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Complexity Theory (MTAT.07.004)
Autumn 2011

Peeter Laud & Bingsheng Zhang

class meets Thu 16:15–17:45 (Liivi 2-404)
Fri 14:15–15:45 (Liivi 2-405)

Books: S. Arora & B. Barak, Computational Complexity:
A Modern Approach
C. Papadimitriou, Computational Complexity
M. Tombak, Keerukusteooria

webpage: http://www.cs.ut.ee/˜peeter l/teaching/keerukus11s

grading based on some homework, lecture scribing and final exam



Scribing
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■ In each lecture, a student will make detailed notes to be published
on the course webpage.

◆ With the current number of registered students, expect to be
in charge of scribing during about two weeks of the semester.

■ He/she prepares the notes in LaTeX and sends them to me before
the next week’s lectures.

■ I will polish those notes and put them on the course webpage.

■ See the course webpage for a template.



Models of computation



Computations
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■ Human computers: mid-17th — mid-20th century

◆ Followed step-by-step instructions

■ Notions of “computation” and “computability” formalized in
mid-20th century.

■ Turing machines, λ-calculus, cellular automata, Boolean circuits,
random access machines, quantum circuits,. . .

■ All those models are universal. Any computation performed in one
of them can be modeled in another.

◆ . . . and with a similar∗ amount of computational effort

■ How much resources does a computation need?



Resources
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■ Time

■ Space

◆ These two will be of interest in this course

■ Program size

■ Randomness

■ Coherence

■ . . .



Turing machines — intuitive details
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■ k tapes, k ≥ 2;

■ first tape is the read-only input tape, other tapes are work tapes;

■ tapes are infinite to the right only;

■ the machine heads stay in place if they want to move left of the
leftmost symbol;

■ the alphabet contains bits 0 and 1, the blank symbol �, the
starting symbol ⊲;

■ the input string x ∈ {0, 1}∗ is written on input tape as ⊲x�� · · · ;

■ initially, all non-input tapes contain ⊲�� · · · ;

■ initially, all heads are in the leftmost position;

■ the answer y is written on the last tape as ⊲y�� · · · .



Turing machines
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■ A k-tape Turing Machine (TM) with input and output is a tuple
(Γ, Q, δ, q0, QF ), where

◆ Γ is the set of tape symbols;

■ Assume �, ⊲, 0, 1 ∈ Γ

◆ Q is the set of states;

◆ δ : Q× Γk → Q× Γk−1 ×Movek is the transition function;

■ Move = {−1, 0, 1}

◆ q0 ∈ Q is the initial state;

◆ QF ⊆ Q is the set of final states.

■ All sets above are finite.



TM Configurations
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A configuration of a TM with k tapes, the tape symbol set Γ, and state
set Q is

〈q;w1, . . . , wk; p1, . . . , pk〉, where

■ q ∈ Q is the current state of the TM;

■ wi ∈ Γ∗ · {�ω} is the contents of the i-th tape.

◆ wi consists of a finite sequence of elements of Γ, followed by
infinitely many �-s.

■ pi ∈ N is the position of the i-th head. Let leftmost position be 1.

Let CONF
k
Γ,Q be the set of all such configurations.



TM computations
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A TM M = (Γ, Q, δ, q0, QF ) defines a relation (actually, a partial

function)
M
→ on CONF

k
Γ,Q.

〈q;w1, . . . , wk; p1, . . . , pk〉
M
→ 〈q′;w1, w

′
2, . . . , w

′
k; p

′
1, . . . , p

′
k〉 iff

■ q 6∈ QF

■ γi = wi[pi]

■ (q′; γ′
2, . . . , γ

′
k; s1, . . . , sk) = δ(q; γ1, . . . , γk)

■ w′
i = wi[pi 7→ γ′

i]

■ p′i = max(1, pi + si)



TM applied to a bit-string
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■ Let M = (Γ, Q, δ, q0, QF ).

■ Let x ∈ {0, 1}∗.

■ Let C0 = 〈q0; ⊲ · x ·�
ω, ⊲ ·�ω, . . . , ⊲ ·�ω; 1, . . . , 1〉.

■ Consider configurations C1, C2, . . ., such that Ci−1

M
→ Ci.

■ If there exists Cn = 〈qn;w1, . . . , wk; p1, . . . , pk〉 with qn ∈ QF then

◆ we say that M stops on x in n steps in state qn.

◆ If also wk = ⊲ · y ·�ω where y ∈ {0, 1}∗ then we say that M
outputs y on input x.

■ If there is no such Cn, then M does not stop on x.



TM accepting a language
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■ A language L is any subset of {0, 1}∗.

■ Let M = (Γ, Q, δ, q0, QF ), where QF = {qacc, qrej}.

■ If M

◆ stops on all inputs x ∈ {0, 1}∗;

◆ stops in state qacc iff x ∈ L

then M accepts language L.



TM computing a function
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■ Consider functions f of type {0, 1}∗ → {0, 1}∗.

■ Let M = (Γ, Q, δ, q0, QF ).

■ If for all x ∈ {0, 1}∗,

◆ M stops;

◆ M outputs y;

◆ y = f(x)

then M computes the function f .



Running time of a TM
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■ Let T : N→ N and f : {0, 1}∗ → {0, 1}∗. The TM M computes f
in time T , if it computes f , and for any x ∈ {0, 1}∗, the machine
M makes at most T (|x|) steps.

■ T : N→ N is time constructible if ∀n : T (n) ≥ n and the function
x 7→ bit(T (|x|)) is computable in time c · T for some c ∈ N.

◆ bit(n) is the representation of n as a binary string.

