
MTAT.07.004 — Complexity Theory October 20th-21st, 2011

Lecture 7

Lecturer: Peeter Laud Scribe(s): Riivo Talviste

Polynomial hierarchy

1 Turing reducibility

From the algorithmics course, we know the notion of Turing reducibility, which states that
if you have some problem that you cannot solve, you can try to generalize it to another
problem that you might be able to solve.

Definition 1 (Turing reducibility) Let A,B ⊆ {0, 1}∗. A is Turing-reducible to B,
denoted A ≤T B, if there is a oracle TM M (·), such that MB recognizes A. ♦
I.e. MB(x) stops for all x ∈ {0, 1}∗ and MB(x) = true⇔ x ∈ A.

Similarily, we have polynomial-time and non-deterministic polynomial-time Turing reducibil-
ity.

Definition 2 (Polynomial-time Turing reducibility) LetA,B ⊆ {0, 1}∗. A is Polynomial-
time Turing-reducible to B, denoted A ≤P

T B, if there is a oracle TM M (·), such that MB

recognizes A in polynomial time. ♦

Definition 3 (Non-deterministic polynomial-time Turing reducibility) Let A,B ⊆
{0, 1}∗. A is non-deterministic polynomial-time Turing-reducible to B, denoted A ≤NP

T B,
if there is a oracle NTM M (·), such that MB recognizes A in polynomial time. ♦
For example, SATc ≤P

T SAT, as we can just flip the answer.

1.1 Recursive hierarchy

Let M1,M2, . . . be an enumeration of all oracle turing machines.

Definition 4 Languages A,B ⊆ {0, 1}∗ are Turing equivalent if A ≤T B and B ≤T A.
Denote A ≡T B. ♦
Let [A] be the equivalence class of ≡T containing A.

Definition 5 The Turing jump of a language A is

A′ = {i |MA
i (i) stops }.

♦
The Turing jump can also be generalized to sets of languages.

Theorem 1 A′ 6≤T A.

Using Turing jump and equivalence classes, we can define an infinite hierarchy:

Denote Σ0 = [∅]; Σi = Σi−1 ∪ Σ′i−1.

7-1

2 Polynomial hierarchy

2.1 Exact problems

Consider the following problems:

• Given a graph G and an integer k. Does the largest clique of G have the size exactly
k?

– Remark. We know that finding a clique of size at least k is in NP, but showing
that there are no larger cliques (with size k + 1) seems to be in coNP.

• Given a propositional formula ϕ. Does there exist any smaller formula ϕ′, such that
ϕ ≡ ϕ′?

• Given a set ϕ1, . . . , ϕm of formulas in CNF and a number k. Do there exist i1, . . . , ik,
such that ϕi1 ∧ . . . ∧ ϕik is unsatisfiable?

All of these problems seem not to be in NP, as short certificates seem hard to find. However,
all on them are in PSPACE.

2.2 Classes Σp
2 and Πp

2

Definition 6 A language L ⊆ {0, 1}∗ is in Σp
2, if there is a polynomial-time DTM M and

a polynomial q, such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) : M(x, u, v) = true.

♦

Definition 7 A language L ⊆ {0, 1}∗ is in Πp
2, if there is a polynomial-time DTM M and

a polynomial q, such that

x ∈ L⇔ ∀u ∈ {0, 1}q(|x|) ∃v ∈ {0, 1}q(|x|) : M(x, u, v) = true.

♦

Clearly, Σp
2 = coΠp

2 and vice versa, as they are each other’s negations (we also have to flip
the answer of M). Also,

NP, coNP ⊆ Σp
2 ∩Πp

2.

Now, we provide more general definitions.

Definition 8 A language L ⊆ {0, 1}∗ is in Σp
k, if there is a polynomial-time DTM M and

a polynomial q, such that

x ∈ L⇔ ∃v1 ∈ {0, 1}q(|x|) ∀v2 ∈ {0, 1}q(|x|) . . . Qkvk ∈ {0, 1}q(|x|)︸ ︷︷ ︸
k quantifiers

: M(x, v1, . . . , vk) = true.

