
Interactive proofs

Interaction

2 / 24

Let f, g : ({0, 1}∗)+ → {0, 1}∗. A k-round interaction of f and g on
input x ∈ {0, 1}∗ is the sequence a1, . . . , ak ∈ {0, 1}

∗, where

a1 = f(x)

a2 = g(x, a1)

a3 = f(x, a1, a2)

.

The f -output of the interaction is outkf〈f, g〉(x) = f(x, a1, . . . , ak). The

g-output is outkg〈f, g〉(x) = g(x, a1, . . . , ak).

The class dIP

3 / 24

A language L belongs to class dIP if

■ exists a polynomially bounded k : N→ N, and

■ exists poly-time (in first argument) algorithm
V : ({0, 1}∗)+ → {0, 1}∗, such that

■ exists function P : ({0, 1}∗)+ → {0, 1}∗, such that for all x ∈ L

◆ out
k(|x|)
V 〈V, P 〉(x) = 1 (Completeness)

■ for all functions P : ({0, 1}∗)+ → {0, 1}∗ and all x 6∈ L:

◆ out
k(|x|)
V 〈V, P 〉(x) = 0 (Soundness).

Theorem. dIP = NP. Proof. certificate ≈ transcript

Randomized verifier

4 / 24

Let V be randomized: ak = V (x, α, a1, . . . , ak−1).

A language L belongs to class IP[λn.k(n)] if

■ exists a poly-time (in first argument) randomized algorithm
V : ({0, 1}∗)+ → {0, 1}∗, such that

■ exists function P : ({0, 1}∗)+ → {0, 1}∗, such that for all x ∈ L

◆ Pr[out
k(|x|)
V 〈V, P 〉(x) = 1] ≥ 2/3 (Completeness)

■ for all functions P : ({0, 1}∗)+ → {0, 1}∗ and all x 6∈ L:

◆ Pr[out
k(|x|)
V 〈V, P 〉(x) = 1] ≤ 1/3 (Soundness).

Define IP =
⋃

c∈N IP[λn.n
c].

Example: graph non-isomorphism is in IP[2]

5 / 24

■ Input: two graphs G1, G2. Claim: G1 6∼= G2.

■ Protocol:

◆ V randomly picks i ∈R {1, 2}.

◆ V sends to P a random permutation of Gi.

◆ P responds with i′. V checks that i = i′.

Arthur-Merlin protocols

6 / 24

A language L belongs to class AM[λn.k(n)] if

■ L ∈ IP[λn.k(n)] and the verifier V works as follows:

◆ whenever V has to send a message to P , it generates a
random bit-string α and sends it.

◆ V does not generate any more random bits.

(public-coin protocols)

Define AM = AM[2].

Class MA defined similarly, but prover sends the first message.

Graph non-isomorphism with public coins

7 / 24

Let G1 and G2 have n vertices. Consider the set

S = {〈H, π〉 | (H ∼= G1 ∨H ∼= G2) ∧ π(H) = H}

■ If G1
∼= G2 then |S| = n!. If G1 6∼= G2 then |S| = 2n!.

■ Set lower bound protocol for S and a number K has the
following result:

◆ if |S| ≥ K then verifier accepts with high probability.

◆ if |S| ≤ K/2 then verifier rejects with high probability.

■ Use this protocol for (S, 2n!).

Set lower bound protocol for (S,K)

8 / 24

■ Let S ⊆ {0, 1}m. Let k be such that 2k−2 ≤ K < 2k−1.

■ Let Hm,k be a pairwise independent hash function family from
{0, 1}m to {0, 1}k.

◆ For any x, x′ ∈ {0, 1}m: distribution of h(x)‖h(x′) is uniform,
when h← Hm,k.

■ Verifier randomly picks and sends h← Hm,k and y ∈R {0, 1}
k.

■ Prover responds with x ∈ S (and with x’s certificate), such that
h(x) = y. Verifier checks.

Let p = K/2k. If |S| ≤ K/2 then |h(S)| ≤ (p/2) · 2k and the probability
of existence of x is at most p/2.
If |S| ≥ K then. . .

If K ≤ |S| ≤ 2k−1 then. . .

9 / 24

Let Ex be the event h(x) = y. All probabilities are wrt. choice of h and
y.

Pr[∃x ∈ S : h(x) = y] = Pr[
⋃

x∈S

Ex]
(∗)

≥
∑

x∈S

Pr[Ex]−
1

2

∑

x6=x′∈S

Pr[Ex∩Ex′]

≥
|S|

2k
−

1

2
·
|S|2

22k
≥

3

4
p .

(*) Induction over |S|.

We see that the acceptance probabilities for |S| ≥ K and |S| ≤ K/2 are
significantly different. Repetition makes the difference as large as
necessary.

Generalization: IP[k] ⊆ AM[k + 2].