Examples: n, n log n, n2, 2n are time constructible.

■ Non-time-constructible functions: try to encode the halting problem



Big-Oh notation
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Let f, g : N→ N.

■ O(f), o(f),Θ(f),Ω(f), ω(f) are sets of functions from N to N.

■ g ∈ O(f) (or g is O(f)) if
∃c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 =⇒ g(n) ≤ c · f(n)

◆ R+ — all positive real numbers.

■ g ∈ o(f) if
∀c ∈ R+ ∃n0 ∈ N ∀n ∈ N : n ≥ n0 =⇒ g(n) ≤ c · f(n)

■ g ∈ Ω(f) if f ∈ O(g).

■ g ∈ ω(f) if f ∈ o(g).

■ Θ(f) is the intersection of O(f) and Ω(f).



Reducing the size of the tape alphabet
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Theorem. Let M = (Γ, Q, δ, q0, QF ) with k tapes accept a language /
compute a function in time T . There exists a TM M ′ with max(k, 3)
tapes and tape alphabet {⊲,�, 0, 1} that accepts the same language /
computes the same function in time O(T ).

Remark: Note that constant hidden in O may depend on M .



Multi-tape −→ two-tape TM
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Theorem. Let M with k tapes accept a language / compute a function
in time T . There exists a TM M ′ with two tapes that accepts the same
language / computes the same function in time O(λn.T (n)2).

Actually, we can do better:

Theorem. Let M with k tapes accept a language / compute a function
in time T . There exists a TM M ′ with three tapes that accepts the same
language / computes the same function in time O(λn.T (n) log T (n)).



Two-way infinite −→ one-way infinite tapes
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Speeding up a TM
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Theorem. Let a TM M compute a function / accept a language in
time T . Then for each c ∈ N there exists a TM M ′ and constant c′,
such that M ′ computes the same function / accepts the same language
in time λn.1

c
T (n) + c′.

Idea: Compute 6c steps of M “in hardware”. This takes 6 steps on M ′.



Turing machines as bit-strings
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■ A Turing machine (Γ, Q, δ, q0, QF ) can be represented as a
bit-string.

◆ State the number of tapes and the number of elements in Q

and Γ. List the points of δ in some canonical order. Name q0
and QF .

■ For α ∈ {0, 1}∗, let Mα be the TM represented by it.

◆ Let each bit-string represent some TM.



Universal Turing Machine
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Theorem. There exists a five-tape TM U with tape alphabet
{0, 1, ⊲,�} and a function C : {0, 1}∗ → N, such that

for all x, α ∈ {0, 1}∗

if Mα on input x stops in t steps then

■ U on input (α, x) stops in at most C(α) · t log t steps;

■ the output of U on (α, x) equals the output of Mα on x.

■ If M has two tapes then U stops in C(α) · t steps.



Interpretation
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■ First convert Mα into a two-tape TM M ′. Then reduce its alphabet
to {0, 1, ⊲,�} (add extra output tape).

■ Then use the tapes as follows:

1. The input tape of M ′

2. The work tape of M ′

3. The description of M ′

4. The current state of M ′

5. The output tape of M ′



The complexity classes DTIME(f ) and P
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■ Let f : N→ N

■ The class DTIME(f) ⊆ 2{0,1}
∗

is the set of all languages L, where

◆ exists g : N→ N, such that

◆ exists TM M that accepts L in time g, and

◆ g ∈ O(f).

P =
⋃

c∈N

DTIME(λn.nc)



Random access machines (RAMs)
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A RAM consists of two main parts:

■ The register bank R.

◆ Infinitely many registers, each capable of storing an integer.

■ The program P :
1. i1
2. i2
3. i3
. . . . . . . . .

■ A RAM executes instructions until it jumps to the “final
instruction” 0.

■ Input — contents of register 0. Output — contents of register 0.



Instruction set of a RAM
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■ T ← S and T ← op(S) and T ← S op S

◆ T is one of R[n] or R[R[n]]. S is one of n or T .

■ GOTO i and IF R[n] > 0 GOTO i.

■ op comes from a fixed set of operations.

◆ Must be careful in choosing those! Otherwise the machine can
compute very fast.

◆ Addition and subtraction are OK. Multiplication is not OK.



Simulating a TM on a RAM
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Theorem. If L ∈ DTIME(f), then exists a RAM M can accept L in
time O(f).

■ Let M ′ be a k-tape TM that accepts L. Simulate L as follows:

■ R[1] encodes the state of M ′.

■ R[2], . . . , R[k + 1] store the position of the read/write heads.

■ R[k + 2], . . . store the symbols on k tapes

◆ One symbol per cell of R

◆ k tapes are interleaved somehow

■ R[0] is used for arithmetic.

■ The program of M is a translation of the transition function of M ′.



Simulating a RAM on a TM
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Theorem. If L ⊆ {0, 1}∗ is accepted by a RAM M in time f then there
exists a TM M ′ that accepts L in time O(λn.f(n)3).

Consider a 7-tape TM.

■ First tape: input string x (read-only).

■ Second tape: contents of registers.

◆ A sequence of elements of the form biti : bitR[i], ending with
an end marker.

◆ When updated, delete original pair, add new pair to the right,
move end marker.

■ Third tape: value of the program counter.



Simulating a RAM on a TM
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■ Fourth tape: the index of the register whose value is currently
sought.

■ Fifth and Sixth tapes: operands of the arithmetic operation.

■ Fifth, sixth, seventh tape are used to perform arithmetic operations.

Instruction set of RAM may not allow the length of the contents of
registers to grow too fast.
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