Here Qk is ∀ if k is even, and ∃ otherwise. ♦

7-2

Definition 9 A language L ⊆ {0, 1}∗ is in Πp
k, if there is a polynomial-time DTM M and

a polynomial q, such that

x ∈ L⇔ ∀v1 ∈ {0, 1}q(|x|) ∃v2 ∈ {0, 1}q(|x|) . . . Qkvk ∈ {0, 1}q(|x|)︸ ︷︷ ︸
k quantifiers

: M(x, v1, . . . , vk) = true.

Here Qk is ∀ if k is odd, and ∃ otherwise. ♦
By definition,

NP = Σp
1 and coNP = Πp

1.

Also, M(x, v1, . . . , vk) is working in polynomial time and thus cannot use more than poly-
nomial amount of memory. As v1, . . . , vk are all polynomial size, then

Σp
k,Π

p
k ⊆ PSPACE.

With these definitions, we can formulate polynomial hierarchy:

PH =
⋃
i∈N

Σp
i .

As Σp
i ⊆ Πp

i+1, we also have PH =
⋃

i∈N Πp
i .

From the generalization of P 6= NP and NP 6= coNP, we get the following conjecture.

Conjecture 2 Polynomial hierarchy does not collapse.

In other words, there is belief that for all i, Σp
i 6= Σp

i+1 (actually it is a separate conjecture
for each i).

2.3 Complete problems for Σp
i and Πp

i

Prevously, we found complete problems for many complecity classes: NP, PSPACE, NL.
Thus we are also interested in Σp

i -complete and Πp
i -complete problems. As we are dealing

with problems that are somewhere between NP and PSPACE, we will still use the polynomial-
time reduction ≤P

m.

Definition 10

ΣiSAT = {∃u1∀u2 . . . Qiui : ϕ(u1, u2, . . . , ui) = true},

ΠiSAT = {∀u1∃u2 . . . Qiui : ϕ(u1, u2, . . . , ui) = true},
where

• ϕ is a Boolean formula;

• u1, . . . , ui are vectors of Boolean variables;

• quantifications (∀ and ∃) are alternating.

♦

Theorem 3
ΣiSAT is Σp

i -complete. ΠiSATis Πp
i -complete.

This theorem is a special case of the TQBF-completeness problem introduced in previous
lectures.

7-3

2.4 Defining Σp
i and Πp

i through oracle TMs

Theorem 4
Σp
i = NPΣi−1SAT. Πp

i = coΣp
i .

Proof In the proof, we use k instead of i. To prove Σp
k = NPΣk−1SAT it is sufficient to

show that Σp
k ⊆ NPΣk−1SAT and Σp

k ⊇ NPΣk−1SAT.
First, we show that Σp

k ⊆ NPΣk−1SAT and to make it less abstract in the beginning, we
will start with a specific case, where k = 2. Hence, we show that

Σp
2 ⊆ NPΣ1SAT = NPSAT.

If L ∈ Σp
2 then

∃M : x ∈ L⇔ ∃u∀v : M(x, u, v) = true.

We want to construct a NTM M ′SAT that accepts the same language L. We start by
replacing the clause ∃u with just non-deterministically choosing the right u. We get the
following construction for M ′SAT:

M ′SAT(x) :
u := choose -- non-deterministic

b := ∀v : M(x, u, v)
?
= true

return b

Now we need the oracle SAT to provide the value for b. However, the SAT problem is
commonly phrased more like “∃u : M(x, u, v) = true”, that is with the ∃ quantifier. So we
just negate b and get

¬b = ¬∀v : M(x, u, v)
?
= true ≡ ∃v : M(x, u, v)

?
= false.

To be able to use the SAT oracle, we have to raplace false with true. We can do that by
defining a new TM M̃ that just flips the answer of M . Hence, M̃ accepts the language

L̃ = {(x, u) | ∃v : M(x, u, v) = true}.

Language L̃ belongs to NP. Hence there exists a function f that many-one reduces it to
SAT in polynomial time:

f(x, u) ∈ SAT⇔ (x, u) ∈ L̃.