Perfect completeness

10 / 24

Theorem. If L ∈ AM then exists verifier V , such that

■ if x ∈ L then exists prover P , such that
Pr[outV 〈V, P 〉(x) = 1] = 1;

■ if x 6∈ L then for all provers P , Pr[outV 〈V, P 〉(x) = 1] ≤ 1/3.

Proof is similar to BPP ⊆ Σp
2. Let V

′ be a verifier with exponentially
small completeness and soundness errors. Then

■ exist bitstrings u1, . . . , uk, such that for each α and for each x ∈ L:

■ V ′ accepts with at least one random string α⊕ u1, . . . , α⊕ uk.

Corollaries of perfect completeness

11 / 24

Theorem. AM ⊆ Πp
2.

Theorem. If graph isomorphism is NP-complete then Σp
2 = Πp

2.

Proof. Let

■ f be poly-time reduction from Boolean formulas to pairs of graphs,
such that ∀~xϕ(~x) ≡ true iff f(ϕ)1 6∼= f(ϕ)2;

■ V be a verifier for graph non-isomorphism with public coins, perfect
completeness, and soundness error better than 2−n.

∃~x∀~yϕ(~x, ~y) ≡ true iff ∀α ∃~x ∃msgP : V (f(ϕ(~x, ·)), α,msgP)

MA ⊆ AM

12 / 24

Theorem. MA ⊆ AM.

■ Proof. Let L have MA-proof where verifier has perfect
completeness and 2−p(|x|)−1 soundness error.

◆ p(|x|) — length of Merlin’s message on input x.

◆ Soundness error reduced by Arthur checking Merlin’s claim
multiple times.

■ Then V is also an AM-verifier for L.

◆ Completeness — still perfect.

◆ Soundness — error at most 1/2.

Corollary AM[k + 1] ⊆ AM[k]. The finite levels of AM collapse.

IP ⊆ AM

13 / 24

■ Let L ∈ IP[T].

■ Let V be such, that for x ∈ {0, 1}n,

◆ exactly 2 · T (n) messages are sent; each having length m(n).

◆ exactly ℓ(n) random bits are used by V .

■ Let P be a suitable prover.

◆ Let V ‖P have exponentially small error probability.

■ Let w ∈ {0, 1}n be the string that V and P consider.

Some notation

14 / 24

■ xi — verifier’s messages. yi — prover’s messages.

■ A partial transcript: t = (x1, y1, x2, y2, . . .), ending with some xi or
yi.

■ ACC(w, t) — the set of all such r ∈ {0, 1}ℓ(n), where the transcript
of V (r)‖P on input w starts with t and ends with V accepting.

Arthur’s protocol

15 / 24

■ Round 0. Receive b1 ∈ N from Merlin.

■ Round i (1 ≤ i ≤ T (n)). Select (and send to Merlin)

◆ random linear functions h1, . . . , hℓ(n) : {0, 1}
m(n) → {0, 1}bi+1

◆ random strings z1, . . . , zℓ(n)2 ∈ {0, 1}
bi+1

■ Receive bi+1 ∈ N and xi, yi ∈ {0, 1}
m(n). Check that

∃j, k : hj(xi) = zk.

■ Round i = T (n) + 1. Select (and send to Merlin)

◆ random linear functions h1, . . . , hℓ(n) : {0, 1}
ℓ(n) → {0, 1}bi+1

◆ random strings z1, . . . , zℓ(n)2 ∈ {0, 1}
bi+1

■ Receive r ∈ {0, 1}ℓ(n) Check that ∃j, k : hj(r) = zk.

■ Check that x1, y1, . . . , xT (n), yT (n) is an accepting transcript for
V (w; r).

■ Check that
∑T (n)

i=1 bi ≥ ℓ(n)− T (n) log ℓ(n).

Merlin’s protocol (w ∈ L)

16 / 24

■ Finding bi

◆ Let t be current transcript. Let
ACCd = {x | 2

d−1 < |ACC(w, t, x)| ≤ 2d}.

◆ Let dmax = arg maxd
⋃

x∈ACCd
ACC(w, t, x).

◆ Let bi = 2 + ⌈log dmax⌉.

◆ bT (n)+1 comes directly from the size of ACC(w, t).

■ Finding xi, yi

◆ Pick xi from the set ACCdmax
defined before.

◆ Let yi = P (w, t, xi).

During the protocol, |ACC(w, t, xi, yi)| ≈ |ACC(w, t)|/2
bi .

IP ⊆ PSPACE

17 / 24

■ Consider all possible executions of the verifier V on input x, when
ranging over

◆ all possible inputs from the prover;

◆ all possible randomness strings.

■ Compute the acceptance probability when the prover uses its best
strategy.

■ Note that the prover can do the same computations and pick the
best messages to send to the verifier.

Corollary. We can assume that our provers work in polynomial space.

