
MTAT.07.004 — Complexity Theory October 13th-14th, 2011

Lecture 6

Lecturer: Peeter Laud Scribe(s): Riivo Talviste

1 Logarithmic memory

Turing machines working in logarithmic space become interesting when we are dealing with
problems with really large input. For example, when the input is the connectivity graph of
the internet.

It is important to remember that we only count the cells on the working tapes towards
the space (memory) that a given Turing machine uses. The input tape and the (read-only)
output tape are excluded.

2 Log-space reductions

Similarly to the polynomial-time reductions, we have log-space reductions.

Definition 1 Language L is log-space reducible to language L′ (denote L ≤L
m L′) if there

exists a function f : {0, 1}∗ → {0, 1}∗, such that

• f(x) is computable in space O(log |x|)

• x ∈ L iff f(x) ∈ L′.

♦
From the previous lectures we know that polynomial-time reductions are transitive. If

we have languages L, L′ and L′′, we can state that

L ≤P
m L′ ∧ L′ ≤P

m L′′ ⇒ L ≤P
m L′′.

This is trivial, as if we have a reduction function f for L ≤P
m L′ and a reduction function

g for L′ ≤P
m L′′, we can just use their composition h = g ◦ f as a reduction function for

L ≤P
m L′′. Since both f and g work in polynomial-time, h also works in polynomial-time.

Theorem 1 ≤L
m is transitive. If L ≤L

m L′ and L′ ∈ L then L ∈ L.

Proof We have languages L, L′ and L′′ and want to state that

L ≤L
m L′ ∧ L′ ≤L

m L′′ ⇒ L ≤L
m L′′.

Unfortunately, showing this is not as trivial as was in the case of polynomial-time. If we
have a reduction function f for L ≤L

m L′ and a reduction function g for L′ ≤L
m L′′, we can

again use their composition h = g ◦ f as a reduction function for L ≤P
m L′′, but not naively

by first computing the output of f and using it as input for g, because the output of f might
not fit into the logarithmic memory of h. Instead, we need a smarter way of computing h.

Recall from the previous lecture, that we have two ways to define Turing machines that
compute a function:

6-1

• The machine has an extra output tape. It is write-only and the head can only move
to the right.

• Languages Li and L′i must be in DSPACE(g) for all i, where

– Li = {x | |f(x)| ≥ i}
– L′i = {x |x ∈ Li ∧ i-th bit of f(x) is 1}.

• The recognition of languages Li and L′i must be uniform. I.e., there must exist a TM
M working in space g, such that x ∈ Li iff M(i, x) accepts. Also, there must exist a
TM M ′ working in space g, such that x ∈ L′i iff M(i, x) accepts.

Since we can freely choose between the two definitions, let us assume that the Turing
machine computing f uses the latter variant. That is, we have Turing machine:

• Mf (i, x) = true ⇐⇒ |f(x)| ≥ i, and

• M ′f (i, x) = true ⇐⇒ |f(x)| ≥ i ∧ i-th bit of f(x) is 1.

The computation model for g and h does really not matter, so let us just say that these are
computed by Turing machines Mg and Mh respectively.

Since h = g ◦ f , we can use the input tape of Mh as input tape for Mf and M ′f (that
is, for computing f) and the output tape of Mg as output tape of Mh. The only tricky
part is involving the output of computing f and the input of Mg. Again, since h works
in log-space, we cannot just precompute f(x) and feed this as input for Mg. Instead, we
calculate f(x) bit-by-bit. So Mh just runs Mg and whenever Mg needs to read the i-th bit
from its input tape, we just run M ′f (i, x) and return its value (converted from boolean to
bit).
Remark We can also choose to model the Turing machine computing f using the first
definition (ie. with write-only output tape), denoted by M̄f . Then, if Mg wants to read
the first input bit, it just runs M̄f until it outputs the necessary bit and then puts the
computation of f on hold (pauses M̄f) and carries on its own computation of g. For the
next input bit Mg can just resume M̄f until it outputs the next bit and pause it again.
However, whenever Mg wants to move left on its input tape, it has to restart M̄f from the
beginning and memorize how many bits it has to let it compute before taking over. The
latter requires an extra “counter” tape in Mg, but it will only take logarithmic amount of
memory.

