Complexity Theory (MTAT.07.004) Autumn 2011 Peeter Laud & Bingsheng Zhang class meets Thu 16:15–17:45 (Liivi 2-404) Fri 14:15–15:45 (Liivi 2-405)

Books: S. Arora & B. Barak, Computational Complexity:
A Modern Approach
C. Papadimitriou, Computational Complexity
M. Tombak, Keerukusteooria

webpage: http://www.cs.ut.ee/~peeter_l/teaching/keerukus11s

grading based on some homework, lecture scribing and final exam

Scribing

In each lecture, a student will make detailed notes to be published on the course webpage.

- ♦ With the current number of registered students, expect to be in charge of scribing during about two weeks of the semester.
- He/she prepares the notes in LaTeX and sends them to me before the next week's lectures.
- I will polish those notes and put them on the course webpage.
- See the course webpage for a template.

Models of computation

Computations

■ Human computers: mid-17th — mid-20th century

- Followed step-by-step instructions
- Notions of "computation" and "computability" formalized in mid-20th century.
- Turing machines, λ-calculus, cellular automata, Boolean circuits, random access machines, quantum circuits,...
- All those models are universal. Any computation performed in one of them can be modeled in another.
 - ◆ ...and with a similar^{*} amount of computational effort

How much resources does a computation need?

■ Space

◆ These two will be of interest in this course

- Program size
- Randomness

■ Coherence

. . .

Turing machines — intuitive details

 $\blacksquare k \text{ tapes, } k \geq 2;$

- first tape is the read-only input tape, other tapes are work tapes;
- tapes are infinite to the right only;
- the machine heads stay in place if they want to move left of the leftmost symbol;
- the alphabet contains bits 0 and 1, the blank symbol □, the starting symbol ▷;
- the input string $x \in \{0, 1\}^*$ is written on input tape as $\triangleright x \Box \Box \cdots$;
- initially, all non-input tapes contain $\triangleright \Box \Box \cdots$;
- initially, all heads are in the leftmost position;
- the answer y is written on the last tape as $\triangleright y \Box \Box \cdots$.

Turing machines

■ A *k*-tape Turing Machine (TM) with input and output is a tuple $(\Gamma, Q, \delta, q_0, Q_F)$, where

• Γ is the set of tape symbols;

- \blacksquare Assume $\Box, \triangleright, 0, 1 \in \Gamma$
- Q is the set of states;
- $\delta: Q \times \Gamma^k \to Q \times \Gamma^{k-1} \times \text{Move}^k$ is the transition function;
 - Move = $\{-1, 0, 1\}$
- $q_0 \in Q$ is the initial state;
- $Q_F \subseteq Q$ is the set of final states.
- All sets above are finite.

TM Configurations

A configuration of a TM with k tapes, the tape symbol set $\Gamma,$ and state set Q is

```
\langle q; w_1, \ldots, w_k; p_1, \ldots, p_k \rangle, where
```

 $\blacksquare q \in Q \text{ is the current state of the TM};$

• $w_i \in \Gamma^* \cdot \{\square^{\omega}\}$ is the contents of the *i*-th tape.

• w_i consists of a finite sequence of elements of Γ , followed by infinitely many \Box -s.

■ $p_i \in \mathbb{N}$ is the position of the *i*-th head. Let leftmost position be 1. Let $CON\mathcal{F}^k_{\Gamma,Q}$ be the set of all such configurations.

TM computations

A TM $M = (\Gamma, Q, \delta, q_0, Q_F)$ defines a relation (actually, a partial function) $\stackrel{M}{\rightarrow}$ on $\mathcal{CONF}^k_{\Gamma,Q}$.

$$\langle q; w_1, \dots, w_k; p_1, \dots, p_k \rangle \xrightarrow{M} \langle q'; w_1, w_2', \dots, w_k'; p_1', \dots, p_k' \rangle$$
 iff $q \notin Q_F$

$$\bullet \ \gamma_i = w_i[p_i]$$

$$(q';\gamma'_2,\ldots,\gamma'_k;s_1,\ldots,s_k) = \delta(q;\gamma_1,\ldots,\gamma_k)$$

$$\bullet w'_i = w_i[p_i \mapsto \gamma'_i]$$

$$\blacksquare p'_i = \max(1, p_i + s_i)$$

TM applied to a bit-string

• Let
$$M = (\Gamma, Q, \delta, q_0, Q_F)$$
.

■ Let $x \in \{0, 1\}^*$.

