
MTAT.07.004 — Complexity Theory September 22th, 2011

Lecture 4

Lecturer: Peeter Laud Scribe(s): Ilya Kuzovkin

Introduction

During this lecture we looked at the proof of the halting theorem, which shows what is
halting problem about. After that we prove two theorems (for deterministic and non-
deterministic cases) which say that for every two problems f and g there is problem p,
which takes more time than f , but less than g. Proved existence of a problem which is
not NP-complete (in case if P 6= NP). Talked about NP-intermediate problems and looked
into some philosophical notes about P complexity.

The Halting Problem

Theorem 1 If we define language

HALT = {〈α, x〉|Mα stops on input x}

then this language is not accepted by any Turing Machine.

Proof Assume there is TM MHALT which accepts language HALT. Let there be an-
other Turing Machine M ′ which takes x as input and invokes MHALT(〈x, x〉) (Run machine
encoded by x with input x).

We define M ′ behaviour as follows: if MHALT accepts, then M ′ will work indefinitely, if
MHALT rejects then M ′ will return 1.

Now let us say β is encoding of machine M ′ and we run M ′(β). We have two cases:

M ′(β) will stop⇔MHALT(〈β, β〉) rejects⇔

⇔Mβ(β) will not stop ≡M ′(β) will not stop

Contradiction!

And second case

M ′(β) will not stop⇔MHALT(〈β, β〉) accepts⇔

⇔Mβ(β) will stop ≡M ′(β) will stop

Contradiction!

4-1

Deterministic Time Hierarchy Theorem

Theorem 2 Let f and g be two time-constructible functions, such that f(n) > n and
λn.f(n) log f(n) ∈ o(g). Then DTIME(f) (DTIME(g)

In other words there always is a function p which takes more time than f , but less than g.

Proof We introduce new function h such that it is more complex that f , but less complex
than g:

• h ∈ ω(f)

• h(n) log h(n) ∈ O(g)

We define language D

D = {α ∈ {0, 1}∗ | accepts α in ≤ h(|α|) steps}c

Note that c here means complementary – D consist of all such α which do not satisfy the
condition in the brackets.

We pick languge L ∈ DTIME(f), and let machine M accept that language in time c · f
We pick α such than Mα = M and h(|α|)

f(|α|) > c.

If α ∈ L⇒

⇒Mα(α) accepts with ≤ c · f(|α|) steps ⇒

⇒Mα(α) accepts with ≤ h(|α|) steps ⇒

⇒ from the definition of D we can see that α /∈ D ⇒

L 6= D

At the same time D ∈ DTIME(g) because, as if follows from the definition of D, we can
accept or reject α in time ≤ DTIME(h) ≤ DTIME(g)

Non-deterministic Time Hierarchy Theorem

Theorem 3 Let f and g be two time-constructible functions, such that f(n) > n and
λn.f(n+ 1) ∈ o(g). Then NTIME(f) (NTIME(g)

This theorem state the same fact as previous one, but for non-deterministic time. We can-
not construct the proof in the same way as the previous one because there we had, that
then machine rejects in accept on the complementary set of α. When dealing with non-
deterministic machines we cannot say that – if one branch reject, the α can be still accepted
in some other branch.

4-2

Proof We introduce two new functions h and h′ so that f(n + 1) ∈ o(h′), h′ ∈ o(h),
h ∈ o(g), or we can say that in terms of time complexity f ≤ h′ ≤ h ≤ g.
Also we define a new function ϕ as follows:
ϕ(1) = 2
ϕ(i+ 1) = 2h(ϕ(i))

Let ϕ̃(n) = max{i | ϕ(i) ≤ n} (provide the argument i, with which ϕ value is closest to n
from the left).
Function ϕ is used to split the set of natural numbers (or: lengths of bit strings) into sets,
such that each next set exponentially larger then previous.
Next we define language D:

D =

1n

∣∣∣∣∣∣∣∣
i := ϕ̃(n)− 1
n 6= ϕ(i+ 1) and Mi accepts 1n+1 in time h′(n)
OR

n = ϕ(i+ 1) and Mi rejects 1ϕ(i)+1 in time g(ϕ(i) + 1)


This can be represented with following figure:

Figure 1: Representation of definition of D

We have machine Mi which accepts language Li in h′ steps.
The rule is that element n ∈ D iff n+ 1 ∈ Li, where i is argument of ϕ.
And one additional rule says that ϕ(i+ 1) ∈ D iff ϕ(i) + 1 /∈ Li

We want to show that D /∈ NTIME(f) and D ∈ NTIME(g)

D ∈ NTIME(g)

First we compute ϕ(1), ϕ(2), ... until n in order to find ϕ̃(n). We can do it in such naive
way since it will take only logarithmic time.
If n 6= ϕ(i+ 1) when just simulate Mi and see if n+ 1 ∈ Li. This is doable in h′ time.

4-3

The situation is more complicated when n = ϕ(i+1). In this case we have to search through
all possible computational paths of Mi to make sure it rejects on every path (only then we
can accept n to D). Here comes in play that every ϕ(i+1) is exponentially larger than ϕ(i).
This gives us time to compute all O(2g(ϕ(i)+1)) paths of Mi. Since both cases are doable in
time less than g (by definition of D) we can say that D ∈ NTIME(g).

D /∈ NTIME(f)

Let language L ∈ NTIME(f). L is accepted by machine Mi. Now we assume that L = D.