3 NL-completeness

Definition 2 A language L is NL-hard if for any L′ ∈ NL we have L′ ≤L
m L. Language L is

NL-complete if it is NL-hard and belongs to NL. ♦

Theorem 2 PATH is NL-complete.

6-2

Proof From the previous lecture we already know that PATH ∈ NL. So we only have to
show that PATH is NL-hard, that is, for any L ∈ NL we have L ≤L

m PATH.
Let M be a non-deterministic Turing machine that accepts L ∈ NL in O(log n) space.

Let us define function f for the reduction L ≤L
m PATH:

f : {0, 1}∗ → (G,Cs, Ct) : x ∈ L ⇐⇒ f(x) ∈ PATH,

where G ∈ {0, 1}∗ is a graph representation of all the configurations of M , given by its
adjacency matrix and Cs is the initial configuration of M and Ct is a configuration with an
accepting state.

The function f is able to compute the adjacency matrix of M , because for every two
configurations C and C ′, f can check in O(log n) space whether C ′ is one of the at most two
(because we are using binary) configurations that follow C. Given G and two configurations
Cs, Ct of size O(log n), we can now non-deterministically decide in space O(log n) whether
there exists a path Cs → Ct.

4 DSPACE(0) and finite automata

The idea of DSPACE(0) is simple. If we are allowed to use only a constant number of
memory cells (space) then we can easily just hold the same information in the state of the
Turing machine and get rid of the working tapes altogether.

This way DSPACE(0) is equal to two-way finite automata — finite automata where in
each node there is an arrow showing in which direction the head reading the input moves.
In this case, if the input reading head goes over the edge on the right side (so it has read
all the input) we accept the input if the automata is currently in an accepting state and
reject it otherwise. However, if the reading head goes over the edge on the left side or the
machine goes into an infinite loop, we will reject the input.

For example, consider the following two-way finite automata, which on the input of
aaabba goes into cycle.

→start

← ←

→ →

a b

a
b

a
b

b

a

b

Claim 3 Two-way finite automata have the same power as (one-way) finite automata.

Sketch of Proof (Informal) A Turing machine corresponding to a one-way finite au-
tomata is a TM where the head on the input tape is only allowed to move to the right. We
show that a one-way finite automata can be used to simulate a two-way finite automata.

6-3

Let us have a two-way finite automaton M with states Q = {q0, q1, . . . , qn}. We will
construct a “regular” finite automaton M ′, where the head on input tape is only able to
move right. As long as M moves only to the right on its input tape, the automaton M ′

acts identically. However, suppose that M is in some state qi reading the k-th position
of the input string and wants to move its input reading head to the left. There are two
possibilities:

• either there exists some state qj where the reading head is back in the position k;

• or the head on the input tape never comes back.

In the former case, M ′ can just jump right from qi to qj and skip all the states inbetween,
in the latter case however, M ′ goes to a special rejecting state ⊥. So for simulating M ,
the machine M ′ must store, together with the current state of M , also a mapping f : Q→
Q ∪ {⊥} that describes the behaviour of M on left moves.

Theorem 4 A one-way finite automaton may need exponentially more states than a two-
way finite automaton with the same functionality.

To illustrate this, let us assume that for some n we have a language

Ln = {ww|w ∈ {0, 1}n},

that is a language of 2n-bit inputs, where two identical n-bit words are concatenated to-
gether. A two-way automaton could read the 1-st bit, then move to the n+1-st bit, compare
it to the 1-st, move back and read the 2-nd bit, move to the n + 2-nd bit, compare it to
the 2-nd bit and so on. This TM works in O(n2) time and must store at most one bit
of information about the input string at any time. This movement and storage may be
encoded in O(n2) states. However, a one-way automaton that can only move its head to
the right on the input tape, has to remember all n bits by the time it reaches n+ 1-th bit
on its input tape. Hence, this automaton would need 2n states.

4.1 Least amount of usable memory

Theorem 5 If s ∈ o(λn. log log n) then DSPACE(s) = DSPACE(0).

In other words, there are no other space complexity classes between the constant space
DSPACE(0) and DSPACE(λn. log log n). For example, the class DSPACE(λn. log log log n)
does not exist.
Sketch of Proof (Informal) Let M be a Turing Machine. Let it be a two-tape machine
(has only a single work tape) and let it always move the read-write head of its work tape
to the leftmost position before finishing the work.