- Let $C_0 = \langle q_0; \triangleright \cdot x \cdot \Box^{\omega}, \triangleright \cdot \Box^{\omega}, \ldots, \triangleright \cdot \Box^{\omega}; 1, \ldots, 1 \rangle$.
- Consider configurations C_1, C_2, \ldots , such that $C_{i-1} \xrightarrow{M} C_i$.

If there exists $C_n = \langle q_n; w_1, \ldots, w_k; p_1, \ldots, p_k \rangle$ with $q_n \in Q_F$ then

- \blacklozenge we say that M stops on x in n steps in state q_n .
- If also $w_k = \triangleright \cdot y \cdot \Box^{\omega}$ where $y \in \{0, 1\}^*$ then we say that M outputs y on input x.

If there is no such C_n , then M does not stop on x.

TM accepting a language

■ A language L is any subset of $\{0, 1\}^*$.

• Let
$$M = (\Gamma, Q, \delta, q_0, Q_F)$$
, where $Q_F = \{q_{\mathsf{acc}}, q_{\mathsf{rej}}\}$.

If M

• stops on all inputs $x \in \{0, 1\}^*$;

 \blacklozenge stops in state q_{acc} iff $x \in L$

then M accepts language L.

TM computing a function

- Consider functions f of type $\{0,1\}^* \to \{0,1\}^*$.
- Let $M = (\Gamma, Q, \delta, q_0, Q_F)$.
- $\blacksquare \text{ If for all } x \in \{0,1\}^*\text{,}$
 - M stops;
 - M outputs y;

$$\blacklozenge \ y = f(x)$$

then M computes the function f.

Running time of a TM

- Let $T : \mathbb{N} \to \mathbb{N}$ and $f : \{0,1\}^* \to \{0,1\}^*$. The TM M computes f in time T, if it computes f, and for any $x \in \{0,1\}^*$, the machine M makes at most T(|x|) steps.
- $T : \mathbb{N} \to \mathbb{N}$ is time constructible if $\forall n : T(n) \ge n$ and the function $x \mapsto \mathsf{bit}(T(|x|))$ is computable in time $c \cdot T$ for some $c \in \mathbb{N}$.
 - bit(n) is the representation of n as a binary string.

Examples: n, $n \log n$, n^2 , 2^n are time constructible.

■ Non-time-constructible functions: try to encode the halting problem

Big-Oh notation

Let $f, g: \mathbb{N} \to \mathbb{N}$.

- $\blacksquare O(f), o(f), \Theta(f), \Omega(f), \omega(f) \text{ are sets of functions from } \mathbb{N} \text{ to } \mathbb{N}.$
- $g \in O(f) \text{ (or } g \text{ is } O(f) \text{) if} \\ \exists c \in \mathbb{R}_+ \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} : n \ge n_0 \implies g(n) \le c \cdot f(n)$
 - \mathbb{R}_+ all positive real numbers.
- $g \in o(f) \text{ if } \\ \forall c \in \mathbb{R}_+ \exists n_0 \in \mathbb{N} \forall n \in \mathbb{N} : n \ge n_0 \implies g(n) \le c \cdot f(n)$

 $\blacksquare g \in \Omega(f) \text{ if } f \in O(g).$

 $\blacksquare \ g \in \omega(f) \text{ if } f \in o(g).$

 $\blacksquare \Theta(f)$ is the intersection of O(f) and $\Omega(f)$.

Reducing the size of the tape alphabet

Theorem. Let $M = (\Gamma, Q, \delta, q_0, Q_F)$ with k tapes accept a language / compute a function in time T. There exists a TM M' with $\max(k, 3)$ tapes and tape alphabet $\{\triangleright, \Box, 0, 1\}$ that accepts the same language / computes the same function in time O(T).

<u>Remark</u>: Note that constant hidden in O may depend on M.

Multi-tape \longrightarrow two-tape TM

Theorem. Let M with k tapes accept a language / compute a function in time T. There exists a TM M' with two tapes that accepts the same language / computes the same function in time $O(\lambda n.T(n)^2)$.

Actually, we can do better:

Theorem. Let M with k tapes accept a language / compute a function in time T. There exists a TM M' with three tapes that accepts the same language / computes the same function in time $O(\lambda n.T(n) \log T(n))$.