Finally, the constructed Turing machine works like this:

M ′SAT(x) :
u := choose -- non-deterministic
b := query oracle SAT with f(x, u)
return ¬b

Now, for the general case, we show that

Σp
k ⊆ NPΣk−1SAT.

7-4

If L ∈ Σp
k then

∃M : x ∈ L⇔ ∃u1∀u2∃u3 . . . Qkuk : M(x, u1, . . . , uk) = true.

Again, we want to construct a NTM M ′Σk−1SAT that accepts the same language L. Just
like before, we define a new TM M̃ = ¬M , that accepts the language

L̃ = {(x, u1) | ∃u2∀u3 . . . Q̄kuk : M(x, u1, . . . , uk) = true},

where Q̄k is ∃ if Qk is ∀ and vice versa.
We also have a reduction

f : {{0, 1}∗}2 → Qk−1Frm,

where Qk−1Frm stands for a Boolean formula with k − 1 quantifiers, and

f(x, u) ∈ Σk−1SAT⇔ (x, u) ∈ L̃.

And the construction of M ′Σk−1SAT is the following

M ′Σk−1SAT(x) :
u1 := choose -- non-deterministic
b := query oracle Σk−1SAT with f(x, u1)
return ¬b

Secondly, we show that Σp
k ⊇ NPΣk−1SAT. As before, we will start with a simpler and more

intuitive case, where k = 2:
NPΣ1SAT = NPSAT ⊆ Σp

2.

In this case we have
∃ NTM M (·) : x ∈ L⇔MSAT(x) = true

and we want to show that L ∈ Σp
2. For that, we construct a deterministic TM M ′ working

in polynomial time, such that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) ∀v ∈ {0, 1}q(|x|) : M ′(x, u, v) = true,

where q is a polynomial.
Since MSAT is a non-deterministic TM, we can think of its work as traversing a tree,

with at least one leaf containing accept. While traversing the tree, MSAT can make any
number of queries to its SAT oracle. We will encode all that in u and v for out DTM M ′.

First, we can take the accepting computatipn path ofMSAT and encode all of the decision
points (branchings in the tree) in u. Also, we encode in u all the oracle queries (Boolean
formulas ϕ) and all the satisfying valuations (certificates) for all the queries, that got the
yes-reply. Secondly, v with the ∀ quantifier is able to hold all the possible valuations for all
of the no-replies from the oracle (q̃ is a polynomial):

v ≡ v1|v2| . . . |vq̃(|x|).

Now, we can construct our DTM M ′ in the following way:

7-5

M ′(x, u, v) :

Simulate M (·)(x):
When

• M (·) makes a non-deterministic step
- get the “right” choice from u;

• M (·) queries the oracle and the reply would be yes
- u has the corresponding query (ϕ) and the certificate,
so we can check it in polynomial time;

• M (·) queries the oracle and the reply would be no
- u has the corresponding query and v encodes all the valuations,
so check that ∀i : ϕ(vi) = false.

return output of simulated M (·)(x)

Now, for the general case, we show that

NPΣk−1SAT ⊆ Σp
k.

In this case we have

∃ NTM M (·) : x ∈ L⇔MΣk−1SAT(x) = true

and we want to show that L ∈ Σp
k. This means that

x ∈ L⇔ ∃u ∈ {0, 1}q(|x|) : (x, u) ∈ L̂,

where q is a polynomial and L̂ ∈ Πp
k−1 (we get Πp

k−1 by just removing the first ∃ quantifier

in Σp
k). Now we just have to construct a TM that accepts L̂.

