
1 / 27

Complexity Theory (MTAT.07.004)
Autumn 2011

Peeter Laud & Bingsheng Zhang

class meets Thu 16:15–17:45 (Liivi 2-404)
Fri 14:15–15:45 (Liivi 2-405)

Books: S. Arora & B. Barak, Computational Complexity:
A Modern Approach
C. Papadimitriou, Computational Complexity
M. Tombak, Keerukusteooria

webpage: http://www.cs.ut.ee/˜peeter l/teaching/keerukus11s

grading based on some homework, lecture scribing and final exam

Scribing

2 / 27

■ In each lecture, a student will make detailed notes to be published
on the course webpage.

◆ With the current number of registered students, expect to be
in charge of scribing during about two weeks of the semester.

■ He/she prepares the notes in LaTeX and sends them to me before
the next week’s lectures.

■ I will polish those notes and put them on the course webpage.

■ See the course webpage for a template.

Models of computation

Computations

4 / 27

■ Human computers: mid-17th — mid-20th century

◆ Followed step-by-step instructions

■ Notions of “computation” and “computability” formalized in
mid-20th century.

■ Turing machines, λ-calculus, cellular automata, Boolean circuits,
random access machines, quantum circuits,. . .

■ All those models are universal. Any computation performed in one
of them can be modeled in another.

◆ . . . and with a similar∗ amount of computational effort

■ How much resources does a computation need?

Resources

5 / 27

■ Time

■ Space

◆ These two will be of interest in this course

■ Program size

■ Randomness

■ Coherence

■ . . .

Turing machines — intuitive details

6 / 27

■ k tapes, k ≥ 2;

■ first tape is the read-only input tape, other tapes are work tapes;

■ tapes are infinite to the right only;

■ the machine heads stay in place if they want to move left of the
leftmost symbol;

■ the alphabet contains bits 0 and 1, the blank symbol �, the
starting symbol ⊲;

■ the input string x ∈ {0, 1}∗ is written on input tape as ⊲x�� · · · ;

■ initially, all non-input tapes contain ⊲�� · · · ;

■ initially, all heads are in the leftmost position;

■ the answer y is written on the last tape as ⊲y�� · · · .

Turing machines

7 / 27

■ A k-tape Turing Machine (TM) with input and output is a tuple
(Γ, Q, δ, q0, QF), where

◆ Γ is the set of tape symbols;

■ Assume �, ⊲, 0, 1 ∈ Γ

◆ Q is the set of states;

◆ δ : Q× Γk → Q× Γk−1 ×Movek is the transition function;

■ Move = {−1, 0, 1}

◆ q0 ∈ Q is the initial state;

◆ QF ⊆ Q is the set of final states.

■ All sets above are finite.

TM Configurations

8 / 27

A configuration of a TM with k tapes, the tape symbol set Γ, and state
set Q is

〈q;w1, . . . , wk; p1, . . . , pk〉, where

■ q ∈ Q is the current state of the TM;

■ wi ∈ Γ∗ · {�ω} is the contents of the i-th tape.

◆ wi consists of a finite sequence of elements of Γ, followed by
infinitely many �-s.

■ pi ∈ N is the position of the i-th head. Let leftmost position be 1.

Let CONF
k
Γ,Q be the set of all such configurations.

TM computations

9 / 27

A TM M = (Γ, Q, δ, q0, QF) defines a relation (actually, a partial

function)
M
→ on CONF

k
Γ,Q.

〈q;w1, . . . , wk; p1, . . . , pk〉
M
→ 〈q′;w1, w

′
2, . . . , w

′
k; p

′
1, . . . , p

′
k〉 iff

■ q 6∈ QF

■ γi = wi[pi]

■ (q′; γ′
2, . . . , γ

′
k; s1, . . . , sk) = δ(q; γ1, . . . , γk)

■ w′
i = wi[pi 7→ γ′

i]

■ p′i = max(1, pi + si)

TM applied to a bit-string

10 / 27

■ Let M = (Γ, Q, δ, q0, QF).

■ Let x ∈ {0, 1}∗.