Arithmetization

18 / 24

For a Boolean formula ϕ(x1, . . . , xn) define a n-variable polynomial Pϕ

as follows:

Pxi
= xi

P¬ϕ = 1− Pϕ

Pϕ1∧ϕ2
= Pϕ1

· Pϕ2

Pϕ1∨ϕ2
= 1− (1− Pϕ1

)(1− Pϕ2
)

■ If x1, . . . , xn ∈ {0, 1} then ϕ(x1, . . . , xn) = Pϕ(x1, . . . , xn);

■ Pϕ is easy to evaluate from x1, . . . , xn ∈ R and ϕ.

◆ R — some ring.

■ Degree of O(Pϕ) is O(|ϕ|).

PSPACE ⊆ IP

19 / 24

Consider the problem
#SATD = {〈ϕ,K〉 |ϕ has exactly K satisfying valuations}.
Lemma. #SATD ∈ IP.

Proof. #ϕ =
∑

b1∈{0,1}
· · ·

∑
bn∈{0,1}

Pϕ(b1, . . . , bn) ≤ 2n.

■ Let p be a (n+ 1)-bit prime. Everything below is mod p.

■ For a polynomial g(x1, . . . , xm), denote
proj g(x) =

∑
b2∈{0,1}

· · ·
∑

bm∈{0,1} g(x, b2, . . . , bm)

■ Given m-variable d-degree polynomial g and number K, the
Sumcheck-protocol verifies that

K =
∑

b1∈{0,1}

· · ·
∑

bm∈{0,1}

g(b1, . . . , bm) .

Sumcheck

20 / 24

■ If m = 1 then V checks whether g(0) + g(1) = K

■ If m > 1 then P sends a polynomial s(x) to V .

◆ presumably s = proj g

■ V checks that s(0) + s(1) = K.

■ V picks a random number a ∈ Zp and sends it to P .

■ Sumcheck: s(a) =
∑

b2∈{0,1}
· · ·

∑
bn∈{0,1}

g(a, b2, . . . , bm)

Claim. Sumcheck has perfect completeness and soundness at least
(1− d/p)n.
Proof. Induction over the number of variables.

TQBF as polynomial

21 / 24

■ ∃x1∀x2 · · ·ϕ(x1, x2, . . .) is true iff∑
b1∈{0,1}

∏
b2∈{0,1}

· · ·Pϕ(b1, b2, . . .) > 0.

■ This number can be at most 22
n

. We’ll compute it modulo some p.

◆ Prover picks p, verifier checks primality.

■ We could also do Prodcheck, but degrees of polynomials are too
large.

■ We rewrite ∃∀∃ · · ·ϕ, such that the polynomials s will have low
degree.

■ We get a formula that is not in prenex form, but that’s OK.

◆ prenex — all quantifiers in the beginning.

Rewriting quantified ϕ

22 / 24

■ A TQ formula is simple if at most one ∀ is between each variable
and its binding place.

■ Qx · · · ∀yψ(x) ≡ Qx · · · ∀y∃x′(x = x′ ∧ ψ(x′)).

■ Any formula can be made simple by at most squaring its number of
variables.

■ Let negations be only in front of variables.

■ Change arithmetization: Pϕ1∨ϕ2
= Pϕ1

+ Pϕ2
.

■ Lemma. For any values of free variables of ϕ: Pϕ(b1, . . . , bk) > 0
iff ϕ(b1, . . . , bk) is true.

■ The protocol for verifying Pϕ
?
= K:

The protocol

23 / 24

■ If ϕ ≡ ϕ1 op ϕ2 then P sends both values K1 = Pϕ1
and K2 = Pϕ2

.
Verifier checks that K = K1 ⊗K2 and then run the protocol for

K1
?
= Pϕi

.

■ If ϕ ≡ ∃xϕ′ or ϕ ≡ ∀xϕ′ then P sends the polynomial
s(x) = Pϕ′(x) to V .

◆ Its degree is at most 2|ϕ′|.

■ V verifies s(0)⊗ s(1)
?
= K. Then pick number a and run the

protocol for Pϕ′(a)
?
= s(a).

A relationship between different classes

24 / 24

Theorem. If PSPACE ⊆ P/poly then PSPACE = MA.

Proof. The prover for TQBF is in PSPACE. Protocol:

■ In round 1, P sends to V the circuit for TQBF prover.

■ V does the “interactive” proof with the help of this circuit.

	Interaction
	The class dIP
	Randomized verifier
	Example: graph non-isomorphism is in IP[2]
	Arthur-Merlin protocols
	Graph non-isomorphism with public coins
	Set lower bound protocol for (S,K)
	If K|S|2k-1 then…
	Perfect completeness
	Corollaries of perfect completeness
	MAAM
	IPAM
	Some notation
	Arthur's protocol
	Merlin's protocol (wL)
	IPPSPACE
	Arithmetization
	PSPACEIP
	Sumcheck
	TQBF as polynomial
	Rewriting quantified
	The protocol
	A relationship between different classes