Like before, let u encode all the decision points of the accepting computation path of
MΣk−1SAT. Additionally, u encodes all the oracle queries (ϕ) with their replies and also the
certificates for the yes-replies. This lets us construct the TM that accepts L̂ as a Turing
machine M̂ with the oracle Qk−1Frm (this is the language of Boolean formulas with k − 1
quantifiers), that works as follows:

M̂Qk−1Frm(x, u) :

Simulate M (·)(x):
When

• M (·) makes a non-deterministic step
- get the “right” choice from u;

• M (·) queries the oracle and the reply would be yes
- u has the corresponding query ϕ and the certificate c,

so we can check if ϕ(c)
?
∈ Πk−2SAT;

• M (·) queries the oracle and the reply would be no
- u has the corresponding query,

so check that ¬ϕ(c)
?
∈ Πk−1SAT.

return output of simulated M (·)(x)

7-6

We have shown that
Σp
k ⊆ NPΣk−1SAT and Σp

k ⊇ NPΣk−1SAT.

Hence,
Σp
k = NPΣk−1SAT.

The second part of the theorem, showing that

Πp
i = coΣp

i

is trivial, as Πp
i and Σp

i are each other’s negations (we also have to flip the output of TM
M , but in the case of DTM it is easy).

2.5 Collapsing

Theorem 5
If Σp

i = Πp
i , then Σp

i+1 = Σp
i .

This states that if for some i Σp
i = Πp

i then the polynomial heirarchy collapses, i.e. it is
not an infinite hierarchy. For example, we know that NP = Σp

1 and that coNP = Πp
1. Thus,

if NP = coNP then the polynomial hierarchy collapses.
Proof It is sufficient to show that Σp

i+1 ⊆ Σp
i . (the inclusion in the other direction is

trivial). First, let us show that Σp
i+1 ⊆ Σp

i . For that, pick a language L ∈ Σp
i+1, so we have

x ∈ L⇔ ∃u1 ∀u2 . . . Qi+1ui+1 : M(x, u1, . . . , ui+1) = true.

Now, define a new language by packing the two first arguments of M together:

L′ = {(x, u1) | ∀u2 ∃u3 . . . Qi+1ui+1︸ ︷︷ ︸
i quantifiers

: M((x, u1), u2, . . . , ui+1) = true}.

By definition, L′ ∈ Πp
i and because Σp

i = Πp
i , then also L′ ∈ Σp

i . This is, ∃M ′, such that

L′ = {(x, u1) | ∃u2 ∀u3 . . . Q̄i+1ui+1 : M ′((x, u1), u2, . . . , ui+1) = true},

where Q̄ is just the opposite of Q.
Next we just “unpack” the two arguments we put together beforehand and get

x ∈ L⇔ ∃u1 ∃u2 ∀u3 . . . Q̄i+1ui+1 : M ′(x, u1, u2, . . . , ui+1) = true.

As there are two ∃ quantifiers in a row, there are just i−1 alternations of quantifiers. Hence,
L ∈ Σp

i .

Corollary 6
If Σp

i = Πp
i , then Σp

j = Σp
i for all j ≥ i.

7-7

2.6 PH-completeness

Theorem 7 If PH has complete problems then ploynomial hierarchy collapses.

Sketch of Proof (Informal) If there exists a language that is PH-complete then this
language belongs to some Σp

i . By the definition of completeness, all other languages in PH
can be reduced to that language in Σp

i . This means that there cannot be any languages
that are harder than this language.

Corollary 8 If PH = PSPACE then polynomial hierarchy collapses.

The idea behind the corollary lies in the fact that there exist complete languages in PSPACE,
e.g. TQBF. Hence, by the theorem, the polynomial hiererchy collapses.

2.7 Σp
k and game-playing

Imagine a two-player game with perfect information:

• a set of possible states, a starting state, possible ending states with the indication who
won and who lost ;

• for each state there are possible legal moves for both player;

• and both players always know the state the game is in.

With this construction, it is easy to express “Can the first player win in k half-moves?”
with the following:

∃my move ∀opponent’s move∃my move . . .︸ ︷︷ ︸
k quantifications

: I win! .

For example, in chess, the “checkmate in three moves” could be expressed in Σp
5 (because

we would have 5 half-moves).
Similarily, the Πp

k could be used to express the situation where the first player is deter-
mined to lose in k half-moves.