■ Let C0 = 〈q0; ⊲ · x ·�
ω, ⊲ ·�ω, . . . , ⊲ ·�ω; 1, . . . , 1〉.

■ Consider configurations C1, C2, . . ., such that Ci−1

M
→ Ci.

■ If there exists Cn = 〈qn;w1, . . . , wk; p1, . . . , pk〉 with qn ∈ QF then

◆ we say that M stops on x in n steps in state qn.

◆ If also wk = ⊲ · y ·�ω where y ∈ {0, 1}∗ then we say that M
outputs y on input x.

■ If there is no such Cn, then M does not stop on x.

TM accepting a language

11 / 27

■ A language L is any subset of {0, 1}∗.

■ Let M = (Γ, Q, δ, q0, QF), where QF = {qacc, qrej}.

■ If M

◆ stops on all inputs x ∈ {0, 1}∗;

◆ stops in state qacc iff x ∈ L

then M accepts language L.

TM computing a function

12 / 27

■ Consider functions f of type {0, 1}∗ → {0, 1}∗.

■ Let M = (Γ, Q, δ, q0, QF).

■ If for all x ∈ {0, 1}∗,

◆ M stops;

◆ M outputs y;

◆ y = f(x)

then M computes the function f .

Running time of a TM

13 / 27

■ Let T : N→ N and f : {0, 1}∗ → {0, 1}∗. The TM M computes f
in time T , if it computes f , and for any x ∈ {0, 1}∗, the machine
M makes at most T (|x|) steps.

■ T : N→ N is time constructible if ∀n : T (n) ≥ n and the function
x 7→ bit(T (|x|)) is computable in time c · T for some c ∈ N.

◆ bit(n) is the representation of n as a binary string.

Examples: n, n log n, n2, 2n are time constructible.

■ Non-time-constructible functions: try to encode the halting problem

Big-Oh notation

14 / 27

Let f, g : N→ N.

■ O(f), o(f),Θ(f),Ω(f), ω(f) are sets of functions from N to N.

■ g ∈ O(f) (or g is O(f)) if
∃c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 =⇒ g(n) ≤ c · f(n)

◆ R+ — all positive real numbers.

■ g ∈ o(f) if
∀c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 =⇒ g(n) ≤ c · f(n)

■ g ∈ Ω(f) if f ∈ O(g).

■ g ∈ ω(f) if f ∈ o(g).

■ Θ(f) is the intersection of O(f) and Ω(f).

Reducing the size of the tape alphabet

15 / 27

Theorem. Let M = (Γ, Q, δ, q0, QF) with k tapes accept a language /
compute a function in time T . There exists a TM M ′ with max(k, 3)
tapes and tape alphabet {⊲,�, 0, 1} that accepts the same language /
computes the same function in time O(T).

Remark: Note that constant hidden in O may depend on M .

Multi-tape −→ two-tape TM

16 / 27

Theorem. Let M with k tapes accept a language / compute a function
in time T . There exists a TM M ′ with two tapes that accepts the same
language / computes the same function in time O(λn.T (n)2).

Actually, we can do better:

Theorem. Let M with k tapes accept a language / compute a function
in time T . There exists a TM M ′ with three tapes that accepts the same
language / computes the same function in time O(λn.T (n) log T (n)).

Two-way infinite −→ one-way infinite tapes

17 / 27

Speeding up a TM

18 / 27

Theorem. Let a TM M compute a function / accept a language in
time T . Then for each c ∈ N there exists a TM M ′ and constant c′,
such that M ′ computes the same function / accepts the same language
in time λn.1

c
T (n) + c′.

Idea: Compute 6c steps of M “in hardware”. This takes 6 steps on M ′.

Turing machines as bit-strings

19 / 27

■ A Turing machine (Γ, Q, δ, q0, QF) can be represented as a
bit-string.

◆ State the number of tapes and the number of elements in Q

and Γ. List the points of δ in some canonical order. Name q0
and QF .

■ For α ∈ {0, 1}∗, let Mα be the TM represented by it.

◆ Let each bit-string represent some TM.