Two-way infinite \longrightarrow **one-way infinite tapes**

Speeding up a TM

Theorem. Let a TM M compute a function / accept a language in time T. Then for each $c \in \mathbb{N}$ there exists a TM M' and constant c', such that M' computes the same function / accepts the same language in time $\lambda n.\frac{1}{c}T(n) + c'$.

Idea: Compute 6c steps of M "in hardware". This takes 6 steps on M'.

Turing machines as bit-strings

- A Turing machine $(\Gamma, Q, \delta, q_0, Q_F)$ can be represented as a bit-string.
 - State the number of tapes and the number of elements in Q and Γ. List the points of δ in some canonical order. Name q₀ and Q_F.
- For $\alpha \in \{0,1\}^*$, let M_{α} be the TM represented by it.
 - ◆ Let each bit-string represent some TM.

Universal Turing Machine

Theorem. There exists a five-tape TM \mathcal{U} with tape alphabet $\{0, 1, \triangleright, \Box\}$ and a function $C : \{0, 1\}^* \to \mathbb{N}$, such that for all $x, \alpha \in \{0, 1\}^*$ if M_{α} on input x stops in t steps then

 $\blacksquare \ \mathfrak{U} \text{ on input } (\alpha, x) \text{ stops in at most } C(\alpha) \cdot t \log t \text{ steps;}$

 \blacksquare the output of \mathcal{U} on (α, x) equals the output of M_{α} on x.

If M has two tapes then \mathcal{U} stops in $C(\alpha) \cdot t$ steps.

Interpretation

■ First convert M_α into a two-tape TM M'. Then reduce its alphabet to {0,1,▷,□} (add extra output tape).

■ Then use the tapes as follows:

- 1. The input tape of M'
- 2. The work tape of M'
- 3. The description of M^\prime
- 4. The current state of M^\prime
- 5. The output tape of M'

The complexity classes $\mathsf{DTIME}(f)$ and P

$\blacksquare \text{ Let } f: \mathbb{N} \to \mathbb{N}$

- The class $\mathsf{DTIME}(f) \subseteq 2^{\{0,1\}^*}$ is the set of all languages L, where
 - \blacklozenge exists $g: \mathbb{N} \to \mathbb{N}$, such that
 - \blacklozenge exists TM M that accepts L in time g, and

 $\blacklozenge \ g \in O(f).$

$$\mathsf{P} = \bigcup_{c \in \mathbb{N}} \mathsf{DTIME}(\lambda n.n^c)$$

Random access machines (RAMs)

A RAM consists of two main parts:

 \blacksquare The register bank R.

◆ Infinitely many registers, each capable of storing an integer.

 $\blacksquare The program P:$

A RAM executes instructions until it jumps to the "final instruction" 0.

■ Input — contents of register 0. Output — contents of register 0.

Instruction set of a RAM

- $\blacksquare \ T \leftarrow S \text{ and } T \leftarrow op(S) \text{ and } T \leftarrow S \text{ } op S$
 - \bullet T is one of R[n] or R[R[n]]. S is one of n or T.
- GOTO i and IF R[n] > 0 GOTO i.
- op comes from a fixed set of operations.
 - Must be careful in choosing those! Otherwise the machine can compute very fast.
 - ◆ Addition and subtraction are OK. Multiplication is not OK.

Simulating a TM on a RAM

Theorem. If $L \in \mathsf{DTIME}(f)$, then exists a RAM M can accept L in time O(f).

- Let M' be a k-tape TM that accepts L. Simulate L as follows:
- \blacksquare R[1] encodes the state of M'.
- \blacksquare $R[2], \ldots, R[k+1]$ store the position of the read/write heads.
- \blacksquare $R[k+2], \ldots$ store the symbols on k tapes
 - \blacklozenge One symbol per cell of R
 - \blacklozenge k tapes are interleaved somehow
- \blacksquare R[0] is used for arithmetic.
- The program of M is a translation of the transition function of M'.

Simulating a RAM on a TM

Theorem. If $L \subseteq \{0,1\}^*$ is accepted by a RAM M in time f then there exists a TM M' that accepts L in time $O(\lambda n.f(n)^3)$.

Consider a 7-tape TM.

First tape: input string x (read-only).

■ Second tape: contents of registers.

Third tape: value of the program counter.

Simulating a RAM on a TM

- Fourth tape: the index of the register whose value is currently sought.
- Fifth and Sixth tapes: operands of the arithmetic operation.
- Fifth, sixth, seventh tape are used to perform arithmetic operations.

Instruction set of RAM may not allow the length of the contents of registers to grow too fast.