3 Alternating Turing Machines

Alternating Turing machines (ATM) are similar to non-deterministic Turing machines, as
they can be tought as having the same tree-shape computation path. However, in each
node of the tree (i.e. in each state) ATMs have a quantifier: either ∃ or ∀. The acceptance
on input x ∈ {0, 1}∗ is given as a recursive condition:

• a configuration with state qacc leads to accepting configuration;

• a configuration with a state labeled with ∃ leads to accepting configuration if at least
one of its successors lead to accepting configuration.

7-8

• a configuration with a state labeled with ∀ leads to accepting configuration if all of
its successors lead to accepting configuration.

• x ∈ {0, 1}∗ is accepted if starting configuration with x leads to accepting configuration.

For simplicity we assume that each configuration of ATM M has exactly two possible
successors. Hence, we get a binary tree.

3.1 Classes ATIME(T), ΣiTIME and ΠiTIME

Similarily to DTIME and NTIME, we define a new class ATIME:

Definition 11 L ∈ ATIME(T) if exists an ATM M and constant c, such that for all
x ∈ {0, 1}∗:

• all paths in the configuration graph of M , starting from the initial configuration of x,
have length at most c · T (|x|);

• x ∈ L iff M accepts x.

♦

And similarily to the classes Σp
i and Πp

i , we define:

Definition 12 L ∈ ΣiTIME(T), if exist M , c satisfying the conditions in the definition of
ATIME, and

• the initial state of M is labeled with ∃;

• on all paths in the configuration graph of M , there are at most i−1 switches between
∃ and ∀.

♦

Definition 13 L ∈ ΠiTIME(T), if exist M , c satisfying the conditions in the definition of
ATIME, and

• the initial state of M is labeled with ∀;

• on all paths in the configuration graph of M , there are at most i−1 switches between
∃ and ∀.

♦

3.2 Equivalences

Theorem 9
Σp
i =

⋃
c

ΣiTIME(λn.nc)

7-9

Sketch of Proof (Informal) First, we will show that Σp
i ⊆ ΣiTIME(λn.nc), for some c.

Let us pick a language L ∈ Σp
i , then

x ∈ L⇔ ∃u1 ∀u2 . . . Qiui : M(x, u1, . . . , ui) = true.

To show that L is also in ΣiTIME(nc), we can just take all the quantifiers and put them in
the states of the corresponding ATM. Then, in the end, M just works as a usual DTM.

Secondly, we show that ΣiTIME(λn.nc) ⊆ Σp
i , for some c. Again, let us pick a language

L ∈ ΣiTIME(nc), then we have an ATM M ′ that accepts L. We show that the same L can
also be accepted by the M in the following construction:

x ∈ L⇔ ∃u1 ∀u2 . . . Qiui : M(x, u1, . . . , ui) = true.

M can simulate M ′ and whenever M ′ has to make a choice in a given state with one of the
quantifiers, M can just take the value of the corresponding ui and determine the “correct”
choice.

We have shown that Σp
i ⊆ ΣiTIME(λn.nc) and ΣiTIME(λn.nc) ⊆ Σp

i . Hence ΣiTIME(λn.nc) =
Σp
i .

Theorem 10
Πp

i =
⋃
c

ΠiTIME(λn.nc)

The proof is analogous to the previous one.

Theorem 11 ⋃
c

ATIME(λn.nc) = PSPACE

4 Time-space tradeoffs for SAT

Thus far we have talked about complexity classes with various time limits or space limits.
For example, a Turing machine accepting a language in NP is not concerned about how
much memory it uses and a TM accepting a language in NL can take any amount of time
to finish. Next, we will consider a complexity class, where limits on both time and space
exist.

Definition 14 L ∈ TISP(T, S) is exists DTM M that accepts L in time O(T) and in space
O(S). ♦
Note, that the name TISP comes from TIme and SPace.

Theorem 12
SAT /∈ TISP(λn.n1.1, λn.n0.1).

This theorem gives a lower bound for algorithms solving SAT. It is not proven that there are
no algoritms that solve SAT in linear time, nor is it proven that there exist no algorithms
that solve SAT in logarithmic memory. However, this theorem states that SAT cannot be
solved in linear time and, at the same time, using logarithmic memory.