Universal Turing Machine

20 / 27

Theorem. There exists a five-tape TM U with tape alphabet
{0, 1, ⊲,�} and a function C : {0, 1}∗ → N, such that

for all x, α ∈ {0, 1}∗

if Mα on input x stops in t steps then

■ U on input (α, x) stops in at most C(α) · t log t steps;

■ the output of U on (α, x) equals the output of Mα on x.

■ If M has two tapes then U stops in C(α) · t steps.

Interpretation

21 / 27

■ First convert Mα into a two-tape TM M ′. Then reduce its alphabet
to {0, 1, ⊲,�} (add extra output tape).

■ Then use the tapes as follows:

1. The input tape of M ′

2. The work tape of M ′

3. The description of M ′

4. The current state of M ′

5. The output tape of M ′

The complexity classes DTIME(f) and P

22 / 27

■ Let f : N→ N

■ The class DTIME(f) ⊆ 2{0,1}
∗

is the set of all languages L, where

◆ exists g : N→ N, such that

◆ exists TM M that accepts L in time g, and

◆ g ∈ O(f).

P =
⋃

c∈N

DTIME(λn.nc)

Random access machines (RAMs)

23 / 27

A RAM consists of two main parts:

■ The register bank R.

◆ Infinitely many registers, each capable of storing an integer.

■ The program P :
1. i1
2. i2
3. i3
.

■ A RAM executes instructions until it jumps to the “final
instruction” 0.

■ Input — contents of register 0. Output — contents of register 0.

Instruction set of a RAM

24 / 27

■ T ← S and T ← op(S) and T ← S op S

◆ T is one of R[n] or R[R[n]]. S is one of n or T .

■ GOTO i and IF R[n] > 0 GOTO i.

■ op comes from a fixed set of operations.

◆ Must be careful in choosing those! Otherwise the machine can
compute very fast.

◆ Addition and subtraction are OK. Multiplication is not OK.

Simulating a TM on a RAM

25 / 27

Theorem. If L ∈ DTIME(f), then exists a RAM M can accept L in
time O(f).

■ Let M ′ be a k-tape TM that accepts L. Simulate L as follows:

■ R[1] encodes the state of M ′.

■ R[2], . . . , R[k + 1] store the position of the read/write heads.

■ R[k + 2], . . . store the symbols on k tapes

◆ One symbol per cell of R

◆ k tapes are interleaved somehow

■ R[0] is used for arithmetic.

■ The program of M is a translation of the transition function of M ′.

Simulating a RAM on a TM

26 / 27

Theorem. If L ⊆ {0, 1}∗ is accepted by a RAM M in time f then there
exists a TM M ′ that accepts L in time O(λn.f(n)3).

Consider a 7-tape TM.

■ First tape: input string x (read-only).

■ Second tape: contents of registers.

◆ A sequence of elements of the form biti : bitR[i], ending with
an end marker.

◆ When updated, delete original pair, add new pair to the right,
move end marker.

■ Third tape: value of the program counter.

Simulating a RAM on a TM

27 / 27

■ Fourth tape: the index of the register whose value is currently
sought.

■ Fifth and Sixth tapes: operands of the arithmetic operation.

■ Fifth, sixth, seventh tape are used to perform arithmetic operations.

Instruction set of RAM may not allow the length of the contents of
registers to grow too fast.

	
	Scribing
	Computations
	Resources
	Turing machines — intuitive details
	Turing machines
	TM Configurations
	TM computations
	TM applied to a bit-string
	TM accepting a language
	TM computing a function
	Running time of a TM
	Big-Oh notation
	Reducing the size of the tape alphabet
	Multi-tape -3mu two-tape TM
	Two-way infinite -3mu one-way infinite tapes
	Speeding up a TM
	Turing machines as bit-strings
	Universal Turing Machine
	Interpretation
	The complexity classes DTIME(f) and ¶
	Random access machines (RAMs)
	Instruction set of a RAM
	Simulating a TM on a RAM
	Simulating a RAM on a TM
	Simulating a RAM on a TM