Let f(n) be the maximum amount of memory that a Turing machine M uses given an
input x ∈ {0, 1}≤n. Let f−1(m) = min{n|f(n) ≥ m}.

Fix m. Let the input x ∈ {0, 1}f−1(m) be such that M(x) uses m space (memory cells).
Let the memory configuration of M consist of

• the data on its working tape;

6-4

• the position of the head on its working tape and

• the state of M itself.

Let Ck is the set of all possible memory configurations where the head on the working tape
is in position k.

Consider the following input:

�x1x2 . . . xr . . . xs . . . xf−1(m)22 . . . (1)

In positions r and s the sets of all possible memory configurations are Cr and Cs respectively.
Now, for some xr, xs, where xr = xs∧Cr = Cs, we could leave out the input symbols between
xr+1 and xs and get the following input:

�x1x2 . . . xrxs+1xs2 . . . xf−1(m)22 . . . (2)

It is easy to see that on both of these inputs M finishes with the same configuration and
with the head of the input tape in the same position. We can say that M does not notice
the input between xr+1 and xs. Hence M uses the same amount of memory on (2) as it
does on (1). This contradicts the choice of x as the input string of least length where M
uses at least m memory cells. Hence xr = xs implies Cr 6= Cs.

The machine M has a total of |Γ|m ·m · |Q| different memory configurations, where Γ
is its alphabet and Q is the set of M ’s states. The size of the set of all possible memory
configurations of M is given by 2|Γ|

m·m·|Q|. When we take into account that we have four
different symbols (0, 1,� and 2), we can say that

f−1(m) ≤ 4 · 2|Γ|m·m·|Q|

m ≤ f(4 · 2|Γ|m·m·|Q|︸ ︷︷ ︸
n

)

from what we can see that

n

4
≤ 2|Γ|

m·m·|Q|

log
n

4
≤ |Γ|m ·m · |Q|

log log
n

4
≤ m · log |Γ| · logm · log |Q| = C ·m

So we have that
1

C
log log n ≤ m ≤ f(n),

where we can see that m is lower bounded by O(log log n).

6-5

Exercise. Given
L = {#bit(1)#bit(2)# · · · bit(n)# |n ∈ N},

show that L ∈ DSPACE(λn. log log n)\DSPACE(0).
Notice that x ∈ {0, 1,#}∗ and |x| = O(n log n). First, we want to show that L ∈

DSPACE(λn. log log n). The idea is simple, for every pair of two subsequent numbers
#bit(x)#bit(y)# we check whether y − x = 1. We can do that in O(log log n) space,
as for every such pair, we can just memorize the current bit and the position number we
are comparing.

Secondly, we have to show that L /∈ DSPACE(0). We showed that DSPACE(0) is equal
to finite automata. From the formal languages course, we should know that DSPACE(0) is
thus the class of regular languages, where the following lemma holds.

Lemma 6 (Pumping lemma)

L ∈ DSPACE(0) ⇐⇒ ∃n∀x ∈ L, |x| ≥ n,

such that the following holds:

∃u, v, w : x = uvw ∧ 1 ≤ |v| ≤ n ∧ ∀0≤i≤∞i : uviw ∈ L.

In this lemma, n is larger than the number of nodes (states) in the corresponding finite
automaton. So v is the part of the input that is between being in a given state and
returning to the same after some steps, i.e. v is the cyclic part of the input. Clearly, the
language L in the exercise does not contain any cyclic parts, so L /∈ DSPACE(0).

5 Complexity classes of complementary languages

Let C be a complexity class. The class coC is

coC = {Lc |L ∈ C} .

That is, coC is the class of all languages whose complement Lc is in C.
For deterministic Turing machines, C = coC, as we can just switch the machine’s output

(“accept” or “reject”). So for any f we have

DTIME(f) = coDTIME(f) and DSPACE(f) = coDSPACE(f).

For example,
coP = P. coPSPACE = PSPACE. coL = L.

However, NP and coNP are thought to be different. For example, we know that SAT ∈
NP, so coSAT ∈ coNP, where coSAT is the set of unsatisfiable boolean formulas.