Figure 2: Illustration of contradiction

Now, when we assumed that L = D we have three rules:

1. n ∈ D iff n+ 1 ∈ Li (by definition) – solid line on the Figure 2

2. ϕ(i+ 1) ∈ D iff ϕ(i) + 1 /∈ Li (by definition) – bold dashed line on the Figure 2

3. n ∈ D iff n+ 1 ∈ Li (new rule comes from L = D) – dashed line on the Figure 2

Now if we apply these rules one by one we see:

If p ∈ Li ⇒(rule 3) ϕ(i) ∈ D ⇒(rule 1) o ∈ Li ⇒(rule 3) a ∈ D ⇒(rule 1) . . .⇒(rule 3) ϕ(i+ 1) ∈
D ⇒(rule 2) p /∈ Li ⇒ Contradiction!

In the same way the second case

If p /∈ Li ⇒(rule 3) ϕ(i) /∈ D ⇒(rule 1) o /∈ Li ⇒(rule 3) a /∈ D ⇒(rule 1) . . .⇒(rule 3) ϕ(i+ 1) /∈
D ⇒(rule 2) p ∈ Li ⇒ Contradiction!

We have showed D /∈ NTIME(f).
Now we know that D ∈ NTIME(g) and D /∈ NTIME(f), which means NTIME(f) (
NTIME(g).

4-4

Existence of not NP-complete problems

Theorem (Ladner) 4 If P 6= NP then there exists a language A ∈ NP\P that is not
NP-complete.

Proof We will prove by constructing such language A. First we define a few things.

• M1,M2, ... will be polynomial-time DTM such that language Li is accepted by machine
Mi

• f1, f2, ... will be polynomial-time computable functions such that Mi computes fi in
time O(ni)

We define A as
A = {x ∈ {0, 1}∗ | x ∈ SAT and g(|x|) is even}

The function g is defined below.
Function g(n) is defined as follows:
g(0) = 2
g(1) = 2
For n ≥ 2 we do following recursive iterations:

1. take u to be largest such that g(u) was computed

2. k = g(u)

3. i =
⌊
k
2

⌋
4. for j ∈ {0, 1, 2, ...}

(a) If k is even check Bj ∈ Li XOR Bj ∈ A
(b) If k is odd check Bj ∈ SAT XOR fj(Bj) ∈ A
(c) Now look at XOR result – if it is true return k + 1, if false return k

Note: since function itself does not have any boundaries and will work indefinitely, we will
use a counter in the parallel process, which will stop the execution of the computation after
n time units (for example seconds) have passed.

We will go through three claims which together show that A is in NP, but is not in P
and is not in NP-complete.

A ∈ NP

To accept or reject we have to check if x is in SAT. This is NP problem. We also have to
compute g(|x|), which can be done in time O(|x|). so A belongs to NP by definition.

4-5

A /∈ P

Assume A ∈ P. In that case there is language Li = A. Let us consider smallest such i.
In that case g(n) will never be more that 2i.

If during the iterations g(n) will be most of the time 2i it will mean that XOR after
some point will become always false ⇒ it is stuck in the ”k is even” branch (step 4.a) ⇒
the result in ”k is odd” will give us only finite set for SAT:

A SAT

A ∆ SAT

And because A ∈ P and SAT differs from A only for a finite number of bit-strings x, we
can compute SAT in polynomial time ⇒ Contradiction!

On the other hand if g(n) has not reached 2i and most of the time equals 2i+ 1 it will
mean that iterations are stuck in the ”k is odd” branch (step 4.b) ⇒ XOR gives false ⇒
There is B ∈ SAT and f(B) ∈ A ⇒ SAT ≤pm A ⇒ since A ∈ P then due to reducibility
SAT is also in P ⇒ Contradiction!

SAT is not reducible to A

If we show that SAT is not reducible to A we will show that A is not in NP-complete.
Assume SAT is reducible to A. Then there should be such fi that fi(SAT) = A.
We in the same way as in the previous section: g(n) never grows past 2i+ 1.

If g(n) = 2i + 1 most of the time, then it is stuck in the branch 4.b and A will be fi-
nite ⇒ A ∈ P ⇒ SAT ∈ P ⇒ Contradiction!

And another case if g(n) = 2i most of the time ⇒ stuck in 4.a branch ⇒ there is Li = A
⇒ since Li ∈ P then also A ∈ P ⇒ SAT ∈ P ⇒ Contradiction!

NP-intermediate problems

Problems which are in NP, but are not in P or NP-complete are called NP-intermediate.
There is no proof of existence of such (otherwise it would mean that P 6= NP), but there
are several problems which are considered to be a good candidates to be NP-intermediate:

• Finding whether two graphs are isomorphic

• Integer factorisation

• Discrete logarithm problem

4-6

Note about polynomial complexity

In practice, we are interested in the complexity class P because our experience shows that
if we find a solution to some practically significant problem in time p(n), where p is a
polynomial and n is the size of the problem instance, then we eventually also find a solution
that works in time q(n), where q is a polynomial with a small degree. Such solution is
practical and so we think of the complexity class P as the class of “problems solvable in
practice”.

In theory, it is not the case that for any polynomial-time solution we’ll find an equivalent
one that only has a small degree. As a simple application of the deterministic time hierarchy
problem, DTIME(λn.n99) (DTIME(λn.n100). Hence there exists a problem that is solvable
in time O(n100) (completely infeasible in practice), but is not solvable in time O(n99). We
can only assume that these problems do not have practical significance.

4-7

