce new symbol ∅ to the alphabet, which will denote empty space. For the
machine M ′, the symbol ∅ will serve as the blank symbol on the tapes. The blank symbol of
M is just an ordinary symbol for M ′. We prescribe the following invariants for the contents
of the cells in Ri and Li

• Each Li, Ri is one of {empty, full, half-empty = half-full}

– Here “empty” means that all cells in the group are ∅. “Full” means that none of
the cells are ∅. “Half-full” means that exactly half of the cells are ∅.

• Ri + Li is always half-empty

• Position 0 is always full, so we can always read from it

Consider we want to make one step to the left. Then we will move the layer to the right.
If L1 is empty then there is no problem, we move data from 0-position to L1, from R1 to
0-position and we are done.

But it may happen that Li is full and we cannot put anything there. In that case we
act as follows:

1. Move head to the right until not empty cell Ri found (i = min(Ri not empty)).
Suppose in our example i = 3, which means R3 is first not empty cell

3-3

2. Write elements from R3 to the third tape

3. Move these element to the cells R2 and R1 making them half-full

4. In the mirrored way cells L1 and L2 will be moved to cell L3 to preserve the balance
rule ”Ri + Li are always half-empty”. So if L1 and L2 were full they will become
half-full. Li will become half-full (if it was empty) or full (if it was half-full)

5. In the end of those transactions cells {Li−1, . . . , L2, R2, . . . Ri−1} are half-full

This corresponds to 1 step in original machine M . Time in M ′ will be O(2i), where
i goes up to log(Time of orignal machine M). Pair Ri&Li is considered at most once per
2i−2 steps. Knowing number of time they are considered and time cost of one step we can
calculate total running time of machine M ′

T ′ ≤

≤
dlog T e∑
i=1

(number of times Ri&Li are considered) · (time cost of the step) ≤

≤
dlog T e∑
i=1

T

2i−2
·O(2i) ≤see Note

≤
dlog T e∑
i=1

T ·O(1) =

= log T · T · c

Note This step can be done because
O(2i)

2i−2
= c (constant)

logT · T · c ∈ O(T log T)

Speeding up a TM

Theorem 3 Let a TM M compute a function / accept a language in time T . Then for
each c ∈ N there exists a TM M ′ and constant c′ such that M ′ computes the same function
/ accepts the same language in time λn.1cT (n) + c′n

In other words we can speed up a Turing Machine by any number of times c, but we
receive penalty from c′ (at some point penalty will be so big that there will be no point in
increasing c).

3-4

Proof

Figure 5: Original machine M and machine M ′ which works ≈ c times faster

Assume c = 5 and we have a piece of tape of length 100.

Figure 6: Two tapes of two different machines which hold same 101 symbols

Now imagine a task ”read 99th symbol on the right”. On the M it will look like ”go
99 times to the right, read”, which is 100 steps. On the M ′ same task will look like ”go
19 times to the right, read” (note that during the read, the contents of all five cells of the
tape of the original TM will be read), which is 19 + 1 = 20 steps. The speedup will be
100

20
= 5 and you can see with n→∞ this number will go to c. Penalty c′n comes from the

requirement to encode the input of the TM M .

SAT problem is NP-complete

Theorem 4 SAT is NP-complete.

Proof Assume we have NTM which solves some particular problem in polynomial time.
This NTM defines its configuration graph where the nodes are the configurations of this
NTM and there is an arc from one configuration to another one if the NTM can go from
the first configuration to the second one in a single step. Notice that because of the non-
determinism, there can be several outgoing arcs in each node.

3-5

A configuration 〈q, tapes, heads〉 of the NTM is

• q is current state

• tapes is set of words w1, . . . , wk on all k tapes

• heads is a set of positions of the heads s1, . . . , sk

Let Q = {q1, . . . , qN} be the set of states of our NTM and Γ = {γ1, . . . , γm} be its tape
alphabet.