7-10

4.1 Efficiency of reduction

Lemma 13 If SAT ∈ TISP(λn.n1.1, λn.n0.1) then

NTIME(λn.n) ⊆ TISP(λn.n1.1 · polylog(n), λn.n0.1 · polylog(n)).

Here, polylog(n) means “polynomial in the length of n”.

Claim 14 If L ∈ NTIME(T), then L can be recognized by some oblivious NTM in time
λn.T (n) log T (n).

The head movement of an oblivious Turing machine depends only on the language L it is
recognizing, and on the length of the input x ∈ {0, 1}∗, but not on the actual input x. Also,
in the case of oblivious TM, position of head at each step and previous step when the head
was at a certain position, can be computed in polylog(n).

Claim 15 If L is recognized in time T by some oblivious NTM, then there exists a reduction
f from L to SAT, such that

• |f(x)| ∈ O(T);

• each bit of f(x) can be computed in time polylog(|x|).

The idea behind the last claim is that by using an oblivious TM, the reduction takes less
time, as we do not have to explicitly express all the details in f . For example, f does not
have to encode the movement of heads, as this does not depend on the input. Now, f only
has to describe O(T) steps, each of which takes a constant number of bits, so |f(x)| ∈ O(T).
Without an oblivous TM the description of the configuration at each step of the computation
normally takes O(T) bits, hence such reduction takes O(T 2) time.

4.2 Time to alternation

Lemma 16
TISP(n12, n2) ⊆ Σ2TIME(n8).

Proof For a language L ∈ TISP(n12, n2) we have a TM M that accepts x ∈ L in space
c · |x|2 and time c · |x|12. We have to show that L ∈ Σ2TIME(n8) also holds, so

x ∈ L⇔ ∃u ∈ {0, 1}c·|x|8 ∀v ∈ {0, 1}c·|x|8 : M ′(x, u, v) = true,

where M ′ is a DTM working in time O(n8).
As M is working in time O(n12), it also has O(n12) possible configurations. We encode

those configurations in u and v of M ′ so that M ′ accepts L iff

• exist configurations C0, C1, . . . , Cc·|x|6 of M (encoded in u of M ′), such that

7-11

• for each i ∈ {0, . . . , c · |x|6} (encoded on v of M ′)

• Ci is reachable from Ci−1 in |x|6 steps. Also, C0 and Cc·|x|6 are initial and final
configurations.

So M ′ makes a chain of the configurations of M and splits it into c · |x|6 parts with
length c · |x|6:

C0 →→→ C1︸ ︷︷ ︸
C1 is reachable from C0 in c·|x|6 steps

→→→ C2 →→ . . .→ Cc·|x|6

The third point in the list above can be checked by M ′ in time |x|6. However, the configu-
rations take space |x|8, so M ′ also works in O(|x|8) time.

4.3 The Padding Argument

Let CL1(f(n)) and CL2(g(n)) be complexity classes that are characterized by the amount of
resources (time or space) they allow to spend to the machines that acceps languages belong-
ing to these classes. The resources are measored by functions f(n) and g(n) respectively
(with O-precision), where n is the input size.

Theorem 17 If CL1(f(n)) ⊆ CL2(g(n)) then CL1(f(nc)) ⊆ CL2(g(nc)) for every constant
c ∈ N.

Proof Let M be a Turing machine that decides L ∈ CL1(f(nc)) in f(nc) time (or space).
If c = 1, the statement is trivial. Otherwise, if c ≥ 2, we define a new language:

L′ = {x01|x|
c−|x|−1 : x ∈ L}.

The notation “x01|x|
c−|x|−1 :” here stands for the initial argument x (bitstring), followed by

a zero and a number of 1-s so that all of the bitstrings (elements) in L′ have length of |x|c.
Now, define a new TM M ′(y) that accepts iff y is in the form x01|x|

c−|x|−1 and M(x) =
true. Machine M ′ works with resources f(|x|c) = f(|y|) and hence,

L′ ∈ CL1(f(n)) ⊆ CL2(g(n)).