P = NP would imply NP = coNP. Opposite implication is not known.

6-6

5.1 Functions computable by NTMs

Thus far we have only talked about computing functions in the case of using deterministic
Turing machines. For non-deterministic TMs, computing functions is quite similar.

Definition 3 An NTM M computes the function f : {0, 1}∗ → {0, 1}∗, if on input x

• each computation path of M ends by

– M outputting f(x), or

– M giving up (outputting “don’t know”)

• at least one computation path of M ends by outputting f(x).

♦

We only have to stress that if more than one computation path is able to find the
function value, they all must output the same value, i.e. the function value f(x) must be
unique.

5.2 Number of reachable vertices

For the following part, we need the next exercise and theorem.

Exercise. Given graph G with n vertices and a vertex s. How many vertices can be
reached from s?

Theorem 7 (Immerman-Szelepscényi) This can be computed by a NTM in space O(log n).

Proof Let S(k) be the set of vertices reachable from s in at most k steps. The following
algorithm can be used to compute S(n − 1). To get a better overview, we give the full
algorithm in many iterations, where every new iteration is more detailed than the previous
one (with the changed portion of the algotithm highlighted).

|S(0)| := 1
for k := 1 to n− 1 do

compute |S(k)| from |S(k − 1)|

|S(0)| := 1
for k := 1 to n− 1 do

|S(k)| := 0

for u ∈ V (G) do

b := (u
?
∈ S(k))

if b then |S(k)| := |S(k)|+ 1

6-7

|S(0)| := 1
for k := 1 to n− 1 do
|S(k)| := 0
for u ∈ V (G) do

m := 0 b := false

for v ∈ V (G) do

b′ := (v
?
∈ S(k − 1)) -- nondeterministic procedure

if b′ then

m := m+ 1

if (v, u) ∈ E(G) then b := true

if m < |S(k − 1)| then give up

if b then |S(k)| := |S(k)|+ 1

Here the variable m is used to make sure, that we only count the path where we have
made the “right” non-deterministic decisions, meaning that at the end, m should equal
|S(k − 1)|.

|S(0)| := 1
for k := 1 to n− 1 do
|S(k)| := 0
for u ∈ V (G) do
m := 0 b := false
for v ∈ V (G) do

w0 := s b′ := true

for p := 1 to k − 1 do

choose wp ∈ V (G)

b′ := b′ ∧ (wp−1, wp) ∈ E(G)

if b′ ∧ (wk−1 = v) then

m := m+ 1
if (v, u) ∈ E(G) then b := true

if m < |S(k − 1)| then give up
if b then |S(k)| := |S(k)|+ 1

The highlighted part now constructs S(k− 1), but it does not hold it in memory, it just
finds |S(k − 1)|. It is easy to see that the whole algorithm uses only a constant number
of variables, each taking logarithmic amount of memory. Hence, the algorithm works in
O(log n) space.

5.3 NSPACE(f) and coNSPACE(f)

Previously, we showed that for deterministic Turing machines, language complexity classes
and the complexity classes of corresponding complementary languages are equal. Now we

6-8

show that NSPACE(f) = coNSPACE(f) also holds.

Theorem 8 If f is a space-computable function, and f ∈ Ω(λn. log n), then NSPACE(f) =
coNSPACE(f).

Sketch of Proof (Informal) Let NTM M working in space f decide L ⊆ {0, 1}∗. We
need to construct a machine M ′ that decides Lc.

The computation graph of a NTM M working in space f has at most cf(n) vertices for
some c. M ′ uses previous algorithm to compute |S(cf(n))|. According to the Immerman-
Szelepscényi theorem, it takes log cf(n) = log c · f(n) = c′ · f(n) space. Then M ′ checks all
configurations of M for being included in S(cf(n)):

• If accepting configuration found, then M ′ rejects.

• If algorithm gives up, then M ′ rejects.

• If no accepting configuration found, M ′ accepts.

Notice, that by this theorem, NL = coNL also holds.

6 Oracle Turing Machines

An Oracle TM (either det. or non-det.) M is a TM with

• A designated tape — the query tape

• Three designated states qquery, qyes, qno.