Let x be the input to the NTM. The NTM accepts x iff there exists a path of length
polynomial in |x| from the initial state corresponding to x to some accepting state. As the
length of the path must be polynomial, the configurations it passes are of polynomial size
as well. Let ` be the maximum size of configurations we have to consider.

We can encode a configuration with the help of the following boolean variables.

• The variable statei, where 1 ≤ i ≤ N . The variable statei is true the current state in
the configuration is qi

• The variable Tape[r, s, t] denotes the fact that on the tape r in position s there is
symbol t

– Length of word on the tape |wi| ≤ `
– 1 ≤ r ≤ k
– 1 ≤ s ≤ `
– 1 ≤ t ≤ m

• The variable pos[r, h] denotes the fact that head of the tape r is on position h

NTM can be represented as a graph

Figure 7: NTM as a graph

Now we represent the graph as Boolean formula:

3-6

• Each vertex is a NTM configuration Ci and in formula it is encoded through a number
of boolean variables ui1, . . . , u

i
n

• The formula S(u1, . . . , un) indicates that the values of the variables u1, . . . , un encode
an actual configuration that is present in the graph.

• The formula R(u1, . . . , un, u
′
1, . . . , u

′
n) indicates whether we can go from configuration

C encoded by u1, . . . , un to the configuration C ′ encoded by u′1, . . . , u
′
n in a single

step.

• The formula Φ◦(u1, . . . , un) indicates that u1, . . . , un encode the initial configuration
of the NTM corresponding to the input x.

• The formula Φ•(u1, . . . , un) indicates that u1, . . . , un encode an accepting final con-
figuration.

• Path from the initial configuration corresponding to x to a final configuration is the
conjunction of all necessary conditions for the path to exist:

1. Φ◦(u01, . . . , u
0
n) exists

2. Each intermediate configuration exists: S(ui1, . . . , u
i
n)

3. There are all necessary transitions from Ci to Ci+1

4. At least one of the configurations we will end up in is final configuration:∨k
i=0 Φ•(ui1, . . . , u

i
n)

All these conditions can be expressed as one Boolean formula, if it is true then path
exists.

Φ◦(u01, . . . , u
0
n)∧
(∧̀
i=1

S(ui1, . . . , u
i
n)∧R(ui−11 , . . . , ui−1n , ui1, . . . , u

i
n)

)
∧
(∨̀
i=0

Φ•(ui1, . . . , u
i
n)

)
where S is

S ≡ exactly one(state1, . . . , stateN)∧∧
r,s

exactly one(tape[r, s, 1], . . . , tape[r, s,m])∧

∧
r

exactly one(pos[r, 1], . . . , pos[r, `])

which means that machine can be exactly in one state, on every tape there can be exactly
one symbol on each position and every tape’s head can be exactly in one position at a time.
exactly one can be formally expressed as

exactly one(x1, . . . , xn) = ¬(¬x1 ∧ . . . ∧ ¬xn) ∧
∧

1≤i≤j≤n
(xi ⇒ ¬xj)

and R is

R ≡
∨

(q,γ1,...,γk,q′,γ
′
1,...,γ

′
k,p1,...,pk)∈σ

(
// find one transition which can be done

3-7

stateq ∧
(∧
r,s

pos[r, s]⇒ tape[r, s, γr]

)
∧ // state before transition

state′q′ ∧
(∧
r,s

pos[r, s]⇒ tape′[r, s, γ′r]

)
∧ // state after transition

(∧
r,s

pos[r, s]⇒ pos[r, s+ pr]

)
∧ // heads change position

(∧
r,s

¬pos[r, s]⇒
∧
t

tape[r, s, t]⇔ tape′[r, s, t]

))
// symbols not under the heads do not change

The transition σ is defined as σ ⊆ (Q× Γk)× (Q× Γk−1 ×Movek)

We put R and S into the Boolean formula and if it is satisfiable then is satisfying
valuations encode possible paths from the initial state to accepting final states, which means
that NTM accepts.

3-8