Consequently, there is a CL2-machine N ′ that desides L′ in time (or space) g(n). So we
define a new machine N(x) ≡ N(x01|x|

c−|x|−1), which decides L with resources

g(|x01|x|
c−|x|−1|) = g(|x|c).

Hence, L ∈ CL2(g(|x|c)).

From the book “Computational Complexity: A Modern Approach” by Sanjeev Arora and
Boaz Barak:

The padding technique used in this proof, whereby we transform a language by
“padding” every string in a language with a string of (useless) symbols, is also
used in several other results in complexity theory. In many settings it can be
used to show that equalities between complexity classes “scale up”; that is, if two

7-12

different type of resources solve the same problems within bound T (n) then this
also holds for functions T ′ larger than T . Viewed contrapositively, padding can
be used to show that inequalities between complexity classes involving resurce
bound T ′(n) “scale down” to resource bound T (n).

For example, using the padding argument, we get the following corollary.

Corollary 18 If NTIME(n) ⊆ DTIME(n1.2) then

NTIME(n10) ⊆ DTIME(n12).

4.4 Relationship on DTIME, NTIME, Σ2TIME

Lemma 19 If NTIME(n) ⊆ DTIME(n1.2) then

Σ2TIME(n8) ⊆ NTIME(n9.6).

Proof First, we notice that L ∈ Σ2TIME(n8) iff exists DTM M working in time (n8),
such that

x ∈ L⇔ ∃u ∈ {0, 1}c|x|8 ∀v ∈ {0, 1}c|x|8 : M(x, u, v) = true.

This is equivalent to the same statement where both sides are negated and hence, the
quantifiers have changed:

x /∈ L⇔ ∀u ∈ {0, 1}c|x|8 ∃v ∈ {0, 1}c|x|8 : M(x, u, v) = false.

However, the part “∃v ∈ {0, 1}c|x|8 : M(x, u, v) = false” looks like a common construction
of a non-deterministic TM. Hence, exists a NTM M ′ working in time O(n8), such that

x /∈ L⇔ ∀u ∈ {0, 1}c|x|8 : M ′(x, u) = true.

The padding argument gives us that NTIME(n8) ⊆ DTIME(n9.6). Hence, exists a DTM M ′′

working in time O(n9.6), such that

x /∈ L⇔ ∀u ∈ {0, 1}c|x|8 : M ′′(x, u) = false

x ∈ L⇔ ∃u ∈ {0, 1}c|x|8 : M ′′(x, u) = true.

Again, we see the common construction for a NTM. Hence, exists NTM M ′′′ working in
time O(n9.6), that recognizes L.

Finally, we have enough knowledge to prove Theorem 12, stating that SAT /∈ TISP(λn.n1.1, λn.n0.1).
Sketch of Proof (Informal) For the moment, let us assume that SAT ∈ TISP(λn.n1.1, λn.n0.1).
Then, using the results form this section, we can draw a map, where the arrows indicate
implications between the results.

7-13

SAT ∈ TISP(n1.1, n0.1)

TISP(n1.2, . . .) ⊆ DTIME(n1.2)

Σ2TIME(n8) ⊆ NTIME(n9.6)

NTIME(n) ⊆ TISP(n1.2, n0.2)

NTIME(n10) ⊆ TISP(n12, n2)

Lemma 16: TISP(n12, n2) ⊆ Σ2TIME(n8)

Lemma 19

Lemma 19

Lemma 13

Thm. 17 (Padding)

From the leaves of this “tree” we get that

NTIME(n10) ⊆ TISP(n12, n2) ⊆ Σ2TIME(n8) ⊆ NTIME(n9.6),

that brings us to a contradiction.

4.5 Separating PH and PSPACE

Theorem 20 There exists A ⊆ {0, 1}∗, such that PHA 6= PSPACEA.

More generally, for each k there exists oracle, relative to which the polynomial hierarchy
has exactly k levels.

7-14