An oracle O defines a language, so O ⊆ {0, 1}∗.
Whenever M running together with O (denoted MO) goes into state qquery,

• the contents of query tape is interpreted as a bit-string x;

• M goes to state qyes if x ∈ O. Otherwise M goes to state qno.

• This takes a single step.

So Turing machines with oracle access are more powerful, as they can decide in a single step
whether x ∈ O for any x. An oracle O gives us relativized complexity classes PO, NPO, etc.

6.1 Limits of diagonalization

Recall, that the diagonalization proofs used the facts that (a) there is an efficient mapping
between bit-strings and TMs; and (b) efficient universal TMs exist. However, the proofs
did not really consider the internal workings of the TMs Mi from the enumeration of all
TMs. All these proofs would go through also for oracle TMs.

Can a similar proof decide P
?
= NP. As the following theorem states, the answer is no.

6-9

Theorem 9 There exist A,B ⊆ {0, 1}∗, such that PA = NPA and PB 6= NPB.

Proof First, let us show that ∃A : PA = NPA. For A, consider this language:

EXPCOM = {〈M,x, 1n〉 |DTM M accepts x in ≤ 2n steps} .

This is a complete language for exponential-time computation.

A computation in NPEXPCOM on input of length n would

• non-deterministically choose a certificate of length ≤ p(n) (where p() stand for poly-
nomial);

• (make up to p(n) steps), solve up to p(n) problems, each requiring up to 2p(n) steps.

A deterministic algorithm doing the same things would need at most

2p(n) · p(n) · 2p(n) = 22·p(n)+log p(n) steps.

This still fits in EXPCOM. Thus PEXPCOM = NPEXPCOM. A different example for the
language A would be any PSPACE-complete language.

Secondly, let us show that ∃B : PB 6= NPB. For any B ⊆ {0, 1}∗ let

UB = {1n | ∃x : |x| = n ∧ x ∈ B} .

So UB is a language consisting of all the different lenghts (represented as unary strings) of
all the elements in B.

For any B we have UB ∈ NPB, because a TM MB deciding UB could just non-
deterministically choose an input with the right length and use the oracle B to decide
if this input belongs to B:

MB(1n) :
choose x ∈ {0, 1}n
B(x)

Now, we will construct a language B, such that UB /∈ PB.

Let M1,M2, . . . be the enumeration of oracle DTM-s and let t be a superpolynomial function,
such that ∀n : t(n) < 2n. We will construct B in stages, where stage i ensures, that MB

i

does not decide UB in t(n) time. We define

B = {x ∈ {0, 1}∗ | ∃i : ϕi(x) = yes},

where ϕi(i = 0, 1, 2, . . .) is a partial function from {0, 1}∗ to {yes, no}, such that

• ϕ0 is always undefined.

• Each ϕi is defined only on a finite subset of {0, 1}∗.

• If ϕi(x) is defined, then ϕi+1(x) = ϕi(x).

• For each x ∈ {0, 1}∗ there exists i, such that ϕi(x) is defined.

6-10

Constructing ϕi+1 With ϕi, we have declared for a finite number of strings whether they
are in B or not. Now choose n large enough so that it exceeds the length of any such string,
for example let

n = (max
ϕi(x) is defined

|x|) + 1 .

Now run M
(·)
i+1(1n) for t(n) steps. If Mi+1 queries for x, then

• If ϕi(x) is defined, then answer ϕi(x).

• If ϕi(x) is not defined, then answer no.

– Set ϕi+1 = ϕi+1[x 7→ no].

In other words, for all queried strings whose status has already been determined, we answer
honestly. However, for all other strings we declare that they are not in B. Note, that until
this point, we have not declared that B has any string with length n.

Now, if M
(·)
i+1 stops in t(n) steps, then

• If M
(·)
i+1 accepts, we say that all strings with length n are not in B, ensuring that

1n /∈ UB.

• If M
(·)
i+1 rejects then pick x ∈ {0, 1}n that M

(·)
i+1 did not query (such x exists, because

M
(·)
i+1 did not have time to query all 2n possibilities) and declare it to be in B, thus

ensuring that 1n ∈ UB.

In either case, the answer of M
(·)
i+1 is incorrect. Thus UB /∈ PB.

6-11

